
Does Virtualization Make Disk Scheduling Passé?

David Boutcher and Abhishek Chandra
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

{boutcher, chandra}@cs.umn.edu

ABSTRACT
We examine whether traditional disk I/O scheduling still
provides benefits in a layered system consisting of virtualized
operating systems and underlying virtual machine monitor.
We demonstrate that choosing the appropriate scheduling
algorithm in guest operating systems provides performance
benefits, while scheduling in the virtual machine monitor
has no measurable advantage. We propose future areas for
investigation, including schedulers optimized for running in
a virtual machine, for running in a virtual machine monitor,
and layered schedulers optimizing both application level ac-
cess and the underlying storage technology.

1. INTRODUCTION
Traditional disk I/O scheduling has been designed to ad-

dress the characteristics of electromechanical disks which
have been the prevalent disk technology for several decades.
Disk scheduling algorithms such as the elevator (SCAN) al-
gorithm re-order disk I/O operations to minimize the time
spent waiting for disk heads to physically traverse the disk.
A variety of application-dependent file access patterns cou-
pled with the disk schedulers’ attempt to reduce the impact
of slow seek times leads to trade-offs between fairness, la-
tency, and efficiency, so the current Linux kernel contains
four different disk I/O schedulers with different characteris-
tics [13]. The need for such scheduling may become obsolete
as storage systems move to new technologies and new en-
vironments. The specific question addressed in this paper
is whether such scheduling is still relevant in the face of
new technologies such as virtualization which form the basis
of computing environments such as clouds and virtualized
hosting platforms.

The adoption of virtual machines brings some interesting
challenges to disk I/O scheduling. In a virtualized envi-
ronment, multiple “guest” operating systems run on top of a
virtual machine monitor. In most cases each of the guest op-
erating systems have virtual disks which often share a single
shared physical disk. In many cases the guest operating sys-

tems will schedule individual disk I/O operations using al-
gorithms such as an elevator algorithm before passing them
on to the virtual machine monitor, which itself will optimize
the order of I/O operations. Given the lack of coordination
between the layers, it is possible for different scheduling algo-
rithms to conflict with each other. For instance, if both the
guest and VMM are using an elevator scheduling algorithm
and the schedulers spend equal amounts of time schedul-
ing I/O operations in each direction, approximately 50% of
the time the guest and the VMM will be scheduling I/O
operations in opposite order. Further, the scheduling algo-
rithm providing the best performance is often dependent on
the specific workload. In a virtualized environment, differ-
ent system images may be running different workloads. We
show in this paper that choosing the right schedulers and at
the appropriate levels of the virtualization stack, can indeed
have a significant impact on the performance of an applica-
tion. Specifically we demonstrate that carefully choosing the
scheduler closest to the application has the greatest impact
on performance.

There are other technologies, such as SAN storage, FLASH
storage, and distributed storage used in cloud computing
infrastructure which also bring into question the value of
traditional I/O scheduling with its focus on minimizing disk
arm movement. The results shown here suggest that even in
these environments there may still be value in the additional
processing required to optimize the way I/O operations are
delivered to underlying storage devices.

We begin by presenting an experimental study of Linux
I/O schedulers in the presence of virtualization. We then
present some of the insights gained from this study and the
potential impact of these findings on the design and use of
schedulers in virtualized environments.

2. EXPERIMENTAL STUDY: EVALUATING
I/O SCHEDULERS

The Linux operating system provides an excellent environ-
ment for comparing disk I/O scheduling algorithms, since
the different I/O schedulers can be easily enabled and dis-
abled on a per-device basis. Further, there are a variety
of virtual machine monitors available. We elected to eval-
uate all combinations of the I/O schedulers in VMM and
guest operating systems. The four Linux I/O schedulers are
the Noop scheduler, which provides no I/O reordering, the
Completely Fair Queuing scheduler (CFQ), the Anticipatory
scheduler, and the Deadline scheduler. These schedulers are
described in section 2.3 in more detail.

We consider two significant metrics for I/O performance



in a virtual environment. They are throughput and fairness.
In this paper we demonstrate that the choice of schedulers at
different system levels can significantly affect these metrics.
We define these metrics as follows:

Throughput is the aggregate amount of work, performed
by the system. In our experiments this is the number
of I/O oriented transactions performed in aggregate
across all virtual machines being evaluated on the sys-
tem.

Fairness is the equality of work divided among different
concurrent environments. We use Jain’s fairness mea-
sure [6] to quantify the fairness between virtual ma-
chines. Jain’s fairness measure ranges between 0 (com-
pletely unfair) and 1 (completely fair) and is defined as

fairness = (
P

xi)
2

(n·
P

x2
i )

where xi is the transactions per

second recorded in virtual machine i.

2.1 Experimental Setup
Two benchmarks were used to conduct the analysis. The

Flexible File System Benchmark (FFSB) is a multi-threaded
benchmark that provides a mix of read and write operations.
FFSB was configured with 128 threads, and a mix of read
and write operations. The second benchmark is Network
Appliance’s PostMark[8], which has become an industry-
standard benchmark for small file and metadata-intensive
workloads. It was designed to emulate Internet applications
such as e-mail, netnews, and e-commerce.

All results in this paper were collected on an AMD system
with a 2.3GHz processor. Benchmark I/O was performed to
a dedicated 500GB SATA drive. The Linux 2.6.24 kernel
was used throughout. Two different VMMs were evaluated:
a Xen 3.2 VMM and the VMWare 2.0 Server VMM. To min-
imize the effect of memory caching, virtual machines were
configured with a minimal 256MB of memory, and the VMM
was limited to 256MB of memory in addition to the memory
required by the virtual machines. For the three virtual ma-
chine tests, the system was configured with 1GB of memory.
While the system had 2GB of memory installed, memory in
addition to the limits above was unused by the operating
system. Each virtual machine was allocated 120GB of the
500GB dedicated drive. The virtual disks were allocated as
contiguous space on the physical disk to maximize the seek
time when performing I/O operations on different virtual
disks. Benchmarks were run in Xen DomU virtual machines,
and the disk I/O schedulers used in both Dom0 and DomU
were varied.

2.2 Key Results
Figure 1 shows the throughput comparison for the dif-

ferent schedulers using a Xen VMM. The I/O scheduling
algorithms shown along the lower axis are the schedulers
running in Dom0. The different shaded bars reflect the I/O
scheduling algorithms running in the DomU guests. CFQ16
is a tuned version of the default Linux CFQ scheduler. All
error bars shown in this paper reflect a 95% confidence in-
terval. Dramatically different I/O throughput, measured in
transactions per second, can be seen using different schedul-
ing algorithms. The worst case combination provides only
40% of the throughput of the best case. The results from
the two different benchmarks show that the Noop scheduler
provides the highest throughput for any Dom0 scheduler,

anticipatory cfq cfq16 deadline noop

XEN FFSB

VMM Scheduler

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

0
50

10
0

15
0

20
0

25
0

30
0

35
0

anticipatory
cfq
deadline
noop

anticipatory cfq cfq16 deadline noop

XEN Postmark

VMM Scheduler

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

0
50

10
0

15
0

anticipatory
cfq
deadline
noop

Figure 1: Throughput Comparisons on Xen

while the best of DomU scheduler depends on the workload
being run.

anticipatory cfq cfq16 deadline noop

VMWare FFSB

VMM Scheduler

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

0
50

10
0

15
0

20
0

25
0

30
0

35
0 anticipatory

cfq
deadline
noop

anticipatory cfq cfq16 deadline noop

VMWare Postmark

VMM Scheduler

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

0
20

40
60

80
10

0
12

0

anticipatory
cfq
deadline
noop

Figure 2: Throughput Comparisons on VMWare
Server

In order to try to generalize the results beyond a single
VMM implementation, the tests were repeated using the
VMWare Server VMM. VMWare and Xen use completely
different virtualization technologies, including different vir-
tual disk device implementations. The VMWare Server ver-
sion was used, since it runs on top of a Linux host operating
system, and allows for the scheduler in the VMM layer to
be varied. Clearly, a more comprehensive analysis would in-
clude the VMWare ESX server and VMFS filesystem, how-
ever in this particular scenario that would have prevented
varying the VMM disk scheduler. Figure 2 shows the bench-
marks run with three VMWare virtual machines and the
results are similar to those with the Xen VMM.



One significant observation is that different schedulers in
the guest operating system are optimal for different work-
loads. The results show that the CFQ scheduler is the pre-
ferred choice in the guest OS for the FFSB workload, regard-
less of the VMM scheduler. In the best case, CFQ provides
a 17% improvement over the Anticipatory scheduler. For
PostMark, the Anticipatory scheduler demonstrates the best
performance, with an 18% improvement over CFQ. Further,
it should be noted that the default Linux configuration is
to run the CFQ scheduler both in the VMM and the guest.
For the FFSB benchmark in Xen, using the Noop sched-
uler in the VMM provides a 60% performance improvement
over this configuration. Using the Anticipatory scheduler
in the guest and the Noop scheduler in the VMM provides
a 72% throughput advantage over the default configuration
using the Postmark benchmark. These results are remark-
ably consistent across the Xen and VMWare environments
tested.

The two benchmarks used in this study have quite differ-
ent characteristics. FFSB is heavily threaded, utilizing 128
threads in the configuration used. The PostMark bench-
mark, by comparison, utilizes a single thread that mimics
the I/O patterns of common Internet software. The results
indicate that PostMark benefits significantly from the Antic-
ipatory scheduler’s assumption that the process is likely to
deliver additional I/O operations soon. In fact, since Post-
Mark is a purely I/O bound application, this is exactly its
behavior. The heavily threaded FFSB benchmark, by com-
parison, is adversely impacted by the Anticipatory sched-
ule’s behavior.

anticipatory cfq cfq16 deadline noop

XEN FFSB Three Guest Throughput

VMM Scheduler

F
ai

rn
es

s 
M

ea
su

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

anticipatory
cfq
deadline
noop

anticipatory cfq cfq16 deadline noop

XEN Postmark Three Guest Throughput

VMM Scheduler

F
ai

rn
es

s 
M

ea
su

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

anticipatory
cfq
deadline
noop

anticipatory cfq cfq16 deadline noop

VMWare FFSB Three Guest Throughput

VMM Scheduler

F
ai

rn
es

s 
M

ea
su

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

anticipatory
cfq
deadline
noop

anticipatory cfq cfq16 deadline noop

VMWare Postscript Three Guest Throughput

VMM Scheduler

F
ai

rn
es

s 
M

ea
su

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

anticipatory
cfq
deadline
noop

Figure 3: Fairness

When running multiple virtual machines, an important
metric is “fairness”. In other words, do each of the virtual
machines receive equal access to resources? Figure 3 shows
Jain’s Fairness measure for throughput running three virtual
machines using both Xen and VMWare VMMs. While all
combinations of VMM and guest schedulers are generally
fair, the least fairness is shown using the Noop scheduler
in Dom0 and the VMWare VMM. This indicates that the
improvement in throughput may come at the expense of
reduced fairness.

In summary, our evaluation produced the somewhat sur-
prising conclusion that there is no benefit in throughput from
performing additional I/O reordering in the VMM. That is,
at the layer closest to the physical device. This observation
is true in our environment, which utilized a traditional disk
drive, and we expect it to hold true in other I/O environ-
ments, such as flash and SAN storage, that are less impacted
by seek time. While our environment consisting of a single
traditional disk drive is an extreme case that should have
emphasized he impact of a VMM level seek-reducing sched-
uler, benefits from scheduling in the VMM were not demon-
strated. In the workloads and VMMs studied, performing
minimal I/O scheduling in the VMM produced the high-
est throughput, while choosing disk scheduler appropriate
to the workload in the guest operating system does provide
benefit. At the same time, more complex scheduling in the
VMM can provide better fairness between multiple guest
operating systems.

2.3 Examining the Linux I/O Schedulers
To understand the results presented above, it is useful to

examine the four block I/O schedulers present in the Linux
kernel. Disk I/O schedulers perform two basic operations:
merging and sorting. Merging recognizes adjacent I/O re-
quests and combines them, reducing the number of I/O re-
quests, and associated interrupts, DMA operations, etc, that
must be exchanged with the device. In a virtualized envi-
ronment, it reduces the number of transitions between the
guest operating system and the VMM, which are frequently
the source of much of the overhead in virtualized environ-
ments[1]. Sorting arranges pending I/O requests in block
order to minimize the distance that the disk heads have to
move on the physical disk since seeks are the most expensive
part of physical disk I/O[4]. Pratt and Heger[13] do a thor-
ough evaluation of the different Linux I/O schedulers and
their effect on different workloads.

The Noop scheduler is implemented using a simple FIFO
queue and performs only basic merging and sorting. It as-
sumes that I/O performance will be optimized in the block
device. It is particularly appropriate for devices such as
Storage Area Networks (SANs) that have much more knowl-
edge of the underlying physical devices than the operating
system.

The Completely Fair Queuing (CFQ) scheduler is the de-
fault scheduler in the Linux 2.6 kernel. CFQ works by plac-
ing synchronous requests submitted by processes into per-
process queues and allocating time-slices for handling I/O
operations from each queue. The length of the time slice
is referred to as the “quantum”. When utilized by a VMM,
each virtual machine is treated as a “process”. The quantum
can be tuned, and had a significant effect on performance in
a virtualized environment. In our results above, the bar la-
beled “CFQ” reflects results using the default configuration.
Changing the “Quantum” parameter in the VMM from the
default of 4 to 16 (CFQ16) provided up to 21% improve-
ment in throughput. Further evaluation of the behavior of
the CFQ scheduler using the Linux blktrace utility helped
explain the results shown. While work conserving, the CFQ
scheduler dispatches fewer I/O operations to the physical
device at a time than does the Noop scheduler. The Xen
virtual machine implementation dispatches at most 32 I/O
requests from each DomU to Dom0 concurrently. In the test
environment evaluated here the number of concurrent I/O



operations supported by the physical device is greater than
32. Our analysis showed that on average the CFQ scheduler
dispatched only 6 I/Os to the physical device in the VMM,
while the Noop scheduler dispatches the maximum possible.
Further, the I/Os dispatched to the physical device often
complete out of order, indicating that the SATA drive it-
self is performing I/O optimization through caching or I/O
reordering.

The Deadline elevator uses a deadline algorithm to mini-
mize I/O latency for a given I/O request. A standard eleva-
tor algorithm is used, unless the request at the head of one
of the FIFO queues grows older than an expiration value.
In that case the scheduler begins servicing expired requests.
The results shown in this study show the Deadline scheduler
behaving almost identically to the Noop scheduler. It seems
likely that the deadlines imposed by the scheduler are never
exceeded, resulting in the Deadline scheduler devolving to
the same behavior as the Noop scheduler.

The Anticipatory elevator assumes that processes typi-
cally perform multiple I/O operations within a short time
duration, and that these I/O requests are likely to be phys-
ically close. Upon receiving an I/O request from a process
it introduces a short delay before dispatching the I/O to
attempt to aggregate and reduce disk seek operations. A
normal work-conserving I/O scheduler switches to servicing
I/O from an unrelated process if there is no I/O operation
immediately available that is locally close to the most recent
I/O. The Anticipatory scheduler sacrifices a small amount
of working time to increase I/O locality. The Anticipatory
scheduler is the only scheduler which, rather than“work con-
serving”, is “seek-conserving”. It is surprising that the An-
ticipatory scheduler did not demonstrate better performance
when used in the VMM layer. We expected that waiting to
gather as many I/O requests from a single virtual machine
as possible would improve performance.

3. DISCUSSION AND FUTURE DIRECTIONS
The rapid evolution and adoption of virtualization tech-

nologies in both academia and industry has led to an in-
creased focus on optimizing virtual machine execution[3][7][11].
There has been a significant amount of investigation around
optimizing processing[2][10][18][19], memory[9][14][20], and
I/O operations[17], though much of the work related to
virtual machine I/O optimization has focused on network-
ing[1][5][12]. Relatively little work has been done in the
area of disk I/O optimization[15]. Since storage systems
are often the system bottleneck in systems running I/O
intensive applications, the effect of scheduling on overall
system performance can be significant. One critical area
of future investigation is the extent to which utilizing I/O
scheduling in a guest operating system can minimize the
overhead of running in a virtualized environment. For ex-
ample, the Anticipatory scheduler delays issuing I/O opera-
tions to optimize for the case that subsequent I/O operations
may be related. It seems reasonable that such an approach
could be used to reduce the number of guest/VMM transi-
tions and thus reduce the virtualization overhead. We have
demonstrated that the benefits of the Anticipatory scheduler
are very dependent on the workload, however developing a
scheduler that is domain-transition minimizing, rather than
seek-minimizing should provide a general performance ad-
vantage.

Another area of investigation is the optimal scheduler for

the VMM layer. While an optimal scheduler is dependent on
the workloads involved, different VMMs share many charac-
teristics. Virtual disks tend to be large, contiguous storage
regions. Minimizing the number of seeks between virtual
disks should provide a benefit. Seelam and Teller[15] pro-
pose a “Scheduler of Schedulers” that runs in the VMM and
focuses on fairness and isolation. They demonstrate im-
proved fairness at the cost of throughput. Their results,
which show execution time rather than throughput, agree
with our results that the Noop scheduler used in the VMM
provides both minimum execution time and least fairness. It
seems likely that a virtualization-optimized scheduler would
do better than the Noop scheduler for both throughput and
fairness.

In a virtualized environment the VMM has additional in-
sight into the overall performance of the system. The most
interesting area of future research appears to be the extent
to which the scheduler in the VMM and the scheduler in
the guests can cooperate. The Cello disk scheduling frame-
work[16] proposed a two level disk scheduling architecture
where the top level is application specific and the lower level
mediates between multiple upper levels. This model is very
similar to the multiple schedulers present in a virtualized en-
vironment and some of the techniques described in that work
appear to be applicable to a virtualized system. Zhang and
Bhargava[21] propose a self-learning disk scheduler which
also has techniques that could be exploited to intelligently
choose the schedulers running in a virtual machine. Their
technique focuses on workload input, such as request size
and think time. Providing additional input from the VMM
has the potential to improve the choice of scheduler.

The objective of this study was to determine if additional
investigation in the area of disk scheduling and virtualiza-
tion is warranted. Since it appears there is significant perfor-
mance advantages to be gained from appropriate scheduling
in a virtualized environment, an obvious next step would be
to examine other commonly virtualized operating systems,
such as Microsoft Windows.

Finally, as more virtualization moves to “cloud” environ-
ments with non-traditional storage, and enterprise environ-
ments with Storage Area Networks, we anticipate that the
different storage back-ends will warrant further study of op-
timal I/O scheduling strategies. The evaluations performed
in this paper studied a traditional computing system. Ad-
ditional evaluation needs to be performed to determine if
the results hold up in more complex environments, such as
the Amazon Elastic Compute Cloud and and virtualization
oriented filesystems such as VMFS.

4. CONCLUSIONS
We have demonstrated that disk I/O scheduling is far from

obsolete in a virtualized system. There are a number of in-
teresting specific conclusions from the evaluation performed
in this paper. Specifically:

• The choice of I/O scheduler in the guest operating sys-
tem of a virtualized environment should be made based
on the workload being executed. Significant through-
put advantages can be obtained by selecting the ap-
propriate scheduler. Gains of up to 18% were demon-
strated in the evaluation performed in this paper.

• Using the environments and workloads evaluated here,
the best choice of I/O scheduler in a VMM appears to



be a minimal scheduler. The Linux Noop scheduler
provided almost universally the best throughput, re-
gardless of VMM, workload, or guest operating system
I/O scheduler.

• More advanced schedulers, such as the Completely Fair
Scheduler, do provide better fairness when running
multiple virtual machines at the cost of throughput
and latency.

In conclusion, using the default Linux schedulers does
not appear to be the optimal configuration for maximizing
throughput in a virtualized environment. The evaluation in
this paper demonstrated up to a 72% throughput increase
by selecting the appropriate schedulers.

The environments in which virtualization is being exe-
cuted continues to evolve. Data storage in cloud computing
and Flash storage are becoming increasingly important, and
SAN storage is ubiquitous in the enterprise environment.
While it may initially appear that disk I/O scheduling is
obsolete in environments utilizing these technologies, with
all scheduling decisions left to the underlying storage tech-
nology, this study suggests that in a virtualized environment
there is still a benefit to making intelligent decisions about
the order in which the operating system delivers I/O re-
quests to a storage back end.

5. REFERENCES
[1] Vineet Chadha, Ramesh Illiikkal, Ravi Iyer, Jaideep

Moses, Donald Newell, and Renato J. Figueiredo. I/o
processing in a virtualized platform: a
simulation-driven approach. In VEE ’07: Proceedings
of the 3rd international conference on Virtual
execution environments, pages 116–125, 2007.

[2] L. Cherkasova and R. Gardner. Measuring cpu
overhead for i/o processing in the xen virtual machine
monitor. In USENIX Annual Technical Conference,
April 2005.

[3] Ulrich Drepper. The cost of virtualization. Queue,
6(1):28–35, 2008.

[4] H. Frank. Analysis and optimization of disk storage
devices for time-sharing systems. J. ACM,
16(4):602–620, 1969.

[5] Sriram Govindan, Arjun R. Nath, Amitayu Das,
Bhuvan Urgaonkar, and Anand Sivasubramaniam.
Xen and co.: communication-aware cpu scheduling for
consolidated xen-based hosting platforms. In VEE ’07:
Proceedings of the 3rd international conference on
Virtual execution environments, pages 126–136, 2007.

[6] Rajendra K. Jain, Dah-Ming W. Chiu, and
William R. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared
computer systems. Technical report, Digital
Equipment Corporation, September 1984.

[7] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Antfarm: tracking
processes in a virtual machine environment. In ATEC
’06: Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, pages 1–1, 2006.

[8] J. Katcher. Postmark: A new file system benchmark.
Technical Report Technical Report 3022, Network
Appliance Inc., 1997.

[9] Jacob Faber Kloster, Jesper Kristensen, and Arne
Mejlholm. On the feasibility of memory sharing.
Department of Computer Science,Aalborg University,
June 2006.

[10] Joshua LeVasseur, Volkmar Uhlig, Matthew
Chapman, Peter Chubb, Ben Leslie, and Gernot
Heiser. Pre-virtualization: slashing the cost of
virtualization. Technical Report Technical Report
PA005520, National ICT Australia, October 2005.

[11] Aravind Menon, Jose Renato Santos, Yoshio Turner,
G. (John) Janakiraman, and Willy Zwaenepoel.
Diagnosing performance overheads in the xen virtual
machine environment. In First ACM/USENIX
Conference on Virtual Execution Environments,
Chicago, Illinois, USA, June 2005.

[12] Diego Ongaro, Alan L. Cox, and Scott Rixner.
Scheduling i/o in virtual machine monitors. In VEE
’08: Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 1–10, 2008.

[13] Stephen Pratt and Dominique Heger. Workload
dependent performance evaluation of the linux 2.6 i/o
schedulers. In Proceedings of the Linux Symposium,
volume 2. Ottawa Linux Symposium, 2004.

[14] Martin Scwidefsky, Huburtus Franke, Ray Mansell,
Himanshu Raj, Damian Osisek, and JonHyuk Choi.
Collaborative memory management in hosted linux
environments. In Proceedings of the Linux Symposium,
Volume 2, Ottawa, Canada, July 2006.

[15] Seetharami R. Seelam and Patricia J. Teller. Virtual
i/o scheduler: a scheduler of schedulers for
performance virtualization. In VEE ’07: Proceedings
of the 3rd international conference on Virtual
execution environments, pages 105–115, New York,
NY, USA, 2007. ACM.

[16] Prashant Shenoy and Harrick M. Vin. Cello: A disk
scheduling framework for next generation operating
systems. In In Proceedings of ACM SIGMETRICS
Conference, pages 44–55, 1997.

[17] Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing i/o devices on vmware
workstation’s hosted virtual machine monitor. In
Proceedings of the 2001 USENIX Annual Technical
Conference, Boston, Massachusetts, USA, June 2001.

[18] Ananth I. Sundararaj, Ashish Gupta, and Peter A.
Dinda. Increasing application performance in virtual
environments through run-time inference and
adaptation. In Proceedings of the 14th IEEE
International Symposium on High Performance
Distributed Computing, pages 47–58, 2005.

[19] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund,
and Uwe Dannowski. Towards scalable multiprocessor
virtual machines. In 3rd Virtual Machine Research
and Technology Symposium (VM’04), pages 43–56,
May 2004.

[20] C. Waldspurger. Memory resource management in
vmware esx server. In In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation, December 2002.

[21] Yu Zhang and Bharat Bhargava. Self-learning disk
scheduling. IEEE Trans. on Knowl. and Data Eng.,
21(1):50–65, 2009.


