Mike Mammarella

Shant Hovsepian
Eddie Kohler

NS

Motivation

e Data storage and databases drive modern
applications

e Facebook, Twitter, Google Mail, system logs, even Firefox
¢ Yet hand-built data stores can outperform by 100x! [Boncz]

e Changing the layout of stored data can substantially
Improve performance

e Recent systems implement custom storage engines

e Custom storage engines are hard to write
e Reason: Must be consistent, fast for both reads and writes

e \What if you want to experiment with a new layout?

2

Can we give applications

a simple and efficient modular framework,

supporting a wide variety of different data layouts,
enabling better performance?

Can we give applications

a simple and efficient modular framework,

supporting a wide variety of different data layouts,
enabling better performance?

Yes we can!

Anvil

¢ Fine-grained modules called dTables
e Composable to build complex data stores from simple parts
e Easy to implement new dTables to store specialized data

e |solates all writing to dedicated writable dTables

e Many data storage layouts only add or change read-only
dTables, which are significantly easier to implement

e (Good disk access characteristics come as well
e Unifying dTables combine write- and read-optimized dTables

¢ Fine-grained, modular dTable design

e Core dTables
e QOverlay dTable, Managed dTable, Exception dTable

e Anvil implementation
e Shows that such a system can be fast

e Key/value store
e Keys are integers, floats, strings, or blobs

Values are byte arrays
lterators support in-order traversal
Most are read-only

dTables

e Key/value store
o Keys are integers, floats, strings, or blobs
e \/alues are byte arrays
¢ |terators support in-order traversal
e Most are read-only

dTable iterator

blob lookup(key k) key key()

bool insert(key k, blob v) blob value()
bool remove(key k) bool valid()
iter iterator() bool next()

Slightly simplified, but not much!

6

dTables

e Key/value store
o Keys are integers, floats, strings, or blobs
e \/alues are byte arrays
¢ |terators support in-order traversal
e Most are read-only

dTable iterator

blob lookup(key k) key key()

blob value()
bool valid()
iter iterator() bool next()

Slightly simplified, but not much!

6

e Applications (and frontends) use the dTable interface

e But so do other dTables!

¢ Transform data
e Add indices
e Construct complex functionality from simple pieces

e Applications (and frontends) use the dTable interface

e But so do other dTables!

¢ Transform data
e Add indices
e Construct complex functionality from simple pieces

lookup()

e Applications (and frontends) use the dTable interface

e But so do other dTables!

¢ Transform data
e Add indices
e Construct complex functionality from simple pieces

lookup() iterator()

looku
PO iterator()

e Applications (and frontends) use the dTable interface

e But so do other dTables!

¢ Transform data
e Add indices
e Construct complex functionality from simple pieces

lookup() iterator()

looku
PO iterator()

Application-Specific Data Example

e \Nant to store the state of residence of customers

¢ |dentified by mostly-contiguous IDs
e Most live in the US, but a few don't

e Move between states occasionally

e Common case could be stored efficiently as an array
of state IDs

e But don’t want to penalize the uncommon case

e \\Vant transactional semantics

Application-Specific Data Example

¢ \Want to store the state of residence of customers
¢ |dentified by mostly-contiguous IDs
e Most live in the US, but a few don’t

e Move between states occasionally

e Common case could be stored efficiently as an array
of state IDs

e But don’t want to penalize the uncommon case

Mostly-contiguous IDs
e \Want transactional semantics - esivelin e Ue
- Some live elsewhere
Don’t penalize them
Occasionally relocate

e Stores an array of fixed-size values
e Keys must be contiguous integers
e | ocating data items becomes constant time

e Can’t store some types of data

Read-only

v

Managed dTable

!

[Journal dTable

Overlay dTable

Bloom dTable j

Exception dTable

[State Dict. dTabl%

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

[B-tree dTable j

[Linear dTable j

/E anaged dTable

[Journal dTable Overlay dTable Bloom dTable j

Exception dTable

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

[B-tree dTable j

[Linear dTable j

v

Managed dTable

!

[Journal dTable

Overlay dTable Bloom dTable j

“California”

Exception dTable

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

[B-tree dTable j

[Linear dTable j

¥
Managed dTable

!

[Journal dTabIej{ Overlay dTable Bloom dTable j

v Mostly-contiguous IDs
v Most live in the US

Exception dTable - Some live elsewhere
- Don'’t penalize them
“California” - Occasionally relocate

[B-tree dTable j
[Linear dTable j

e Many data sets mostly but not entirely conform to
some pattern that would allow more efficient storage

Exception dTable

e Many data sets mostly but not entirely conform to
some pattern that would allow more efficient storage

e Exception dTable combines a “restricted” dTable with
an “unrestricted” dTable

e Sentinel value in restricted dTable indicates that the
unrestricted dTable should be checked

Exception dTable

e Many data sets mostly but not entirely conform to
some pattern that would allow more efficient storage

e Exception dTable combines a “restricted” dTable with
an “unrestricted” dTable

e Sentinel value in restricted dTable indicates that the
unrestricted dTable should be checked

e Simple unrestricted dTable: Linear dTable

¥
/LManaged dTable

[Journal dTabIej{ Overlay dTable Bloom dTable j

v Mostly-contiguous IDs
v Most live in the US

Exception dTable - Some live elsewhere
- Don’t penalize them
- Occasionally relocate

[B-tree dTable j
[Linear dTable j

v

Managed dTable

!

[Journal dTable Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

[B-tree dTable j

v

Managed dTable

!

[Journal dTable Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

[B-tree dTable j

v

Managed dTable

!

[Journal dTable Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

v

Managed dTable

!

[Journal dTable Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

General dTables

e \We've seen how to build a read-only data store
specialized for an application-specific layout

e The pieces can be recombined for other layouts

e Next section shows how to build a writable store
e \Writable store dTables are common to many layouts
e Split data write functionality and management policies

e Array dTable is hard to update transactionally

¢ |dea: use separate writable dTables
e Can be optimized for writing (e.g. a log)

e Several design questions
e |Implementation of write-optimized dTable

e Building an efficient store from write-optimized and read-only
pieces

e Appends new/updated data to a shared journal

e Appends new/updated data to a shared journal

e Appends new/updated data to a shared journal

e All data also cached in an AVL tree in RAM

Journal

AVL tree <>
in RAM

e Appends new/updated data to a shared journal

e All data also cached in an AVL tree in RAM

e Should be “digested” when it gets large

AVL tree
in RAM

System Journal

e Chronological order, append-only data store

e Fast, contiguous writes on disks and other storage devices
like Flash memory

e Data later rewritten elsewhere in batches from cache

e Clean the system journal periodically to reclaim space
e Data already written elsewhere can be omitted
e Optimization: just delete it and restart if totally empty

e Uses a transaction system described in the paper
e Client code chooses start and end of each transaction
e Durability optional, consistency always provided

17

v

Managed dTable

!

[Journal dTable Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

v

Managed dTable

!

Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

e Have: write-optimized and read-only dTables
e \Want: one dTable that gives the best of both worlds

e Have: write-optimized and read-only dTables
e \Want: one dTable that gives the best of both worlds

¢ |dea: layer multiple read-only dTables together
e Older data “lower” and newer data “higher”

e Use a (writable) journal dTable “on top”

e Have: write-optimized and read-only dTables
e \Want: one dTable that gives the best of both worlds

¢ |dea: layer multiple read-only dTables together
e Older data “lower” and newer data “higher”

e Use a (writable) journal dTable “on top”

lookup()

e Have: write-optimized and read-only dTables
e \Want: one dTable that gives the best of both worlds

¢ |dea: layer multiple read-only dTables together
e Older data “lower” and newer data “higher”

e Use a (writable) journal dTable “on top”

lookup()

Overlay iterator order

e Have: write-optimized and read-only dTables
e \Want: one dTable that gives the best of both worlds

¢ |dea: layer multiple read-only dTables together
e Older data “lower” and newer data “higher”

e Use a (writable) journal dTable “on top”
lookup()

000000060

Overlay iterator order

e Have: write-optimized and read-only dTables
e \Want: one dTable that gives the best of both worlds

¢ |dea: layer multiple read-only dTables together
e Older data “lower” and newer data “higher”

e Use a (writable) journal dTable “on top”
lookup()

Overlay iterato ‘\

create()

v

Managed dTable

!

Overlay dTable Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

¥
Managed dTable

Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

¥
Managed dTable

Bloom dTable j

Mostly-contiguous IDs
Most live in the US
Some live elsewhere
Don’t penalize them
Occasionally relocate

e Need a policy for digesting journal dTables
e Decreases overlay performance, but frees memory

e Need a policy for combining read-only dTables
e Restore overlay performance, consolidate data

e Must balance these goals efficiently

e Need a policy for digesting journal dTables
e Decreases overlay performance, but frees memory

e Need a policy for combining read-only dTables
e Restore overlay performance, consolidate data

e Must balance these goals efficiently

e Need a policy for digesting journal dTables
e Decreases overlay performance, but frees memory

e Need a policy for combining read-only dTables
e Restore overlay performance, consolidate data

e Must balance these goals efficiently

e Need a policy for digesting journal dTables
e Decreases overlay performance, but frees memory

e Need a policy for combining read-only dTables
e Restore overlay performance, consolidate data

e Must balance these goals efficiently

¢ Interfaces with transaction library
e Allows all other dTables to ignore transactions

21

¥
Managed dTable

Bloom dTable]

' Bloom dTable]

' Bloom dTable]

Even with combining,
we build up several
overlaid read-only

dTable subgraphs... //

' Bloom dTable]

Even with combining, Most of the data is
we build up several probably in the older

overlaid read-only ones, combined
dTable subgraphs... N\ from many others.

Bloom dTable

e Creates a Bloom filter for the keys in another dTable
e Accelerates (most) nonexistent key lookups: O(1)!
e Slightly slows down extant key lookups
e Takes additional disk space in a separate file

e Read-only
¢ No need to worry about key removal
e Creates Bloom filter bitmap during create()

e Particularly useful under overlay dTables

' Bloom dTable]

Additional dTables

¢ Fixed-size Combination array/linear
e Unique-string Deduplicates strings
e Empty Always empty

e Memory Not persistent

e Cache Memory cache

e Small integer Strips leading zero bytes
e Delta integer Stores differences

Performance Hypothesis

e Simple configuration changes can improve
performance for specialized workloads

e Benefits of tailoring dTable configurations to data

e Performance is good for conventional workloads
e Replaced SQLite’s update-in-place backend with Anvil

e Can run a TPC-C-like benchmark (DBT2)

e Overhead of digesting and combining can be reduced
by background processing

e | oad a given dTable configuration with 4M values
e 0.2% of them 7 bytes, others 5 bytes

e Look up 2M random keys

e Linear + B-tree vs. Array + Exception
e Keys: contiguous or spaced 1000 apart

30 15,000.0

25 2,192.2

N
o

320.4

46.8

)

~~
<
()
£
=
(a W
>
v
o
0]
-l

6.8

o1

1.0
Contiguous Sparse

B Linear + B-tree [Array + Exception

e Anvil's modularity allows us to choose the right
configuration for this data

28

e | inear vs. Linear + B-tree
e Also measure time to create data store

3.0 70
60
50
40
30
20
10

0
Create Lookup

B Linear " Linear + B-tree

e Usually a good configuration choice: many lookups
will make up the create cost

29

e Linear vs. Array vs. Array + Exception
e Plain array can store only fixed size values

3.0 70
60
50
40
30
20
10

0
Create Lookup

B Linear [Array Array + Exception

e Exception dTable is low overhead vs. array (4%
slower lookups here), but restores full functionality

30

e Anvil separates reads and
writes into different
dTables in our
configurations

e How does this perform
relative to an update-in-
place backend?

e Run DBT2 TPC-C with 1
warehouse for 15 minutes

e Simple row store Anvil
configuration

¢ Digesting, combining, and
system journal cleaning all
set to occur frequently

Transactions Per Minute (TPM)
9,000

_ 8,000
e Anvil’'s durable

configuration outperforms
original durable 6,000
configuration 5,000

7,000

e Anvil's non-durable (but 4,000
consistent, i.e. safe)
configuration outperforms
original “async” (i.e. 2,000
unsafe) configuration 1,000

3,000

0
Durable Non-durable

B Original backend [Anvil backend
MySQL

Disk Utilization (%) Average Request Size (KiB) Writes/sec
500.00 1,500.0

177.48 443.3
63.00 131.0
22.36 38.7

7.94 1.4
2.82 3.4

.00 1.0
Durable Non-durable Durable Non-durable Durable Non-durable

B Original backend [Anvil backend

e Both Anvil configurations have significantly better
disk access characteristics

e | arger, contiguous writes, better laid out on disk
e Can write more data in less time with faster seeks

33

Digesting and Combining

e Anvil’s performance benefits don’'t come for free
e Digesting, combining, and cleaning are the price

e These tasks can be done in the background
e Read-only source data makes a background thread safe
e Takes advantage of additional cores and spare |/O bandwidth

e Bulk loading a dTable with ~1GiB of data
e Digest every few seconds
e 50 seconds with background digest/combine
e 382 seconds without

Related Work

e Bigtable [Chang et al. '006]

e Some aspects of Anvil resemble Bigtable SSTables
o \Write-optimized logs, read-optimized data
e Higher-level distribution system complimentary

o C-Store [Stonebraker et al. '03]
e Data-specific optimizations and finer control of data layout

e Abstraction-providing libraries
e Stasis transaction framework [Sears, Brewer '06]

e BerkeleyDB persistent data structure library

35

e Anvil provides a new way to build storage systems

e Desired functionality can be composed from fine-grained
dTable modules

e Simple configuration changes allow storing data in many
different useful ways

e Easy to write new dTables for novel storage strategies

Conclusions

e Anvil provides a new way to build storage systems

e Desired functionality can be composed from fine-grained
dTable modules

e Simple configuration changes allow storing data in many
different useful ways

e Easy to write new dTables for novel storage strategies

e Still lacks some features, but they seem compatible
e Aborting transactions, full concurrency

Conclusions

e Anvil provides a new way to build storage systems

e Desired functionality can be composed from fine-grained
dTable modules

e Simple configuration changes allow storing data in many
different useful ways

e Easy to write new dTables for novel storage strategies

e Still lacks some features, but they seem compatible
e Aborting transactions, full concurrency

e Performance overhead is small compared to potential
benefits for applications

e Prototype faster than SQLite’s B-trees for TPC-C

36

