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ABSTRACT

We describe the design and implementation of Walter, a key-value store that supports transactions

and replicates data across distant sites. A key feature behind Walter is a new property called Parallel

Snapshot Isolation (PSI). PSI allows Walter to replicate data asynchronously, while providing strong

guarantees within each site. PSI precludes write-write conflicts, so that developers need not worry

about conflict-resolution logic. To prevent write-write conflicts and implement PSI, Walter uses

two new and simple techniques: preferred sites and counting sets. We use Walter to build a social

networking application and port a Twitter-like application.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems—Client/Server;

Distributed applications; Distributed Databases; D.4.5 [Operating Systems]: Reliability—fault-tolerance; H.3.4 [Infor-

mation Storage and Retrieval]: Systems and Software—distributed systems

General Terms: Algorithms, Design, Experimentation, Performance, Reliability

Keywords: Transactions, asynchronous replication, geo-distributed systems, distributed storage, key-value store, parallel

snapshot isolation

1. INTRODUCTION
Popular web applications such as Facebook and Twitter are increasingly deployed over many data

centers or sites around the world, to provide better geographic locality, availability, and disaster tol-

erance. These applications require a storage system that is geo-replicated—that is, replicated across

many sites—to keep user data, such as status updates, photos, and messages in a social networking

application. An attractive storage choice for this setting is a key-value store [16], which provides

good performance and reliability at low cost.

We describe Walter, a geo-replicated key-value store that supports transactions. Existing geo-distrib-

uted key-value stores provide no transactions or only restricted transactions (see Section 9). Without

transactions, an application must carefully coordinate access to data to avoid race conditions, partial

writes, overwrites, and other hard problems that cause erratic behavior. Developers must address

these same problems for many applications. With transactions, developers are relieved from concerns
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of atomicity, consistency, isolation, durability, and coordination. For example, in a social networking

application, one may want to remove user A from B’s friends list and vice versa. Without transactions,

developers must write code carefully to prevent one removal from happening without the other. With

transactions, developers simply bundle those updates in a transaction.

Transactions in Walter ensure a new isolation property called Parallel Snapshot Isolation (PSI), which

provides a balance between consistency and latency [22, 54], as appropriate for web applications. In

such applications, a user might log into the site closest to her, where she accesses application servers,

ad servers, authentication servers, etc. These hosts should observe a consistent storage state. For

example, in a social network, a user expects to see her own posts immediately and in order. For

that reason, the storage system should provide a strong level of consistency among hosts in her site.

Across sites, weaker consistency is acceptable, because users can tolerate a small delay for their

actions to be seen by other users. A weaker consistency is also desirable, so that transactions can be

replicated across sites asynchronously (lazy replication).

Eventual consistency [44, 47] is often the property provided by asynchronous replication. When dif-

ferent sites update the same data concurrently, there is a conflict that must be resolved by application

logic. This logic can be complex, and we want to avoid forcing it upon developers.

With PSI, hosts within a site observe transactions according to a consistent snapshot and a common

ordering of transactions. Across sites, PSI enforces only causal ordering, not a global ordering of

transactions, allowing the system to replicate transactions asynchronously across sites. With causal

ordering, if Alice posts a message that is seen by Bob, and Bob posts a response, no user can see Bob’s

response without also seeing Alice’s original post. Besides providing causal ordering, PSI precludes

write-write conflicts (two transactions concurrently writing to the same object) so that developers

need not write conflict resolution logic.

To prevent write-write conflicts and implement PSI, Walter relies on two techniques: preferred sites

and counting sets. In web applications, writes to an object are often made by the user who owns

the object, at the site where this user logs into. Therefore, we assign each object to a preferred site,

where objects can be written more efficiently. For example, the preferred site for the wall posts of a

user is the site closest to the user. Preferred sites are less restrictive than primary sites, as we discuss

in Section 2.

Preferred sites may not always suffice. For example, a friends list can be updated by users in many

sites. The second technique in Walter to avoid conflicts is to use a new simple data type called a

counting set (cset), inspired by commutative data types [29]. A cset is like a set, except that each

element has an integer count. Unlike sets, csets operations are commutative, and so they never

conflict [25]. Therefore, transactions with csets can commit without having to check for conflicts

across sites. When developing applications for Walter, we used csets extensively to store friend lists,

message walls, photo albums, and message timelines. We found that csets were versatile and easy to

use.

Walter uses multi-version concurrency control within each site, and it can quickly commit transac-

tions that write objects at their preferred sites or that use csets. For other transactions, Walter resorts

to two-phase commit to check for conflicts. We found that the latter type of transaction can be avoided

in the applications we built.

Using Walter as the storage system, we build WaltSocial, a Facebook-like social networking applica-

tion, and we port a third-party Twitter-clone called ReTwis [2]. We find that the transactions provided

by Walter are effective and efficient. Experiments on four geographic locations on Amazon EC2 show

that transactions have low latency and high throughput. For example, the operation to post a message

on a wall in WaltSocial has a throughput of 16500 ops/s and the 99.9-percentile latency is less than

50 ms.



In summary, our contributions are the following:

• We define Parallel Snapshot Isolation, an isolation property well-suited for geo-replicated web

applications. PSI provides a strong guarantee within a site; across sites, PSI provides causal

ordering and precludes write-write conflicts.

• We describe the design and implementation of Walter, a geo-replicated transactional key-value

store that provides PSI. Walter can avoid common write-write conflicts without cross-site com-

munication using two simple techniques: preferred sites and csets.

• We give distributed protocols to execute and commit transactions in Walter.

• We use Walter to build two applications and demonstrate the usefulness of its transactional

guarantees. Our experience indicates that Walter transactions simplify application development

and provide good performance.

2. OVERVIEW

Setting. A geo-replicated storage system replicates objects across multiple sites. The system is

managed by a single administrative entity. Machines can fail by crashing; addressing Byzantine

failures is future work. Network partitions between sites are rare: sites are connected by highly-

available links (e.g., private leased lines or MPLS VPNs) and there are redundant links to ensure

connectivity during planned periods of link maintenance (e.g., using a ring topology across sites).

We wish to provide a useful back-end storage system for web applications, such as social networks,

web email, social games, and online stores. The storage system should provide reliability, a simple

interface and semantics, and low latency.

Why transactions? We illustrate the benefit of transactions in a social networking application, where

users post photos and status updates, befriend other users, and write on friends’ walls. Each site has

one or more application servers that access shared user data. When Alice adds a new photo album,

the application creates an object for the new album, posts a news update on Alice’s wall, and updates

her album set. With transactions, the application groups these writes into an atomic unit so that

failures do not leave behind partial writes (atomicity) and concurrent access by other servers are not

intermingled (isolation). Without transactions, the application risks exposing undesirable inconsistent

state to end users. For example, Bob may see the wall post that Alice has a new album but not find the

album. Developers can sometimes alleviate these inconsistencies manually, by finding and ensuring

proper ordering of writes. For example, the application can create the new album and wait for it to be

replicated before posting on the wall. Then, concurrent access by Bob is not a problem, but a failure

may leave behind an orphan album not linked to any user. The developer can deal with this problem

by logging and replaying actions—which amounts to implementing rudimentary transactions—or

garbage collecting dangling structures. This non-transactional approach places significant burden on

developers.

We are not the first to point out the benefits of transactions to data center applications. Sinfonia uses

transactions for infrastructure services [3, 4], while Percolator [38] uses them for search indexing.

Both systems target applications on a single site, whereas we target geo-replicated applications that

span many sites.

One way to provide transactions in a geo-replicated setting is to partition the data across several

databases, where each database has its primary at a different site. The databases are replicated asyn-

chronously across all sites, but each site is the primary for only one of the partitions. Unfortunately,

with this solution, transactions cannot span multiple partitions, limiting their utility to applications.

Key features. Walter provides a unique combination of features to support geo-replicated web appli-

cations:

• Asynchronous replication across sites. Transactions are replicated lazily in the background, to

reduce latency.



• Efficient update-anywhere for certain objects. Counting sets can be updated efficiently any-

where, while other objects can be updated efficiently at their preferred site.

• Freedom from conflict-resolution logic, which is complex and burdensome to developers.

• Strong isolation within each site. This is provided by the PSI property, which we cover below.

Existing systems do not provide some of the above features. For instance, eventually consistent

systems such as [44, 47] require conflict-resolution logic; primary-copy database systems do not

support any form of update-anywhere. We discuss related work in more detail in Section 9.

Overview of PSI. Snapshot isolation [8] is a popular isolation condition provided by commercial

database systems such as Oracle and SQLServer. Snapshot isolation ensures that (a) transactions

read from a snapshot that reflects a single commit ordering of transactions, and (b) if two concurrent

transactions have a write-write conflict, one must be aborted. By imposing a single commit ordering,

snapshot isolation forces implementations to coordinate transactions on commit, even when there are

no conflicts (Section 3.1).

Parallel snapshot isolation extends snapshot isolation by allowing different sites to have different

commit orderings. For example, suppose site A executes transactions T1, T2 and site B executes

transactions T3, T4. PSI allows site A to first incorporate just T1, T2 and later T3, T4, while site B

first incorporates T3, T4 and later T1, T2. This flexibility is needed for asynchronous replication: site

A (or site B) can commit transactions T1, T2 (or T3, T4) without coordinating with the other site and

later propagate the updates.

Although PSI allows different commit orderings at different sites, it still preserves the property of

snapshot isolation that committed transactions have no write-write conflicts, thereby avoiding the

need for conflict resolution. Furthermore, PSI preserves causal ordering: if a transaction T2 reads

from T1 then T1 is ordered before T2 at every site. We give a precise specification of PSI in Section 3.

We believe PSI provides strong guarantees that are well-suited for web applications. Intuitively, PSI

provides snapshot isolation for all transactions executed within a single site. PSI’s relaxation over

snapshot isolation is acceptable for web applications where each user communicates with one site at

a time and there is no need for a global ordering of all actions across all users. In a social networking

application, Alice in site A may post a message at the same time as Bob in site B. Under PSI, Alice

may see her message first before seeing Bob’s message, and Bob sees the opposite ordering, which

is reasonable since Alice and Bob post concurrently. As another example, in an auction application,

PSI allows bids on different objects to be committed in different orders at different sites. (In contrast,

snapshot isolation requires the same ordering at all sites.) Such relaxation is acceptable since the

auction application requires bid ordering on each object separately, not across all objects.

Avoiding conflicts efficiently. To avoid write-write conflicts across sites, and implement PSI, Walter

uses two techniques.

• Preferred sites. Each object is assigned a preferred site, which is the site where writes to the

object can be committed without checking other sites for write conflicts. Walter executes and

commits a transaction quickly if all the objects that it modifies have a preferred site where the

transaction executes. Objects can be updated at any site, not just the preferred site. In contrast,

some database systems have the notion of a primary site, which is the only site that can update

the data. This notion is more limiting than the notion of a preferred site. For instance, suppose

objects O1 and O2 are both replicated at sites 1 and 2, but the primary of O1 is site 1 while

the primary of O2 is site 2. A transaction executing on site 1 can read both objects (since

they are both replicated at site 1), but because the primary of O2 is not site 1, the transaction

can write only O1—which is limiting to applications. In practice, this limitation is even more

severe because database systems assign primary sites at the granularity of the whole database,

and therefore non-primary sites are entirely read-only.



operation startTx(x)
x.startTs ← new monotonic timestamp

return OK

operation write(x, oid, data)

append 〈oid, DATA(data)〉 to x.updates

return OK

operation read(x, oid)

return state of oid from x.updates and Log up to timestamp x.startTs

operation commitTx(x)
x.commitTs ← new monotonic timestamp

x.status ← chooseOutcome(x)

if x.status = COMMITTED

then append x.updates to Log with timestamp x.commitTs

return x.status

Figure 1: Specification of snapshot isolation.

• Conflict-free counting set objects. Sometimes an object is modified frequently from many sites

and hence does not have a natural choice for a preferred site. We address this problem with

counting set (cset) objects. Transactions in Walter support not just read and write operations,

but also operations on csets. Csets have the desirable property that transactions concurrently

accessing the cset object never generate write-write conflicts. A cset is similar to a multiset in

that it keeps a count for each element. But, unlike a multiset, the count could be negative [25].

A cset supports an operation add(x) to add element x, which increments the counter of x in

the cset; and an operation rem(x) to remove x, which decrements the counter of x. Because

increment and decrement commute, add and rem also commute, and so operations never con-

flict.

For example, a group of concurrent cset operations can be ordered as add(x), add(y), rem(x)
at one site, and ordered as rem(x), add(x), add(y) at another site. Both reach the final state

containing just y with count 1. Note that removing element x from an empty cset results in

-1 copies of element x, which is an anti-element: later addition of x to the cset results in the

empty cset.

3. PARALLEL SNAPSHOT ISOLATION
In this section, we precisely specify PSI—the guarantee provided by Walter—and we discuss its

properties and implications. We start by reviewing snapshot isolation and explaining the framework

that we use to specify properties (Section 3.1). Then, we give the exact specification of PSI and

discuss its properties (Section 3.2). We next explain how to extend PSI to include set operations

(Section 3.3). We then explain how developers can use PSI (Section 3.4) and csets (Section 3.5) to

build their applications.

3.1 Snapshot isolation
We specify snapshot isolation by giving an abstract specification code that an implementation must

emulate. The specification code is centralized to make it as simple as possible, whereas an imple-

mentation can be distributed, complex, and more efficient. An implementation code satisfies the

specification code if both codes produce the same output given the same input (e.g., [32]). The input

is given by calls to operations to start a transaction, read or write data, commit a transaction, etc. The

output is the return value of these operations. Many clients may call the operations of the specifica-

tion concurrently, resulting possibly in many outstanding calls; however, the body of each operation

is executed one at a time, using a single thread.

The specification is given in Figures 1 and 2 and depicted in Figure 3. It is assumed that clients

start a transaction x with x initially ⊥, then perform a sequence of reads and/or writes, and then try

to commit the transaction. The behavior is unspecified if any client fails to follow this discipline,

say by writing to a transaction that was never started. To start transaction x, the code obtains a



function chooseOutcome(x)
if some write-conflicting transaction has committed after x started

then return ABORTED

else if some write-conflicting transaction has aborted after x started

or is currently executing

then return (either ABORTED or COMMITTED) // non-deterministic choice

else return COMMITTED

Figure 2: Transaction outcome in snapshot isolation.

T1 T3

T2

storage state

snapshot that
reads fromT3

time when all writes
of are appliedT3

T1 T2 T3

Figure 3: Depiction of snapshot isolation. The writes of T1 are seen by T3 but not T2 as T2 reads

from a snapshot prior to T1’s commit.

new monotonically increasing timestamp, called the start timestamp of x. The timestamp is stored

as an attribute of x; in the code, x is passed by reference. To write an object in transaction x, the

code stores the object id and data in a temporary update buffer. To read an object, the code uses the

update buffer—to check for any updates to the object written by the transaction itself—as well as a

snapshot of the state when the transaction began. To determine the snapshot, the code maintains a Log

variable with a sequence of object ids, data, and timestamps for the writes of previously-committed

transactions. Only committed transactions are in the log, not outstanding ones. A read of an object

reflects the updates in Log up to the transaction’s start timestamp. To commit transaction x, the

code obtains a new monotonically increasing timestamp, called the commit timestamp of x. It then

determines the outcome of a transaction according to the function in Figure 2. This function indicates

the cases when the outcome is abort, commit, or either one chosen nondeterministically.1 The code

considers what happens after x started: if some write-conflicting transaction committed then the

outcome is abort, where a write-conflicting transaction is one that writes an object that x also writes.

Otherwise if some write-conflicting transaction has aborted or is currently executing—meaning it

has started but its outcome has not been chosen—then the outcome is either abort or commit, chosen

nondeterministically. Otherwise, the outcome is commit. If the outcome is commit, the writes of x

are appended to Log with x’s commit timestamp.

Note that the specification keeps internal variables—such as the log, timestamps, and other attributes

of a transaction—but an implementation need not have these variables. It needs to emulate only the

return values of each operation.

The above specification of snapshot isolation implies that any implementation must satisfy two key

properties [51, Page 362]:

SI PROPERTY 1. (Snapshot Read) All operations read the most recent committed version as of

the time when the transaction began.

SI PROPERTY 2. (No Write-Write Conflicts) The write sets of each pair of committed concurrent

transactions must be disjoint.

Here, we say that two committed transactions are concurrent if one of them has a commit timestamp

between the start and commit timestamp of the other.

1Nondeterminism in specifications allows implementations to have either behavior.



operation startTx(x)
x.startTs ← new monotonic timestamp

return OK

operation write(x, oid, data)

append 〈oid, DATA(data)〉 to x.updates

return OK

operation read(x, oid)

return state of oid from x.updates and Log[site(x)] up to timestamp x.startTs

operation commitTx(x)
x.commitTs[site(x)] ← new monotonic timestamp

x.status ← chooseOutcome(x)

if x.outcome = COMMITTED

append x.updates to Log[site(x)] with timestamp x.commitTs[site(x)]

return x.status

upon [∃x, s: x.status = COMMITTED and x.commitTs[s] = ⊥ and

∀y such that y.commitTs[site(x)] < x.startTs : y.commitTs[s] �= ⊥]

x.commitTs[s] ← new monotonic timestamp

append x.updates to Log[s] with timestamp x.commitTs[s]

Figure 4: Specification of PSI.

function chooseOutcome(x)

if some write-conflicting transaction has committed at site(x) after x started

or is currently propagating to site(x) // text has definition of “propagating”

then return ABORTED

else if some write-conflicting transaction has aborted after x started

or is currently executing

then return (either ABORTED or COMMITTED)

else return COMMITTED

Figure 5: Transaction outcome in PSI.

Snapshot isolation is inadequate for a system replicated at many sites, due to two issues. First, to

define snapshots, snapshot isolation imposes a total ordering of the commit time of all transactions,

even those that do not conflict2. Establishing such an ordering when transactions execute at different

sites is inefficient. Second, the writes of a committed transaction must be immediately visible to

later transactions. Therefore a transaction can commit only after its writes have been propagated to

all remote replicas, thereby precluding asynchronous propagation of its updates.3 We define PSI to

address these problems.

3.2 Specification of PSI
We define PSI as a relaxation of snapshot isolation so that transactions can propagate asynchronously

and be ordered differently across sites. Note that the PSI specification does not refer to preferred sites,

since they are relevant only to the implementation of PSI. The specification code is given in Figures 4

and 5 and depicted in Figure 6. As before, the specification is abstract and centralized—there is a

single thread that executes the code without interleaving—but we expect that implementations will

be distributed. Each transaction x has a site attribute denoted site(x). There is a log per site, kept in

a vector Log indexed by sites. A transaction has one commit timestamp per site. A transaction first

commits locally, by writing its updates to the log at its site; subsequently, the transaction propagates

2For example, suppose A=B=0 initially and transaction T1 writes A←1, transaction T2 writes
B←1, and both commit concurrently. Then T1 and T2 do not conflict and can be ordered arbitrarily,
so either (A=1, B=0) or (A=0, B=1) are valid snapshots for transactions to read. However, it
is illegal for both snapshots to occur, because snapshot isolation either orders T1 before T2 or vice
versa.
3A variant called weak snapshot isolation [15] allows a transaction to remain invisible to others even
after it commits, but that does not address the first issue above.
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Figure 6: PSI allows a transaction to have different commit times at different sites. At site A,

committed transactions are ordered as T1, T2. Site B orders them differently as T2, T1.

to and commits at the remote sites. This propagation is performed by the upon statement which, at

some non-deterministic time, picks a committed transaction x and a site s to which x has not been

propagated yet, and then writes the updates of x to the log at s. (For the moment, we ignore the

second line of the upon statement in the code.) As Figure 5 shows, a transaction is aborted if there

is some write-conflicting transaction that has committed at site(x) after x started or that is currently

propagating to site(x); a transaction y is propagating to a site s if its status is committed but it has not

yet committed at site s—that is, y.status=COMMITTED and y.commitTs[s]=⊥. Otherwise, if there

is some concurrent write-conflicting transaction that has not committed, the outcome can be abort or

commit. Otherwise, the outcome is commit. The outcome of a transaction is decided only once: if it

commits at its site, the transaction is not aborted at the other sites. In Section 5.7, we discuss what to

do when a site fails.

The above specification contains code that may be expensive to implement directly, such as mono-

tonic timestamps and checks for write conflicts of transactions in different sites. We later give a

distributed implementation that can avoid these inefficiencies.

From the specification, it can be seen that PSI replaces property 1 of snapshot isolation with the

following:

PSI PROPERTY 1. (Site Snapshot Read) All operations read the most recent committed version

at the transaction’s site as of the time when the transaction began.

Intuitively, a transaction reads from a snapshot established at its site. In addition, PSI essentially

preserves property 2 of snapshot isolation. To state the exact property, we say two transactions T1

and T2 are concurrent at site s if one of them has a commit timestamp at s between the start and

commit timestamp of the other at s. We say the transactions are somewhere-concurrent if they are

concurrent at site(T1) or at site(T2).

PSI PROPERTY 2. (No Write-Write Conflicts) The write sets of each pair of committed somewhere-

concurrent transactions must be disjoint.

This property prevents the lost update anomaly (Section 3.4). The specification of PSI also ensures

causal ordering:

PSI PROPERTY 3. (Commit Causality Across Sites) If a transaction T1 commits at a site A before

a transaction T2 starts at site A, then T1 cannot commit after T2 at any site.

This property is ensured by the second line of the upon statement in Figure 4: x can propagate to a

site s only if all transactions that committed at x’s site before x started have already propagated to s.

The property prevents a transaction x from committing before y at a remote site when x has observed

the updates of y. The property also implies that write-conflicting transactions are committed in the

same order at all sites, to prevent the state at different sites from diverging permanently.



operation setAdd(x, setid, id)
append 〈setid, ADD(id)〉 to x.updates

return OK

operation setDel(x, setid, id)

append 〈setid, DEL(id)〉 to x.updates

return OK

operation setRead(x, setid)

return state of setid from x.updates and Log[site(x)] up to timestamp x.startTs

Figure 7: Set operations in PSI specification.

3.3 PSI with cset objects
In the specification of PSI in Section 3.2, transactions operate on objects via read and write operations,

but it is possible to extend the specification to support objects with other operations. We give the

extension for cset objects, but this extension should apply to any object with commutative operations.

To add an element to a cset, the code appends an entry 〈setid, ADD, id〉 to the transaction’s update

buffer (x.updates) and, on commit, appends this entry to the log. Similarly, to remove an element

from a cset, the code appends entry 〈setid, DEL, id〉. To read a cset, the code computes the state of the

cset: for each element, it sums the number of ADD minus the number of DEL in the log and the update

buffer, thus obtaining a count for each element. Only elements with a non-zero count are returned

by the read operation. Because the operations to add and remove elements in a cset commute, these

operations do not cause a write conflict. Note that a cset object does not support a write operation

since it does not commute with ADD. Figure 7 shows the code of the specification.

A cset may have many elements, and reading the entire cset could return large amounts of data. It is

easy to extend the specification with an operation setReadId to return the count of a chosen element

on a cset, by simply computing the state of the cset (using the log) to extract the count of that element.

3.4 Using PSI
One way to understand an isolation property is to understand what type of anomalous behavior it

allows, so that developers know what to expect. In this section, we consider PSI from that standpoint,

and we compare it against snapshot isolation and serializability. It is well-known that the weaker

a property is, the more anomalous behaviors it has, but at the same time, the more efficiently it

can be implemented. The anomalies allowed by PSI can be seen as the price to pay for allowing

asynchronous replication.

Figure 8 shows various anomalies and whether each isolation property has those anomalies. Eventual

consistency is very weak and allows all anomalies. The first three anomalies are well-known (e.g.,

[24]). Snapshot isolation and PSI prevent dirty and non-repeatable reads, because a transaction reads

from a snapshot, and they prevent lost updates because there are no write-write conflicts. Snapshot

isolation allows the state to fork, because two or more transactions may read from the same snapshot

and make concurrent updates to different objects. We call this a short fork, also known as write

skew, because the state merges after transactions commit. With PSI, the state may remain forked

after transactions commit (when they execute in different sites), but the state is later merged when the

transactions propagate across sites. Due to its longer duration, we call this a long fork. A conflicting

fork occurs when the states diverges due to conflicting updates, which is not allowed by PSI.

Long forks are acceptable in web applications when users in a site do not expect their updates to be

instantly visible across all sites. If the user wants to know that her updates are visible everywhere,

she can wait for her transaction to commit at all sites. In some cases, the fork may be noticeable to

users: say, Alice posts a message on her social network wall saying that she is the first to flag a new

promotion; she then confirms her statement by reading her friend’s walls and seeing nothing there.

With a long fork, Bob could be simultaneously doing the same thing from a different site, so that

both Alice and Bob believe they posted their message first. One way to avoid possible confusion

among users is for the application to show an “in-flight” mark on a freshly posted message; this mark



Anomaly Serializability Snapshot PSI Eventual

Isolation Consis-

tency

Dirty read No No No Yes

Non-repeatable read No No No Yes

Lost update No No No Yes

Short fork No Yes Yes Yes

Long fork No No Yes Yes

Conflicting fork No No No Yes

Dirty read. A transaction reads the update made by another transaction that has not yet committed; the other trans-

action may later abort or rewrite the object, making the data read by the first transaction invalid. Example. Initially

A=0. T1 writes A←1 and A←2 and commits; concurrently, T2 reads A=1.

Non-repeatable read. A transaction reads the same object twice—once before and once after another transaction

commits an update to it—obtaining different results. Example. Initially A=0. T1 writes A←1 and commits; concur-

rently T2 reads A=0 and then reads A=1.

Lost update. Transactions make concurrent updates to some common object, causing one transaction to lose its

updates. Example. Initially A=0. T1 reads A=0, writes A←1, and commits. Concurrently, T2 reads A=0, writes

A←2, and commits.

Short fork. Transactions make concur-

rent disjoint updates causing the state

to fork. After committing, the state

is merged back. Example. Initially

A=B=0. T1 reads A=B=0, writes

A←1, and commits. Concurrently, T2

reads A=B=0, writes B←1, and com-

mits. Subsequently, T3 reads A=B=1.

T
1

T
2

T
3

reads here

Long fork. Transactions make concur-

rent disjoint updates causing the state

to fork. After they commit, the state

may remain forked but it is later merged

back. Example. Initially A=B=0. T1

reads A=B=0, writes A←1, and com-

mits; then T2 reads A=1, B=0. T3 and

T4 execute concurrently with T1 and T2,

as follows. T3 reads A=B=0, writes

B←1, and commits; then T4 reads

A=0, B=1. Finally, after T1, . . . , T4 fin-

ish, T5 reads A=B=1.

T
1

T
3

T
2

reads here

T
4

reads here

T
5

reads here

Conflicting fork. Transactions make concurrent conflicting updates causing the state to fork in a way that requires

application-specific or ad-hoc rules to merge back. Example. Initially A=0. T1 writes A←1 and commits. Concur-

rently, T2 writes A←2 and commits. Some external logic determines that the value of A should be 3, and subse-

quently T3 reads A=3.

Figure 8: Anomalies allowed by each isolation property.



is removed only when the message has been committed at all sites. Then, when Alice sees the mark,

she can understand that her in-flight message may not yet be visible to all her friends.

Having discussed the anomalies of PSI, we now discuss ways that an application can use and benefit

from PSI.

Multi-object atomic updates. With PSI, updates of a transaction occur together, so an application

can use a transaction to modify many objects without exposing partial updates on each object.

Snapshots. With PSI, a transaction reads from a fixed consistent snapshot, so an application can use

a transaction to ensure that it is reading consistent versions of different objects.

Read-modify-write operations. Because PSI disallows write-write conflicts, a transaction can im-

plement any atomic read-modify-write operation, which reads an object and writes a new value based

on the value read. Such operations include atomic increment and decrement of counters, atomic

appends, and atomic edits.

Conditional writes. A particularly useful type of read-modify-write operation is a conditional write,

which writes an object only if its content or version matches a value provided by the application. With

PSI, this is performed by reading the object, evaluating the condition and, if it is satisfied, writing the

object. This scheme can be extended to check and write many objects at once.

3.5 Using cset operations
A cset is a mapping from ids to counts, possibly negative. The mapping indicates how many times

the element with a given id appears in the cset. There are two ways to use csets. First, when the count

is useful to the application, a cset can be used as is. For example, a cset can keep the number of items

in a shopping cart or inventory, the number of accesses to a data item, or the number of references to

an object.

The second way to use a cset is as a conventional set, by hiding the counts from the user. For example,

a cset can keep a list of friends, messages, active users, or photo albums. In these cases, the count has

no meaning to the user. The application should be designed to keep the counts of elements at zero

or one: the application should not add an element to a cset when the element is already present, or

remove an element from a cset when the element is not there. In some cases, however, concurrent

updates may cause the count to raise above one or drop below zero. For example, a user may add the

same friend to her friends list, and do so concurrently at two different sites: the application sees a

count of zero in both sites, and so it adds the friend once at each site. This situation is rare, because

there must be updates to the same element in the same cset, and those updates must be concurrent, but

it may happen. This is addressed by treating a count of one or more as present in the set, and count

of zero or less as absent from the set. For example, when showing the list to the user, friends with

negative counts are excluded. When the user adds a friend, if the count is negative, the application

adds the friend enough times for the count to be one. When removing a friend, the application

removes her enough times for the count to be zero. This is done by the application, transparently to

the user.

4. SERVICE
This section describes how clients view and use Walter. Each site contains a Walter server and one

or more application clients. Walter stores key-value object pairs grouped in containers (Section 4.1),

where each container is replicated across multiple sites. The Walter client interface is exposed as a

user-level library with functions to start transactions, read and write data, and commit transactions

(Section 4.2). Walter provides fault tolerance by replicating data across sites (Section 4.3), and it

allows users to trade-off durability for availability (Section 4.4).



4.1 Objects and containers
Walter stores objects, where an object has a key and a value. There are two types of objects: regular

and cset. In a regular object, the value is an uninterpreted byte sequence, while in cset object, the

value is a cset.

Each object is stored in a container, a logical organization unit that groups objects with some common

purpose. For example, in a Web application, each user could have a container that holds all of her

objects. To reduce space overhead, all objects in a container have the same preferred site, and Walter

stores this information only once, as an attribute of the container. Administrators choose the preferred

site to be the site most likely to modify the objects. For example, each user may have a designated

site where she logs into the system (if she tries to log into a different site, she is redirected), and this

would be the preferred site of her objects.

Object ids consist of a container id and a local id. The container id indicates to which container the

object belongs, and the local id differentiates objects within a container. Since the container id is part

of the object id, the container of an object cannot be changed.

4.2 Interface
Walter provides a client library for starting a transaction, manipulating objects, and committing a

transaction, with the PSI semantics and operations explained in Sections 3.2 and 3.3. For regular

objects, the available operations are read and write; for cset objects, the available operations are read,

add element, and delete element.

Walter replicates transactions asynchronously, and the interface allows a client to receive a callback

when (a) the transaction is disaster-safe durable (Section 4.4), and (b) the transaction is globally

visible, meaning it has been committed at all sites.

4.3 Replication
Walter provides both durability and availability by replicating data within a single site and across

multiple sites. Replication is transparent to clients: all the replicas of an object have the same object

id, and the system accesses the replica closest to the client. An object need not be replicated at

all sites and clients can read objects even if they are not replicated at the local site, in which case

Walter fetches the data from a remote site.4 A transaction commits at every site, even where it is not

replicated, following the semantics of PSI in Section 3.2: once a transaction is committed at a site,

reads from that site see the effects of the transaction. Administrators choose how many replicas and

where they are. These settings are stored as attributes of a container, so all objects of a container are

replicated similarly.

4.4 Durability and availability
Walter provides two levels of durability:

(Normal Durability) When a transaction commits at its site, writes have been logged to a replicated

cluster storage system [21, 28, 40, 48], so writes are not lost due to power failures. Data may be lost

if an entire data center is wiped out by a disaster.

(Disaster-safe Durability) A transaction is considered disaster-safe durable if its writes have been

logged at f+1 sites, where parameter f determines the desired fault tolerance level: up to f sites

may fail without causing data loss. The default value of f is 1.

If an entire site s fails temporarily or is unreachable due to cross-site network issues, it may have

4In the PSI specification, data is replicated at every site, but an implementation need not do that, as
long as it behaves identically in terms of responses to operations.



transactions that were locally committed but not yet propagated to other sites. In that case, the

application has two choices:

(Conservative) Wait for the site s to come back online, so that it can propagate the missing transac-

tions. But then clients cannot write to objects whose preferred site is s until s comes back online—a

loss of availability for some writes.

(Aggressive) Sacrifice the durability of a few committed transactions at site s for better availability,

by replacing site s and abandoning its non-propagated transactions. Technically, this choice violates

PSI, but one could extend the PSI definition to allow for lost committed transactions when a site fails

or disconnects. Applications can wait for important transactions to be marked disaster-safe durable

before confirming them to users.

Availability within a site comes from the availability of the cluster storage system: if the Walter

server at a site fails, the system starts a new server, which can access the same cluster storage system.

Availability under network partitions or disasters comes from cross-site replication. If a site fails, an

application can warn users before they are redirected to another site, because users may see a different

system state at the new site due to the semantics of PSI. In practice, the state at different sites diverges

by only a few seconds.

5. DESIGN AND ALGORITHMS
This section describes Walter’s design, emphasizing the protocols for executing and committing

transactions. We first give an overview of the basic architecture (Section 5.1) and object version-

ing (Section 5.2). We then explain how to execute transactions (Section 5.3) and how to commit

certain common transactions quickly (Section 5.4). Next, we explain how to commit other trans-

actions (Section 5.5) and how transactions are replicated asynchronously (Section 5.6). Lastly, we

consider failure recovery (Section 5.7) and scalability (Section 5.8).

5.1 Basic architecture
There are multiple sites numbered 1, 2, . . . Each site contains a local Walter server and a set of clients.

A client communicates with the server via remote procedure calls implemented by the API library.

The server executes the actual operations to start and commit transactions, and to access objects.

Walter employs a separate configuration service to keep track of the currently active sites, and the

preferred site and replica set for each object container. The configuration service tolerates failures

by running as a Paxos-based state machine replicated across multiple sites. A Walter server confirms

its role in the system by obtaining a lease from the configuration service, similar to what is done

in [12, 46]. The lease assigns a set of containers to a preferred site, and it is held by the Walter

server at that site. A Walter server caches the mapping from a container to its replica sites to avoid

contacting the configuration service at each access. Incorrect cache entries do not affect correctness

because a server rejects requests for which it does not hold the corresponding preferred site lease.

5.2 Versions and vector timestamps
The PSI specification is centralized and uses a monotonic timestamp when a transaction starts and

commits. But monotonic timestamps are expensive to produce across multiple sites. Thus, to imple-

ment PSI, Walter replaces them with version numbers and vector timestamps. A version number (or

simply version) is a pair 〈site, seqno〉 assigned to a transaction when it commits; it has the site where

the transaction executed, and a sequence number local to that site. The sequence number orders all

transactions within a site. A vector timestamp represents a snapshot; it contains a sequence number

for each site, indicating how many transactions of that site are reflected in the snapshot. A transaction

is assigned a vector timestamp startVTS when it starts. For example, if startVTS = 〈2, 4, 5〉 then the

transaction reads from the snapshot containing 2 transactions from site 1, 4 from site 2, and 5 from

site 3.



At Serveri: // i denotes the site number

CurrSeqNoi: integer with last assigned local sequence number

CommittedVTSi: vector indicating for each site how many transactions of

that site have been committed at site i

Historyi[oid]: a sequence of updates of the form 〈data, version〉 to oid,

where version = 〈j:n〉 for some j, n

GotVTSi: vector indicating for each site how many transactions of

that site have been received by site i

Figure 9: Variables at server on each site.

At Serveri: // i denotes the site number

operation startTx(x)

x.tid ← unique transaction id

x.startVTS ← CommittedVTSi

return OK

operation write(x, oid, data): add 〈oid, DATA(data)〉 to x.updates; return OK

operation setAdd(x, setid, id): add 〈setid, ADD(id)〉 to x.updates; return OK

operation setDel(x, setid, id): add 〈setid, DEL(id)〉 to x.updates; return OK

operation read(x, oid)

if oid is locally replicated

then return state of oid reflecting x.updates and

all versions in Historyi[oid] visible to x.startVTS

else return state of oid reflecting x.updates,

the versions in Historysite(oid)[oid] visible to x.startVTS, and

the versions in Historyi[oid] visible to x.startVTS

operation setRead(x, setid): same as read(x, oid)

Figure 10: Executing transactions.

Given a version v=〈site, seqno〉 and a vector timestamp startVTS, we say that v is visible to startVTS

if seqno ≤ startVTS[site]. Intuitively, the snapshot of startVTS has enough transactions from site to

incorporate version v.

Figure 9 shows the variables at the server at site i. Variable CurrSeqNo
i

has the last sequence number

assigned by the server, and CommittedVTSi[j] has the sequence number of the last transaction from

each site j that was committed at site i. We discuss History
i

and GotVTSi in Sections 5.3 and 5.6.

5.3 Executing transactions
To execute transactions, the server at each site i maintains a history denoted History

i
[oid] with a

sequence of writes/updates for each object oid, where each update is tagged with the version of

the responsible transaction. This history variable is similar to variable Log in the PSI specification,

except that it keeps a list per object, and it has versions not timestamps. When a transaction x starts,

Walter obtains a new start vector timestamp startVTS containing the sequence number of the latest

transactions from each site that were committed at the local site. To write an object, add to a cset,

or remove from a cset, Walter stores this update in a temporary buffer x.updates. To read an object,

Walter retrieves its state from the snapshot determined by startVTS and any updates in x.updates.

Specifically, for a regular object, Walter returns the last update in x.updates or, if none, the last

update in the history visible to startVTS. For a cset object, Walter computes its state by applying the

updates in the history visible to startVTS and the updates in x.updates.

The above explanation assumes an object is replicated locally. If not, its local history History
i
[oid]

will not have all of the object’s updates (but it may have some recent updates). Therefore, to read such

an object, Walter retrieves the data from the object’s preferred site and merges it with any updates in

the local history and in x.updates. To write, Walter buffers the write in x.updates and, upon commit,

stores the update in the local history while it is being replicated to other sites; after that, the local



At Serveri: // i denotes the site number

function unmodified(oid, VTS): true if oid unmodified since VTS

function update(updates, version)
for each 〈oid, X〉 ∈ updates do add 〈X, version〉 to Historyi[oid]

operation commitTx(x)

x.writeset ← {oid : 〈oid, DATA(∗)〉 ∈ x.updates } // ∗ is a wildcard

if ∀oid ∈ x.writeset : site(oid) = i then return fastCommit(x)
else return slowCommit(x)

function fastCommit(x)

if ∀oid ∈ x.writeset : unmodified(oid, startVTS) and oid not locked then

x.seqno ← ++CurrSeqNoi // vertical bar indicates atomic region

update(x.updates, 〈i, x.seqno〉)

wait until CommittedVTSi[i] = x.seqno−1
CommittedVTSi[i] ← x.seqno

x.outcome ← COMMITTED

fork propagate(x)
else x.outcome ← ABORTED

return x.outcome

Figure 11: Fast commit.

history can be garbage collected. Figure 10 shows the detailed pseudocode executed by a server.

Recall that clients invoke the operations at the local server using a remote procedure call (not shown).

The code is multi-threaded and we assume that each line is executed atomically.

5.4 Fast commit
For transactions whose write-set has only objects with a local preferred site, Walter uses a fast com-

mit protocol. The write-set of a transaction consists of all oids to which the transaction writes; it

excludes updates to set objects. To fast commit a transaction x, Walter first determines if x can really

commit. This involves two checks for conflicts. The first check is whether all objects in the write-set

are unmodified since the transaction started. To perform this check, Walter uses the start vector time-

stamp: specifically, we say that an object oid is unmodified since x.startVTS if all versions of oid in

the history of the local site are visible to x.startVTS. The second check is whether all objects in the

write-set of x are unlocked; intuitively, a locked object is one being committed by the slow commit

protocol (Section 5.5). If either check fails, then x is aborted. Otherwise, Walter proceeds to commit

x, as follows. It assigns a new local sequence number to x, and then applies x’s updates to the his-

tories of the modified objects. Walter then waits until the local transaction with preceding sequence

number has been committed. This typically happens quickly, since sequence numbers are assigned in

commit order. Finally, transaction x is marked as committed and Walter propagates x to remote sites

asynchronously as described in Section 5.6. Figure 11 shows the detailed pseudocode. The notation

site(oid) denotes the preferred site of oid. As before, we assume that each line is executed atomically.

A vertical bar indicates a block of code with multiple lines that is executed atomically.

5.5 Slow commit
Transactions that write a regular object whose preferred site is not local must be committed using the

slow commit protocol, which employs a type of two-phase commit among the preferred sites of the

written objects (not across all replicas of the objects). The purpose of two-phase commit is to avoid

conflicts with instances of fast commit and other instances of slow commit. To commit a transaction

x, the server at the site of the transaction acts as the coordinator in the two-phase protocol. In the first

phase, the coordinator asks the (servers at the) preferred sites of each written object to vote based on

whether those objects are unmodified and unlocked. If an object is modified at the preferred site, then

an instance of fast commit conflicts with x; if the object is locked at the preferred site, then another

instance of slow commit conflicts with x. If either case occurs, the site votes “no”, otherwise the site

locks the objects and votes “yes”. If any vote is “no”, the coordinator tells the sites to release the

previously acquired locks. Otherwise, the coordinator proceeds to commit x as in the fast commit

protocol: it assigns a sequence number to x, applies x’s updates to the object histories, marks x as



At Serveri: // i denotes the site number

function slowCommit(x)

// run 2pc among preferred sites of updated objects

sites ← {site(oid) : oid ∈ x.writeset}

pfor each s ∈ sites do // pfor is a parallel for

vote[s] ← remote call prepare(x.tid,

{oid ∈ x.writeset : site(oid) = s}, x.startVTS)

if ∀s ∈ sites : vote[s] = YES then

x.seqno ← ++CurrSeqNoi // vertical bar indicates atomic region

update(x.updates, 〈i, x.seqno〉)

wait until CommittedVTSi[i] = x.seqno − 1

CommittedVTSi[i] ← x.seqno

release locks (at this server) with owner x.tid

x.outcome ← COMMITTED

fork propagate(x)

else

pfor each s ∈ sites such that vote[s] = YES do remote call abort(x.tid)
x.outcome ← ABORTED

return x.outcome

function prepare(tid, localWriteset, startVTS)

if ∀oid ∈ localWriteset : oid not locked and unmodified(oid, startVTS) then

for each oid ∈ localWriteset do lock oid with owner tid

return YES

else return NO

function abort(tid)

release locks (at this server) with owner tid

Figure 12: Slow commit.

committed, and propagates x asynchronously. When x commits, a site releases the acquired locks

when x is propagated to it. Figure 12 shows the detailed pseudocode.

5.6 Asynchronous propagation
After a transaction commits, it is propagated asynchronously to other sites. The propagation protocol

is simple: the site of a transaction x first copies the objects modified by x to the sites where they are

replicated. The site then waits until sufficiently many sites indicate that they received (a) transaction

x, (b) all transactions that causally precede x according to x.startVTS, and (c) all transactions of x’s

site with a smaller sequence number. “Sufficiently many sites” means at least f+1 sites replicating

each object including the object’s preferred site, where f is the disaster-safe tolerance parameter

(Section 4.4). At this point, x is marked as disaster-safe durable and all sites are notified. Transaction

x commits at a remote site j when (a) site j learns that x is disaster-safe durable, (b) all transactions

that causally precede x are committed at site j, and (c) all transactions of x’s site with a smaller

sequence number are committed at site j. When x has committed at all sites, it is marked as globally

visible. The pseudocode is shown in Figure 13. Vector GotVTSi keeps track of how many transactions

site i has received from each other site. Note that when a site i receives a remote transaction and

updates the history of its objects, the transaction is not yet committed at i: it commits only when

CommittedVTSi[j] is incremented. The code omits simple but important optimizations: when server

i propagates transaction x to a remote server, it should not send all the updates of x, just those updates

replicated at the remote server. Similarly, when it sends a DS-DURABLE message, a server need not

include the updates of x again.

5.7 Handling failures

Recovering from client or server failure. If a client crashes, its outstanding transactions are aborted

and any state kept for those transactions at the server is garbage collected. Each server at a site stores

its transaction log in a replicated cluster storage system. When a Walter server fails, the replacement

server resumes propagation for those committed transactions that have not yet been fully propagated.



At Serveri: // i denotes the site number

function propagate(x)

send 〈PROPAGATE , x〉 to all servers

wait until ∀oid∈x.writeset: received 〈PROPAGATE-ACK , x.tid〉

from f+1 sites replicating oid including site(oid)

mark x as disaster-safe durable

send 〈DS-DURABLE , x〉 to all servers

wait until received 〈VISIBLE , x.tid〉 from all sites

mark x as globally visible

when received 〈PROPAGATE , x〉 from Serverj and

GotVTSi ≥ x.startVTS and GotVTSi[j] = x.seqno−1 do

if i �= j then update(items in x.updates replicated in this site, 〈j : x.seqno〉)
// when i = j, update has been applied already when transaction committed

GotVTSi[j] = x.seqno

send 〈PROPAGATE-ACK , x.tid〉 to Serverj

when received 〈DS-DURABLE , x〉 and 〈PROPAGATE , x〉 from Serverj and

CommittedVTSi ≥ x.startVTS and CommittedVTSi[j] = x.seqno−1 do

CommittedVTSi[j] ← x.seqno

release all locks with owner x.tid

send 〈VISIBLE , x.tid〉 to Serverj

Figure 13: Transaction replication.

Handling a site failure. An entire site s may fail due to a disaster or a power outage. Such failure

is problematic because there may be committed transactions at s that were not yet replicated at other

sites. As explained in Section 4.4, Walter offers two site recovery options: conservative and aggres-

sive. Recall that the conservative option is to wait for s to come back online, while the aggressive

option is to remove s and reassign the preferred site of its containers to another site. To remove a

failed site, Walter uses the configuration service (Section 5.1). Each configuration indicates what

sites are active. Before switching to a new configuration that excludes site s, the configuration ser-

vice must find out the transactions committed by s that will survive across the configuration change.

Transaction x of site s survives if x and all transactions that causally precede x and all transactions

of s with a smaller sequence number have been copied to a site in the new configuration. The config-

uration service queries the sites in the new configuration to discover what transactions survive. Then,

it asks each site to discard the replicated data of non-surviving transactions and, in the background,

it completes the propagation of surviving transactions that are not yet fully replicated. Finally, the

configuration service reassigns the preferred site of containers of s to another site, by having another

site take over the appropriate leases. While reconfiguration is in progress, sites that are still active

continue to commit transactions, except transactions that write to objects whose preferred site was s,

which are postponed until those objects get a new preferred site.

Re-integrating a previously failed site. When a previously removed site s recovers, it must be

re-integrated into the system. The configuration service starts a new reconfiguration that includes s.

To switch to the new configuration, s must first synchronize with its replacement site s′ to integrate

modifications committed by s′. Once synchronization is finished, s takes over the lease for being the

preferred site for the relevant containers, and the new configuration takes effect.

5.8 Scalability
Walter relies on a single server per site to execute and commit transactions, which can become a

scalability bottleneck. A simple way to scale the system is to divide a data center into several “local

sites”, each with its own server, and then partition the objects across the local sites in the data center.

This is possible because Walter supports partial replication and allows transactions to operate on an

object not replicated at the site—in which case, the transaction accesses the object at another site

within the same data center. We should note that PSI allows sites to diverge; to avoid exposing this

divergence to users, applications can be designed so that a user always log into the same local site in

the data center. Another approach to scalability, which we do not explore in this paper, is to employ



Method Description

void start() start transaction
int commit() try to commit
int abort() abort
int read(Oid o, char **buf) read object
int write(Oid o, char *buf, int len) write object
Oid newid(ContainerId cid, OType otype) get new oid
int setAdd(Oid cset, Id id) add id to cset
int setDel(Oid cset, Id id) delete id from cset
int setRead(Oid cset, IdSetIterator **iter) read cset
int setReadId(Oid cset, Id id, int *answer) read id in cset

C++ Example:

Tx x;

x.start();

len = x.read(o1, &buf);

err = x.write(o2, buf, len);

...

res = x.commit();

PHP Example:

$x = waStartTx();

$buf = waRead($x, $o1);

$err = waWrite($x, $o2, $buf);

...

$res = waCommit($x);

Figure 14: Basic C++ API for Walter and C++ and PHP examples.

several servers per site and replace the fast commit protocol of Section 5.4 with distributed commit.

6. IMPLEMENTATION
The Walter implementation has a client-side library and a server, written in C++, with a total of

30K lines of code. There is also a PHP interface for web development with 600 lines of code. The

implementation differs from the design as follows. First, each Walter server uses direct-attached

storage devices, instead of a cluster storage system. Second, we have not implemented the scheme

to reintegrate a failed site (Section 5.7): currently, the administrator must invoke a script manually to

do that. Third, the client interface, shown in Figure 14, differs cosmetically from the specification in

Section 3.2, due to the specifics of C++ and PHP. In C++, there is a Transaction class and operations

are methods of this class. Functions read, setRead, and setReadId return the data via a parameter

(the C++ return value is a success indication). setRead provides an iterator for the ids in a cset.

setReadId indicates the count of an identifier in a cset. commit can optionally inform the client via

supplied callbacks—not shown—when the transaction is disaster-safe durable and globally visible

(i.e., committed at all sites). There is a function newid to return a fresh oid, explained below.

There are no specialized functions to create or destroy objects. Conceptually, all objects always exist

and are initialized to nil, without any space allocated to them. If a client reads a never-written object,

it obtains nil. Function newid returns a unique oid of a never-written object of a chosen type (regular

or cset) in a chosen container. Destroying a regular object corresponds to writing nil to it, while

destroying a cset object corresponds to updating its elements so that they have zero count. There

are some additional functions (not shown), including (a) management functions for initialization,

shutdown, creating containers, and destroying containers; and (b) functions that combine multiple

operations in a single RPC to the server, to gain performance; these include functions for reading or

writing many objects, and for reading all objects whose ids are in a cset. The functions to create and

destroy containers run outside a transaction; we expect them to be used relatively rarely. Identifiers

for containers and objects are currently restricted to a fixed length, but it would be easy to make them

variable-length.

The server stores object histories in a persistent log and maintains an in-memory cache of recently-

used objects. The persistent log is periodically garbage collected to remove old entries. The entries

in the in-memory cache are evicted on an LRU basis. Since it is expensive to reconstruct csets from

the log, the eviction policy prefers to evict regular objects rather than csets. There is an in-memory

index that keeps, for each object, a list of updates to the object, ordered from most to least recent,

where each update includes a pointer to the data in the persistent log and a flag of whether the data is

in the cache. To speed up system startup and recovery, Walter periodically checkpoints the index to



Tx x;

x.start();

x.read(oidA, &profileA);

x.read(oidB, &profileB);

(* continues in next column *)

x.setAdd(profileA.friendlist, oidB);

x.setAdd(profileB.friendlist, oidA);

success = x.commit();

Figure 15: Transaction for befriend operation in WaltSocial.

persistent storage; the checkpoint also describes transactions that are being replicated. Checkpointing

is done in the background, so it does not block transaction processing. When the server starts, it

reconstructs the index from the checkpointed state and the data in the log after the checkpoint.

To improve disk efficiency, Walter employs group commit to flush many commit records to disk

at the same time. To reduce the number of threads, the implementation makes extensive use of

asynchronous calls and callbacks when it invokes blocking and slow operations. To enhance network

efficiency, Walter propagates transactions in periodic batches, where each batch remotely copies all

transactions that committed since the last batch.

The protocol for slow commit may starve because of repeated conflicting instances of fast commit.

A simple solution to this problem is to mark objects that caused the abort of slow commit and briefly

delay access to them in subsequent fast commits: this delay would allow the next attempt of slow

commit to succeed. We have not implemented this mechanism since none of our applications use

slow commit.

7. APPLICATIONS
Using Walter, we built a social networking web site (WaltSocial) and ported a third-party Twitter-like

application called ReTwis [2]. Our experience suggests that it is easy to develop applications using

Walter and run them across multiple data centers.

WaltSocial. WaltSocial is a complete implementation of a simple social networking service, sup-

porting the common operations found in a system such as Facebook. These include befriend, status-

update, post-message, read-info as well as others. In WaltSocial, each user has a profile object for

storing personal information (e.g., name, email, hobbies) and several cset objects: a friend-list has

oids of the profile objects of friends, a message-list has oids of received messages, an event-list has

oids of events in the user’s activity history, and an album-list has oids of photo albums, where each

photo album is itself a cset with the oids of photo objects.

WaltSocial uses transactions to access objects and maintain data integrity. For example, when users

A and B befriend each other, a transaction adds A’s profile oid to B’s friend-list and vice versa

(Figure 15). To post-message from A to B, a transaction writes an object m with the message contents

and adds its oid to B’s message-list and to A’s event-list.

Each user has a container that stores her objects. The container is replicated at all sites to optimize

for reads. The system directs a user to log into the preferred site of her container. User actions are

confirmed when transactions commit locally.

ReTwis. ReTwis is a Twitter-clone written in PHP using the Redis key-value store [1]. Apart from

simple get/put operations, this application makes extensive use of Redis’s native support for certain

atomic operations, such as adding to or removing from a list, and adding or subtracting from an

integer. In Redis, cross-site replication is based on a master-slave scheme. For our port of ReTwis,

we replace Redis with Walter, so that ReTwis can update data on multiple sites. We use Walter

transactions and csets to provide the equivalent atomic integer and list operation in Redis.

For each user, ReTwis has a timeline that tracks messages posted by the users that the user is follow-



ing. In the original implementation, a user’s timeline is stored in a Redis list. When a user posts a

message, ReTwis performs an atomic increment on a sequence number to generate a postID, stores

the message under the postID, and appends the postID to each of her followers’ timelines. When

a user checks postings, ReTwis displays the 10 most recent messages from her timeline. To port

ReTwis to use Walter, we make several changes: we use a cset object to represent each user’s time-

line so that different sites can add posts to a user’s timeline without conflicts. To post a message, we

use a transaction that writes a message under a unique postID, and adds the postID to the timeline of

every follower of the user.

We found the process of porting ReTwis to Walter to be quite simple and straightforward: a good

programmer without previous Walter experience wrote the port in less than a day. Transactions

allow the data structure manipulations built into Redis to be implemented by the application, while

providing competitive performance (Section 8.7).

8. EVALUATION
We evaluate the performance of Walter and its applications (WaltSocial, ReTwis) using Amazon’s

EC2. The highlights of our results are the following:

• Transactions that modify objects at their preferred sites commit quickly, with a 99.9-percentile

latency of 27ms on EC2. Committed transactions are asynchronously replicated to remote sites

within twice the network round-trip latency.

• Transactions that modify csets outside of their preferred sites also commit quickly without

cross-site coordination. WaltSocial uses csets extensively and processes user requests with a

99.9-percentile latency under 50ms.

• The overhead for supporting transactions in Walter is reasonable. ReTwis running on Walter

has a throughput 25% smaller than running on Redis in a single site, but Walter allows ReTwis

to scale to multiple sites.

8.1 Experimental setup
Unless stated otherwise, experiments run on Amazon’s EC2 cloud platform. We use machines in

four EC2 sites: Virginia (VA), California (CA), Ireland (IE), and Singapore (SG), with the following

average round-trip latencies within and across sites (in ms):

VA CA IE SG
VA 0.5 82 87 261
CA 0.3 153 190
IE 0.5 277

SG 0.3

Within a site, the bandwidth between two hosts is over 600 Mbps; across sites, we found a bandwidth

limit of 22 Mbps.

We use extra-large EC2 virtual machine instances, with 7 GB of RAM and 8 virtual cores, each

equivalent to a 2.5 GHz Intel Xeon processor. Walter uses write-ahead logging, where commit logs

are flushed to disk at commit time. Since one cannot disable write-caching at the disk on EC2, where

indicated we run experiments on a private cluster outside of EC2, with machines with two quad core

Intel Xeon E5520 2.27 GHz processors and 8 GB of RAM.

Each EC2 site has a Walter server, and we run experiments with different numbers of sites and

replication levels, as shown below:



Experiment name Sites Replication level

1-site VA none
2-sites VA, CA 2
3-sites VA, CA, IE 3
4-sites VA, CA, IE, SG 4

Our microbenchmark workload (Sections 8.2–8.5) consists of transactions that read or write a few

randomly chosen 100-byte objects. (Changing the object size from 100 bytes to 1 KB yields similar

results.) We choose to evaluate small transactions because our applications, WaltSocial and ReTwis,

only access a few small objects in each transaction. We consider a transaction to be disaster-safe

durable when it is committed at all sites in the experiment.

8.2 Base performance
We first evaluate the base performance of Walter, and compare it against Berkeley DB 11gR2 (BDB),

a commercial open-source developer database library. The goal is to understand if Walter provides a

usable base performance.

Benchmark setup. We configure BDB to use B-trees with default pagesize and snapshot isolation;

parameters are chosen for the best performance. We configure BDB to have two replicas with asyn-

chronous replication. Since BDB allows updates at only one replica (the primary), we set up the

Walter experiment to also update at one site. To achieve good throughput in BDB, we must use many

threads at the primary to achieve high concurrency. However, with many threads, EC2 machines

perform noticeably worse than private machines. Therefore, we run the primary BDB replica in our

private cluster (with write-caching at the disk enabled), and the other replica at the CA site of EC2.

We do the same for Walter. Clients and the server run on separate hosts. For BDB, we use an RPC

server to receive and execute client requests.

The workload consists of either read or write transactions each accessing one 100-byte object. We

populate BDB and Walter with 50,000 keys, which fits in the 1 GB cache of both systems. Walter

includes an optimization to reduce the number of RPCs, where the start and commit of each transac-

tion are piggybacked onto the first and last access, respectively. Thus, transactions with one access

require just one RPC in Walter and in BDB.

Results. Figure 16 shows that throughput of read and write transactions of Walter is comparable to

that of BDB. Read throughput is CPU-bound and mainly limited by the performance of our RPC

library in both systems. Walter’s read throughput is slightly lower because it does more work than

BDB by acquiring a local lock and assigning a start timestamp vector when a transaction starts.

The commit and replication latency of BDB and Walter are also similar and not shown here (see

Section 8.3 for Walter’s latency).

8.3 Fast commit on regular objects
This microbenchmark evaluates the performance of transactions on regular objects, using fast com-

mit.

Benchmark setup. The experiments involve one to four sites. Objects are replicated at all sites,

and their preferred sites are assigned evenly across sites. At each site, we run multiple clients on

Name Read Tx throughput Write Tx throughput

Walter 72 Ktps 33.5 Ktps
Berkeley DB 80 Ktps 32 Ktps

Figure 16: Base read and write transaction throughput.
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Figure 17: Aggregate transaction throughput on EC2.

different hosts to issue transactions as fast as possible to its local Walter server. There are several

workloads: read-only, write-only, and mixed. Read-only or write-only transactions access one or five

100-byte objects. The mixed workload consists of 90% read-only transactions and 10% write-only

transactions.

Result: throughput. Figure 17 shows Walter’s aggregate throughput across sites as the number of

sites varies. Read throughput is bounded by the RPC performance and scales linearly with the number

of sites, reaching 157 Ktps (thousands of transactions per second) with 4 sites. Write throughput

is lower than read throughput due to lock contention within a Walter server. Specifically, when

a transaction commits, a thread needs to acquire a highly contended lock to check for transaction

conflicts. Moreover, write throughput does not scale as well as read throughput as the number of sites

increases. This is because data is replicated at all sites, so the amount of work per write transaction

grows with the number of sites. Yet, the cost of replication is lower than that of committing because

replication is done in batches. Thus, the write throughput still grows with the number of sites, but not

linearly. Note that the read and write throughput for transactions of size 1 in Figure 17 is only 50–

60% of that in Figure 16 as a result of running this experiment on EC2 instead of the private cluster. In

the mixed workload, performance is mostly determined by how many operations a transaction issues

on average. For example, when there are 90% read-only transactions each reading one object and
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10% write-only transactions each writing 5 objects, a transaction issues on average only 1.4 requests

to the server. As a result, a relatively high aggregate throughput of 80 Ktps is reached across 4 sites.

Result: latency. We measure the fast commit latency for write-only transactions accessing 5 objects.

We record the time elapsed between issuing a commit and having the server acknowledge the commit

completion. Figure 18 shows the latency distribution measured on EC2, and in our private cluster

with and without write caching at the disk. The measurements were taken for a moderate workload

in which clients issued enough requests to achieve 70% of maximal throughput. The points at the

lower-end of the distributions in Figure 18 show latencies that we observe in a lightly loaded system.

Because there is no cross-site coordination, fast commit is quick: On EC2 the 99-percentile latency

is 20 ms and the 99.9-percentile is 27 ms. Since the network latency within a site is low at 0.5 ms,

the commit latency is dominated by the effects of queuing inside the Walter server and of flushing

the commit log to disk when committing transactions at a high throughput. Figure 18 also shows the

effect of disabling write-caching at the disk, measured on our private cluster. Even in that case, the

99.9-percentile latency of a fast commit is under 90 ms.

The latency for a committed transaction to become disaster-safe durable is dominated by the network

latency across sites. As shown in Figure 19, the latency is distributed approximately uniformly be-

tween [RTTmax, 2 ∗ RTTmax] where RTTmax is the maximum round-trip latency between VA and the

other three sites. This is because Walter propagates transactions in batches to maximize throughput,

so a transaction must wait for the previous batch to finish.

The latency for a committed transaction to become globally visible is an additional RTTmax after it

has become disaster-safe durable (not shown).

8.4 Fast commit on cset objects
We now evaluate transactions that modify csets.

Benchmark setup. We run the 4-site experiment in which each transaction modifies two 100-byte

objects at the preferred site and adds an id to a cset with a remote preferred site.
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Results. The latency distribution curve for committing transactions (not shown) is similar to the curve

corresponding to EC2 in Figure 18. This is because transactions modifying csets commit via the same

fast commit protocol as transactions modifying regular objects at their preferred site. Across 4 sites,

the aggregate throughput is 26 Ktps, which is lower than the single-write transaction throughput of

52 Ktps shown in Figure 17. This is because the cset transactions issue 4 RPCs (instead of 1 RPC for

the transactions in Figure 17), to write two objects, modify a cset, and commit.

8.5 Slow commit
We now evaluate the slow commit protocol for transactions modifying objects with different preferred

sites. Unlike fast commit, slow commit requires cross-site coordination.

Benchmark setup. We run the 4-site experiments and have clients issue write-only transactions at

the VA site. We vary the size of a transaction from 2 to 4 objects. Each object written has a different

preferred site: the first, second, third, and fourth object’s preferred sites are VA, CA, IE, and SG

respectively.

Results. Figure 20 shows the commit latency (left-most three lines) and the latency for achieving

disaster-safe durability (right-most three lines). The commit latency is determined by the round-trip

time between VA and the farthest preferred site of objects in the writeset. This is because slow commit

runs a two-phase protocol among the preferred sites of the objects in the writeset. For example, for

transactions of size 3, the commit latency is 87 ms, which is the round-trip time from VA to IE. The

latency for disaster-safe durability is the commit latency plus the replication latency. The replication

latency is the same as for fast commit: it is uniformly distributed between [RTTmax, 2∗RTTmax], where

RTTmax is the round-trip time between VA and SG.

To optimize performance, applications should minimize the use of slow commits. Both WaltSocial

and ReTwis avoid slow commits by using csets.

8.6 WaltSocial performance
Transactions make it easy to develop WaltSocial. Our experiments also show that WaltSocial achieves

good performance.

Workload setup. The WaltSocial experiments involve 4 sites in EC2. We populate Walter with

400, 000 users, each with 10 status updates and 10 wall postings from other users. We run many

application clients at each site, where each client issues WaltSocial operations. An operation corre-

sponds to a user action, and it is implemented by executing and committing a transaction that reads

and/or writes several data objects (Section 7). We measure the latency and aggregate throughput for

each operation. We also evaluate two mixed workloads: mix1 consists of 90% read-info operations

and 10% update operations including status-update, post-message and befriend; mix2 contains 80%
read-info operations and 20% update operations.

Operation throughput. Figure 21 shows the throughput in thousands operations per second (Kops/s)



Operation # objs+csets # objs # of csets Throughput
read written written (1000 ops/s)

read-info 3 0 0 40
befriend 2 0 2 20
status-update 1 2 2 18
post-message 2 2 2 16.5
mix1 2.9 0.5 0.3 34
mix2 2.8 0.7 0.5 32

Figure 21: Transaction size and throughput for Waltsocial operations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

C
D

F

Operation latency (ms)

read-info
befriend

status-update
post-message

Figure 22: Latency of WaltSocial operations.

for each WaltSocial operation and for the mixed workloads. The read-info operation issues read-

only transactions; it has the highest aggregate throughput at 40 Kops/s. The other operations issue

transactions that update objects; their throughput varies from 16.5 Kops/s to 20 Kops/s, depending

on the number of objects read and written in the transactions. The mixed workloads are dominated

by read-info operations, hence their throughput values are closer to that of read-info. The achieved

throughput is likely sufficient for small or medium social networks. To handle larger deployments,

one might deploy several sites per data center to scale the system (Section 5.8) .

Operation latency. Figure 22 shows the latency of WaltSocial operations when the system has a

moderate load. Operations finish quickly because the underlying transactions involve no cross-site

communication: transactions always read a local replica for any object and transactions that update

data use cset objects. The 99.9-percentile latency of all operations in Figure 22 is below 50 ms. As

each WaltSocial operation issues read/write requests to Walter in series, the latency is affected by

the number of objects accessed by different WaltSocial operations. The read-info operation involves

fewest objects and hence is faster than other operations.

8.7 ReTwis performance
We compare the performance of ReTwis using Walter and Redis as the storage system, to assess the

cost of Walter.

Workload setup. The Walter experiments involve one or two sites. Redis does not allow updates
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from multiple sites, so the Redis experiments involve one site. Since Redis is a semi-persistent

key-value store optimized for in-memory operations, we configure both Walter and Redis to commit

writes to memory. We run multiple front-end web servers (Apache 2.2.14 with PHP 5.3.2) and client

emulators at each site. We emulate 500, 000 users who issue requests to post a message (post), follow

another user (follow), or read postings in their own timeline (status). The mixed workload consists of

85% status, 7.5% post and 7.5% follow operations.

Throughput comparison. Figure 23 shows the aggregate throughput (Kops/s) for different work-

loads when running ReTwis with Walter and Redis. As can be seen, with one site, ReTwis with Walter

has similar performance as ReTwis with Redis: the slowdown is no more than 25%. For example, the

throughput of the post operation for Walter (1 site) is 4713 ops/s, compared to 5740 ops/s for Redis.

But ReTwis with Walter can use multiple sites to scale the throughput. For example, the throughput

of post using ReTwis with Walter on two sites is 9527 ops/s—twice the throughput of one site.

9. RELATED WORK

Transactions in data centers. Early transactional storage for data centers include Bigtable [12],

Sinfonia [4], Percolator [38], and distributed B-trees [3]. Unlike Walter, these systems were designed

for a single data center only.

Storage systems that span many data centers often do not provide transactions (e.g., Dynamo [16]), or

support only restricted transactional semantics. For example, PNUTS [14] supports only one-record

transactions. COPS [31] provides only read-only transactions. Megastore [7] partitions data and

provides the ACID properties within a partition but, unlike Walter, it fails to provide full transactional

semantics for reads across partitions.

Transactions in disconnected or wide-area systems. Perdis [19] is an object store with a check-

out/check-in model for wide-area operations: it creates a local copy of remote data (check-out) and

later reconciles local changes (check-in), relying on manual repair when necessary. For systems

with mobile nodes, tentative update transactions [23] can commit at a disconnected node. Tentative

commits may be aborted later due to conflicts when the hosts re-connect to servers, which requires

reconciliation by an external user. In contrast to the above systems, Walter does not require burden-

some operations for manual repair or reconciliation. Mariposa [45] is a wide-area system whose main

focus is on incentivizing a site to run third-party read-only queries.

Database replication. There is much work on database replication, both commercially and academ-

ically. Commercial database systems support master-slave replication across sites: one site is the

primary, the others are mirrors that are often read-only and updated asynchronously. When asyn-

chronous mirrors are writable, applications must provide logic to resolve conflicts. On the academic

side, the database replication literature is extensive; here we summarize relevant recent work. Repli-

cation schemes are classified on two axes [23]: (1) who initiates updates (primary-copy vs update-

anywhere), and (2) when updates propagate (eager vs lazy). With primary-copy, objects have a mas-

ter host and only the master initiates updates; with update-anywhere, any host may initiate updates.

With eager replication, updates propagate to the replicas before commit; with lazy replication, repli-

cas receive updates asynchronously after commit. All four combinations of these two dimensions are

possible. Eager replication is implemented using distributed two-phase commit [9]. Later work con-

siders primary-copy lazy replication and provides serializability by restricting the placement of each

object’s primary [13], or controlling when secondary nodes are updated [10, 36]. Update-anywhere

lazy replication is problematic because conflicting transactions can commit concurrently at different

replicas. Thus, recent work considers hybrids between eager and lazy replication: updates propagate

after commit (lazy), but replicas also coordinate during transaction execution or commit to deal with

conflicts (eager). This coordination may involve a global graph to control conflicts [6, 11], or atomic

broadcast to order transactions [27, 37]. Later work considers snapshot isolation as a more efficient



alternative to serializability [15, 17, 18, 30, 39, 52]. Walter differs from the above works because

they ensure a stronger isolation property—serializability or snapshot isolation—which inherently re-

quires coordination across sites to commit, whereas Walter commits common transactions without

such coordination.

Federated transaction management considers techniques to execute transactions that span multiple

database systems [41]. This work differs from Walter because it does not consider issues involving

multiple sites and its main concern is to minimize changes to database systems, rather than avoiding

coordination across sites.

Relaxed consistency. Some systems provide weaker consistency, where concurrent updates cause di-

verging versions that must be reconciled later by application-specific mechanisms [16, 34, 47]. Even-

tual consistency permits replicas to diverge but, if updates stop, replicas eventually converge again.

Weak consistency may be tolerable [49], but it can lead to complex application logic. Inconsistency

can also be quantified and bounded [5, 26, 54], to improve the user experience. Fork consistency [33]

allows the observed operation history to fork and not converge again; it is intended for honest clients

to detect the misbehavior of malicious servers rather than to provide efficient replication across sites.

Commutative data types. Prior work has shown how to exploit the semantics of data types to

improve concurrency. In [50], abstract data types (such as sets, FIFO queues, and a bank account) are

characterized using a table of commutativity relations where two operations conflict when they do not

commute. In [20, 42], a lock compatibility table is used to serialize access to abstract data types, such

as directory, set or FIFO queue, by exploiting the commutativity of their operations. Because these

works aim to achieve serializability, not all operations on a set object are conflict-free (e.g., testing

the membership of element a conflicts with the insertion of a in the set). As a result, operating on

sets require coordination to check for potential conflicts. In contrast, since we aim to achieve the

weaker PSI property, operations on Walter’s cset objects are always free of conflicts, allowing each

data center to read and modify these csets without any remote coordination.

Letia et al. [29] have proposed the use of commutative replicated data types to avoid concurrency

control and conflict resolution in replicated systems. Their work has inspired our use of csets. Sub-

sequent recent work [43] provides a theoretical treatment for such data types and others—which

are together called conflict-free replicated data types or CRDTs—proposing sufficient conditions for

replica convergence under a newly-defined strong eventual consistency model. While that work con-

cerns replication of single operations/objects at a time, not transactions, one could imagine using

general CRDTs with PSI and our protocols to replicate transactions efficiently. U-sets [43, 53] are a

type of set in which commutativity is achieved by preventing a removed element from being added

again. In contrast, csets achieve commutativity by augmenting elements with counts. Csets are simi-

lar to Z-relations [25], which are mappings from tuples to integers, used to allow for decidability of

equivalence of queries in the context of query optimization.

Escrow transactions [35] update numeric data, such as account balances, by holding some amount

in escrow to allow concurrent commutative updates. By exploiting commutativity, such transactions

resemble transactions with csets, but they differ in two ways. First, escrow transactions operate on

numeric data. Second, escrow transactions must coordinate among themselves to check the amounts

in escrow, which does not serve our goal of avoiding coordination across distant sites.

10. CONCLUSION
Walter is a transactional geo-replicated key-value store with properties that make it appealing as

the storage system for web applications. A key feature behind Walter is Parallel Snapshot Isolation

(PSI), a precisely-stated isolation property that permits asynchronous replication across sites without

the need for conflict resolution. Walter relies on techniques to avoid conflicts across sites, thereby

allowing transactions to commit locally in a site. PSI thus permits an efficient implementation, while

also providing strong guarantees to applications. We have demonstrated the usefulness of Walter by



building a Facebook-like social networking application and porting a third-party Twitter clone. Both

applications were simple to implement and achieved reasonable performance.
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