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Abstract
As computers have become ever more interconnected,
the complexity of security configuration has exploded.
Management tools have not kept pace, and we show
that this has made identity snowball attacks into a crit-
ical danger. Identity snowball attacks leverage the users
logged in to a first compromised host to launch additional
attacks with those users’ privileges on other hosts. To
combat such attacks, we present Heat-ray, a system that
combines machine learning, combinatorial optimization
and attack graphs to scalably manage security configu-
ration. Through evaluation on an organization with sev-
eral hundred thousand users and machines, we show that
Heat-ray allows IT administrators to reduce by 96% the
number of machines that can be used to launch a large-
scale identity snowball attack.

1 Introduction

The past decade has witnessed a plague of remote ex-
ploits that could be launched by any machine on the In-
ternet against any other machine with a given vulnerabil-
ity [61, 32, 40, 39]. To combat these attacks, the research
community has developed a large number of defensive
techniques: address space randomization [5], stack ca-
naries [13], compartmentalized web browsers [19], self-
certifying alerts [12], runtime dynamic dataflow analy-
sis [36], and many others. Despite these advances, it
seems unlikely that machine compromises can be com-
pletely eliminated; computer system defenders must ex-
pect that some small fraction of machines are compro-
mised, either due to insider attacks [44], social engineer-
ing [57], or a more traditional vulnerability.

Over this same period of time, computers have become
ever more interconnected. It is commonplace for organi-
zations today to run single-sign-on identity services (e.g.,
using Kerberos [51]) for hundreds of thousands of users,
while Internet identity services support hundreds of mil-

lions of users (e.g., Microsoft’s Live ID [30]). Emerg-
ing federation technologies [46] are further expanding
the scope of these identity services. For example, cloud
applications running on EC2 [15] can already recognize
both the user alice@aol.com according to AOL and the
user bob@yahoo.com according to Yahoo!, and the ap-
plications can then implement access checks involving
these users.

Unfortunately, the ability to authenticate users and set
access policies has far outpaced the ability to manage
these security policies. We show in this paper that the
aggregate complexity of security configuration has made
identity snowball attacks into a pressing danger. We
introduce the term identity snowball attack to describe
an attack launched after an initial machine compromise
where the attacker leverages the identities of users cur-
rently logged in to the first compromised machine to
compromise additional machines. If the currently logged
in users have administrative privileges on these other ma-
chines, the additional compromises are likely trivial for
the attacker. The attacker may then iterate this process
of successive compromise. We explain the mechanics of
such attacks in detail in Section 2. Such iterative use of
identities obtained from compromised hosts dates back
to the first Internet worm [50] and was more recently
used to compromise machines across a number of insti-
tutions [49, 43]. However, to the best of our knowledge
there has been no prior work analyzing the potential for
identity snowball attacks within large enterprises.

The threat of identity snowball attacks is that they
magnify other dangers: a single initial compromise can
lead to a large number of compromised machines. We
quantify this threat in Section 8 by analyzing security
configurations in a single large organization containing
several hundred thousand users and machines. We show
that an attacker who compromises almost any machine in
this organization can proceed to compromise many other
machines. Given our expectation that some small frac-
tion of machines within the organization will be com-
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Figure 1: An IT administrator uses Heat-ray iteratively
to identify desirable security configuration changes.

promised, this is absolutely unacceptable. We have only
analyzed one organization in detail because of the sen-
sitivity of the needed data (it is a map for how to com-
promise these machines). However, we expect that many
organizations are similarly vulnerable for the following
reasons:
• Granting additional privileges is frequently an easy

way to enable administrative tasks on Windows [8],
and Windows is prevalent in many large organizations.
Industry white papers have also described similar is-
sues on Unix [45, 53].

• Large organizations do not have the tools to under-
stand when the aggregation of locally reasonable de-
cisions to grant additional privileges have led to unac-
ceptable global risk.

Although, to the best of our knowledge, identity snow-
ball attacks have not been launched against the internal
networks of large enterprises, the potential damage of
such an attack motivates the development of defensive
measures now. To this end, we present Heat-ray, a system
designed to empower IT administrators to manage secu-
rity configuration in large organizations. The operation
of Heat-ray is depicted in Figure 1. On a periodic basis,
Heat-ray presents a small number of high impact secu-
rity configuration changes to an IT administrator. The
IT administrator selects the changes they want to make,
and the changes they prefer not to make. Heat-ray in-
corporates this feedback and learns the kinds of changes
most acceptable to this administrator. The process re-
peats, with Heat-ray proposing additional security con-
figuration changes until the IT administrator is satisfied
with the new security configuration. Figure 2 shows the
desired results.

Heat-ray identifies the most desirable set of configu-
ration changes on each iteration through a combination
of machine learning, combinatorial optimization and at-
tack graphs. In Section 3 we explain how attack graphs
capture the potential paths through which an attacker
who has compromised one machine can compromise ad-
ditional machines, and how configuration changes map
to removing edges in this graph. In Section 4 we de-
scribe how Heat-ray integrates into a system for scalably
collecting the data needed to create the attack graphs.
In Section 5 we describe how Heat-ray applies spars-

Figure 2: After using Heat-ray, the initial compromise no
longer results in an identity snowball attack.

est cut, a combinatorial optimization technique related to
min-cut, to find small sets of high impact configuration
changes. As we show in Section 8, because sparsest cut
prioritizes configuration changes by the impact they will
have on the security of the organization as a whole, Heat-
ray significantly outperforms heuristics that propose con-
figuration changes based purely on local properties.

In Section 6 we describe how Heat-ray uses the Sup-
port Vector Machine technique from machine learning
to address one final challenge, proposing configuration
changes that are both high impact and implementable.
An implementable configuration change is one that does
not prevent users from accomplishing their jobs. For ex-
ample, removing an IT administrator’s ability to upgrade
the software on a certain server is most likely not an im-
plementable change. Due to the scale of the attack graph,
it is impossible to explicitly label the implementability of
each potential configuration change. Instead, Heat-ray
treats the IT administrator’s decision to accept or reject
any proposed configuration change as implicitly indi-
cating the implementability of the configuration change.
Machine learning is used to generalize from this implicit
feedback and re-estimate the implementability of other
potential configuration changes. These revised estimates
are incorporated into the sparsest cut algorithm as new
edge costs in the attack graph. This causes future itera-
tions of the sparsest cut algorithm to do a better job se-
lecting configuration changes that are both high impact
and implementable by the IT administrator. Finally, in
Section 7, we describe how Heat-ray groups related con-
figuration changes together and ranks its recommenda-
tions to reduce the burden on the IT administrator further
still.

To the best of our knowledge, Heat-ray is the first sys-
tem for defending against identity snowball attacks in
large organizations. Prior work on improving the se-
curity configuration in a network of machines has re-
quired substantial manual effort by the IT administra-
tor [2, 52, 48, 38, 35]. In particular, these systems may
repeatedly propose configuration changes that are not
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implementable, or they may require the IT administra-
tor to specify particular high-value machines that must
be defended. This manual burden renders these systems
very difficult to apply in large organizations. In contrast,
we show in Section 8 that Heat-ray allows an IT admin-
istrator to spend only modest effort (e.g., a few hours of
their time) and identify desirable configuration changes
in an organization with several hundred thousand users
and machines. The identified configuration changes re-
duce by 96% the number of machines that can be used to
launch an identity snowball attack reaching a large frac-
tion of the organization.

2 Identity Snowball Attack Mechanics

We explain the mechanics of an identity snowball attack
in the context of Kerberos, a widely deployed identity
service. However, the attack we have defined is not ex-
ploiting a weakness in Kerberos. It is typical for modern
identity services to entrust a computer with the authority
to make requests on behalf of a logged in user. Once this
trust has been granted, it is available to an attacker if the
machine is compromised.

Figure 3 depicts the mechanics of Kerberos. In step
1, Alice provides her machine a secret, either by enter-
ing a password, by using a smartcard, or by some other
method. Alice’s machine uses this secret to obtain a
Ticket Granting Ticket (TGT) from the Kerberos Key
Distribution Center (KDC) – the TGT grants Alice’s ma-
chine the right to perform actions on Alice’s behalf. In
step 2, Alice’s machine stores the TGT locally, avoiding
the need to repeatedly ask Alice for her secret. In step 3,
Alice’s machine presents the TGT to the KDC and ob-
tains a Service Ticket (ST). In step 4, Alice’s machine
presents the ST to Bob’s machine as part of a request
on Alice’s behalf (e.g., writing a file on Bob’s machine
that is marked “writable by Alice”). The ST proves to
Bob’s machine that Alice’s machine has the authority to
perform actions on Alice’s behalf. Cryptographic tech-
niques in Kerberos prevent Bob’s machine from later us-
ing this same ST to convince other machines that it has
the authority to perform actions on Alice’s behalf.

Figure 4 depicts an identity snowball attack. In step
1, an attacker compromises Alice’s machine. If Alice is
already logged in, or if Alice then arrives at work and
logs in, the TGT is stored somewhere on the computer,
and the attacker can use it to generate STs at will.

In step 2, the attacker can attempt to compromise ev-
ery machine where Alice has administrative privileges.
A great variety of techniques are possible here because,
by design, Alice has privileges that allow her to arbitrar-
ily modify these machines. We enumerate a few such
techniques here, including examples from both Windows
and Unix. To find machines where Alice might have ad-

Figure 3: How machines authenticate on a user’s behalf
in Kerberos.

Figure 4: An identity snowball attack.

ministrative privileges, the attacker might query some or-
ganizational directory service, scan all of Alice’s email
for machine names (e.g., “\\*”), scan the “/etc/hosts”
file, snoop local broadcast traffic, or simply monitor out-
going and incoming TCP connections. To perform ac-
tions with Alice’s ST, the attacker might read Alice’s
TGT out of memory, start a new process under Alice’s
login session, or possibly modify the parameters in some
system call before it is executed by the OS on Alice’s
behalf. The actions performed with Alice’s ST could in-
clude trying to write some security critical file or registry
key on the remote machine, installing a new application,
or configuring a system service insecurely so that it be-
comes a backdoor. We have verified a subset of these
approaches ourselves in a controlled environment. Simi-
lar approaches have also been described previously [23].
Although individual circumstances may sometimes pre-
vent compromise (e.g., because of network segmentation
or firewall policies), the many available techniques sug-
gest that in most cases, it is not safe to assume that an
attacker will have difficulty exploiting these additional
machines.

In step 3, the attacker repeats the process. The attacker
scans newly compromised machines for TGTs, perhaps
lying in wait for additional users to log in. The attacker
then uses these new identities to compromise still more
machines.
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Figure 5: An attack graph capturing the logins, security
group memberships, and administrative privileges that
allow the attacker to launch an identity snowball attack.

3 Attack Graphs

An attack graph provides a convenient representation for
how the security configuration in a network of machines
may be vulnerable to attack. Attack graphs are a gen-
eral formalism for capturing a wide variety of threats,
but for our purposes it will suffice for the nodes to be
machines, accounts, and security groups. Figure 5 de-
picts such an example attack graph. A directed edge
in the graph means that the from-node can control (or
“speak for” [29]) the to-node. For example, machine
ALICE-DESKTOP can perform any action available to
the account ALICE because ALICE logged in to ALICE-
DESKTOP. The other edges represent other types of con-
trol relationships: ALICE can perform any action avail-
able to HEATRAY-PROJECT because she is a mem-
ber of that security group; ALICE can perform any ac-
tion available to ALICE-LAPTOP because she has ad-
ministrative privileges on that machine; and similarly
HEATRAY-PROJECT is a security group that has admin-
istrative privileges on HEATRAY-TEST-PC. The attack
graphs analyzed by Heat-ray consist of exactly these four
types of edges. As detailed in Sections 3.2 and 4, the lo-
gin edges are collected over a brief (e.g., week-long) ob-
servation window, while the other edges are largely static
across this same observation window.

Now consider an attacker who compromises the ma-
chine ALICE-DESKTOP. Looking at the attack graph,
the identity snowball attack described in Section 2
corresponds to first traversing the edge from ALICE-
DESKTOP to ALICE, and then traversing additional
edges to arrive at ALICE-LAPTOP and HEATRAY-
TEST-PC. This illustrates how the attack graph captures
the identity snowball threat: if there is a path from a first
node to a second node in the attack graph, then an at-
tacker who compromises the first node can also compro-
mise the second node.

Figure 5 also illustrates how changes to security con-
figuration can prevent such attacks. Suppose that the
account ALICE is removed from the security group
HEATRAY-PROJECT, preventing an attacker who com-
promises ALICE-DESKTOP from continuing on to
compromise HEATRAY-TEST-PC. In the attack graph,
this change corresponds to removing the edge be-

tween ALICE and HEATRAY-PROJECT, and the at-
tack graph representation then appropriately reflects
that HEATRAY-TEST-PC is no longer reachable from
ALICE-DESKTOP.

This correspondence between changes in security con-
figuration and removing edges in the attack graph is what
allows Heat-ray to apply combinatorial optimization and
machine learning techniques. For example, the sparsest
cut algorithm (Section 5) is applied to the attack graph
to calculate how removing certain edges will decrease
the number of nodes that can be reached from various
starting nodes. Mapping this back to the security config-
uration modeled by the attack graph, each removed edge
corresponds to some configuration change. Furthermore,
decreasing the number of nodes reachable from various
starting nodes means that an attacker who compromises
a machine corresponding to an initial starting node will
be unable to compromise many other machines. Simi-
larly, machine learning (Section 6) is used to estimate the
costs of removing various edges in the attack graph. Be-
cause edge removal corresponds to configuration change,
the learning technique is actually estimating the imple-
mentability of the configuration changes.

3.1 Implementable Configuration Changes

Heat-ray is designed to uncover high impact security
configuration changes that are easily implementable. As
mentioned in the Introduction, we consider a change im-
plementable if it does not interfere with users accom-
plishing their work. In the attack graph, these imple-
mentable changes correspond to edges that can be re-
moved. By way of contrast, the edges in Figure 5 may all
be necessary for Alice to perform her job. For example,
ALICE may need administrative privileges on ALICE-
LAPTOP in order to install or upgrade software. We
worked with IT administrators in the studied organiza-
tion and identitied several important classes of edges that
can be easily removed:

• Removing out-of-date privileges: Over time, indi-
viduals in an organization change roles, e.g., mov-
ing from being the administrator for one set of
servers to being the administrator for another set of
servers. Sometimes, the privileges on the old set of
servers are never revoked. The easy configuration
change is to remove the out-of-date privileges.
• Removing overly-large group privilege assign-

ments: Sometimes a machine may be considered
one that “everyone needs to access.” For exam-
ple, consider a machine that will be used to present
some new technology, where the presenter has not
yet been decided. An IT administrator might proac-
tively grant privileges on this machine to an ex-
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isting large security group, and then forget to re-
move these privileges later. The easy configuration
change is to remove the privileges if the presenta-
tion is over, or to create a smaller and more targeted
security group if the presentation is still pending.
• Preventing unnecessary logins with powerful ac-

counts: If an account has administrative privileges
on a large number of machines, it may be impor-
tant for it to retain all these privileges in case they
are needed to deal with unforeseen circumstances.
However, this powerful account should be careful
about where it logs in, lest its powerful TGT be ex-
posed on an insecure machine. Sometimes TGTs
are exposed as part of accomplishing some task that
would have been trivial to perform in a more secure
manner. For example, an administrator who logs
in to a machine to update a local security group on
the machine could easily have modified the secu-
rity configuration using only an ST (which would
have been secure) using standard remote manage-
ment tools. The easy configuration change is for
the powerful account’s owner to pick a small num-
ber of secure machines that he or she typically uses,
and to modify the configuration at the KDC to for-
bid powerful account logins at other servers (mech-
anisms to securely enforce such a policy already ex-
ist [55]). For many administrators with powerful ac-
counts, taking care with where they log in is already
a known responsibility.
• Securing automated script execution: The task

mentioned in the previous example, modifying local
security group membership, is easy to perform us-
ing an ST. Many more elaborate tasks are encoded
into scripts that need to run on a large number of
target machines. These scripted tasks often are de-
signed to execute as part of a login with a TGT on
the target machine, and they also require adminis-
trative privileges (e.g., the scripted tasks upgrade
software or audit security critical files). The most
straightforward way of automating these tasks is to
log in to every machine with a powerful account that
has administrative privileges on all of them. How-
ever, this is highly insecure: if a single one of these
machines is compromised, all the machines can be
compromised using the powerful account.

Fortunately, there is a secure approach to automat-
ing such tasks. The powerful account can cre-
ate a temporary local account on each of the ma-
chines, grant each local account administrative priv-
ileges on its respective machine, log in to the re-
mote machine using the temporary account, exe-
cute the scripted task, and then delete the tempo-
rary account, all with only an ST from the powerful
account. Though slightly more involved than the

other configuration changes, this successfully runs
the tasks without ever exposing the powerful ac-
count’s TGT on any of the other machines. We have
verified that changing an existing script in this man-
ner required less than 20 lines of new code, but the
exact amount of work may be script-dependent.

Based on these insights, we formulated a simple set
of guidelines for evaluating changes proposed by Heat-
ray; we expect that similar guidelines will work for other
organizations. Initially, we remove overly-large group
privilege assignments, adding back in privileges only for
accounts that actually logged in to the machines. We
also secure (using the mechanism just described) all au-
tomated scripts that log in to many machines. After these
steps, we judge accounts that still have administrative
rights on many systems to be “powerful accounts” where
it is reasonable to ask them to log in only to a single se-
cure machine. Because it is not always clear from the
attack graph whether an account login is due to an auto-
mated script, we use the heuristic that any account that
logs in to more than 10 machines is doing so as part of
a script. During our work, we also encountered a small
number of cases where we could not apply these guide-
lines, e.g., a particular powerful account that had to log
on to tens of machines.

These guidelines underscore the importance of com-
binatorial optimization and machine learning. The sheer
amount of configuration in a large organization makes
it difficult to sift through manually. Furthermore, “best
practices” for security configuration are often either im-
precise or unnecessarily burdensome. For example, lim-
iting all accounts to log on to a few machines leaves
open the interpretation of “few,” while limiting all ac-
counts to a single machine is highly restrictive and not
actually necessary – we show in Section 8 that restrict-
ing logins for a relatively small number of powerful ac-
counts can significantly reduce the number of machines
that can be used to launch a large-scale identity snowball
attack. Also, even trivial changes requires some invest-
ment of time, if for no other reason than to check with
all the relevant parties before applying standard manage-
ment tools [54]. Combinatorial optimization can auto-
matically select a small number of configuration changes
that offer a large improvement, minimizing the required
investment of time.

Similarly, it is easy to understand from the context
given in these examples that the changes are imple-
mentable. However, this context may be hard to rep-
resent explicitly without adding a significant burden to
the IT administrator, e.g., keeping annotations describ-
ing every account, security group, and scripted task. Ma-
chine learning allows estimating change implementabil-
ity without detailed annotations, thereby avoiding this
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administrative burden.

3.2 Modeling Issues

Modeling security configuration using attack graphs nec-
essarily involves modeling approximations. For exam-
ple, any particular login occurs at some point in time,
and the TGT will be destroyed after the user logs out. If
the edge is represented as only existing during this time
window, it can be used to estimate the rate at which an
identity snowball attack can proceed. However, estimat-
ing the future benefit of preventing this login requires
some prediction of whether the login will happen again.

Heat-ray treats this issue conservatively by discarding
time of login in the attack graph. Intuitively, this is a
worst-case assumption that people will repeatedly log in
to the same machines as part of their work, and so any
machine compromised after a user has logged out will
eventually see that same user’s TGT in the future. By re-
ducing the threat of identity snowball attacks under this
worst-case assumption, Heat-ray guarantees that it has
also improved the actual case, where not all logins re-
peat. A more elaborate predictive model of future login
behavior might yield a greater reduction in the identity
snowball threat for any given amount of effort chang-
ing security configuration. However, in Section 8 we
show that identity snowball attacks would be a signifi-
cant threat even under a best-case assumption that logins
never repeat outside the time window we evaluated.

In practice, some potential configuration changes in-
clude both edge addition and removal. For example, a de-
sirable configuration change might modify a machine to
remove the administrative privileges of a security group
containing many accounts, but then add back in admin-
istrative privileges for a small number of the accounts.
To deal with this, Heat-ray focuses on selecting edges to
propose for removal, but then allows the IT administra-
tor to add back in edges as part of approving the proposed
edge removals.

4 Collecting Data

Heat-ray is a system for analysis, and it relies on an
external database to provide the needed data about se-
curity configuration. In our implementation, this exter-
nal database provides the complete security configura-
tion of the organization. This may contain attack paths
that an attacker would not discover using the techniques
described in Section 2, and so the database should itself
be secured in a manner similar to the data collection sys-
tems that provide the data about security configuration.
However, the IT administrator cannot rely on attack paths
being hard to discover (this would be “security through

Figure 6: How Heat-ray integrates with a data collection
system.

obscurity”), and so must defend all the potential attack
paths.

The external database is itself supplied by three data
collection systems, as shown in Figure 6. These systems
were developed in-house by the studied organization, but
we note that commercial security products also help col-
lect this information [18].

The first source of data is “Audit Collection Services.”
Audit Collection Services can collect event information
from the Kerberos KDC implemented by the Active Di-
rectory application. The event information includes all
grants of TGTs and STs over a given period of time. The
TGT and ST events include the IP adress of the machine,
the name of the account for which the ticket was granted,
and the time at which the grant was made.

The second source of data is the “System Auditing
Service.” This is a tool that scans all machines within
the organization and reports back the accounts and se-
curity groups that have administrative privileges on each
machine. These logs also contain the MAC address, ma-
chine name, and the time at which the scan was done.

The third source of data is the “Network Correlation
Service.” This service collects Address Resolution Pro-
tocol (ARP) logs [17]. The ARP logs allow the IP ad-
dresses in the Audit Collection Services logs to be corre-
lated with the MAC addresses and machine names in the
System Auditing Service logs.

The components in the current data collection system
collectively represent multiple man-years of software en-
gineering effort, and they have been through significant
validation to assure the accuracy of the data being col-
lected. However, there are several places where inac-
curate inferences might arise in the current data collec-
tion architecture: the correlation from MAC address to
IP address may be incorrect if the common network time
service being used is failing to synchronize; the adminis-
trative privilege assignments on each machine are polled
periodically, and so may not always reflect recent addi-
tions or deletions; the enumeration of accounts in a se-
curity group is done when the data is inserted into the
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database, and it too may change over time; individual
machines may have multiple MAC addresses, possibly
causing them to be described ambiguously by the data;
and finally, if a computer is compromised, it may spoof
its MAC address, or it may provide incorrect informa-
tion about which accounts have administrative privileges
on the compromised machine.

Some of these problems are artifacts of the data col-
lection system that Heat-ray currently leverages. For ex-
ample, correlating IP and MAC addresses using the Net-
work Correlation Service could be entirely avoided if the
Audit Collection Service additionally recorded MAC ad-
dresses. The problem of missing changes to various se-
curity groups could be solved by recording changes at
Active Directory, and then feeding these changes into
the database. Fortunately, these issues have not been a
problem for the current system, and indeed, this is not
surprising: network time synchronization within a single
organization is generally quite accurate; security group
membership changes rarely; and client machines tend to
be connected to the network using only one MAC ad-
dress at a time (e.g., most laptops we observed were ei-
ther using a wired or a wireless interface, not both at the
same time).

The problem of a compromised machine misrepresent-
ing its security configuration is more fundamental, but
this problem does not prevent Heat-ray from accomplish-
ing its goal. Heat-ray is designed to prevent uncompro-
mised machines from becoming compromised. Regard-
less of how a compromised machine reports its own con-
figuration, Heat-ray will still try to remove edges that
point from the compromised machine to accounts (i.e.,
the edges due to logins). These logins are reported di-
rectly by the KDC through the Audit Collection Service
when it grants TGTs, and thus this data is not exposed to
tampering by the compromised machine.

The work we have done with IT administrators has
also served as an end-to-end validation for part of the
input data. For the edges that the IT administrators re-
moved, we have independent confirmation that the edge
did exist, and hence that this part of the data was correct.

5 Applying Sparsest Cut

Heat-ray is designed to scale to the massive attack graphs
that are needed to model real-world large organizations.
Such graphs can have hundreds of thousands of nodes
and millions of edges. To find the high impact edge re-
movals in these graphs, Heat-ray models the problem as
an instance of sparsest cut, a well-studied problem in
combinatorial optimization. Sparsest cut finds the small-
est set of edges in the attack graph whose removal splits
the graph into two large components. This is visually de-
picted in Figure 7. On each iteration, Heat-ray strives to

Figure 7: A sparse cut is a small set of edges whose re-
moval separates the graph into two large components.

Figure 8: Heat-ray algorithmic workflow.

identify such edge sets to remove, thereby splitting the
graph into many small components.

The overall role of the sparsest cut algorithm in Heat-
ray is shown in Figure 8. The sparsest cut algorithm ap-
proximates every edges’ distance and benefit, terms we
define later in this section. These calculations are used
to rank and group the edges for presentation to an IT ad-
ministrator. Based on the IT administrator’s feedback,
the edge weights in the attack graph are updated using a
machine learning algorithm (SVM) before the next iter-
ation of sparsest cut.

The integer programming version of sparsest cut is
NP-hard, but a large body of work in the theoretical com-
puter science community has looked at how to efficiently
compute approximate solutions to the linear relaxation
of this problem. We discuss this related work in more
detail in Section 9. Heat-ray only solves the linear relax-
ation, and it takes an approach similar to Young’s algo-
rithm [59]. The remainder of this section describes how
Heat-ray exploits its particular problem domain to devi-
ate from Young’s algorithm, and for the sake of brevity
it assumes the reader is already familiar with Young’s al-
gorithm and some other work on sparsest cut. The paper
following this section can be read without the details pre-
sented in the remainder of this section.

To define the directed sparsest cut problem precisely,
we use the notation of Hajiaghayi and Räcke [33] as
shown in Figure 9. The inputs are the vertex set V ,
the edge set E, the edge costs c(e), and the demand set
dem(i). In the Heat-ray context, there is a unit demand
between every pair of machines (si, ti). Puv refers to the
set of paths connecting u to v. The output of the opti-
mization is a set of edge distances d(e). In the NP-hard
integer programming version, an edge distance of 1 in-
dicates that the edge should be cut, and an edge distance
of 0 indicates that the edge should not be cut. In the lin-
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ear relaxation, these edge distances d(e) are allowed to
take on fractional values between 0 and 1, and the x(u, v)
are forced by the optimization and equation 3 to take on
the shortest path distance between u and v. Equation 4
constrains all distances to be positive. Equation 2 rep-
resents a normalization for the relative sizes of the sep-
arated portions of the graph – a feasible solution either
separates many pairs (si, ti) by a small distance x(si, ti)
or it separates a few pairs by a large distance. The edge
costs are all initially set to 1, and they are updated in sub-
sequent iterations as described in Section 6. Young’s al-
gorithm solves this linear program by iteratively finding
shortest paths between vertices and increasing the edge
distances d(e) on these paths by an amount proportional
to the edge costs.

Heat-ray has to deviate from Young’s algorithm be-
cause it needs to be faster: Heat-ray is designed for in-
teractive use, and thus it needs to complete within min-
utes even on a graph with millions of edges. Fortunately,
Heat-ray has significantly more flexibility in its goal than
Young’s algorithm: Heat-ray does not need to estimate
the actual optimal value of the objective function, but can
settle for estimating the relative importance of edges to
the objective function. For example, edges that cause
many accounts to be able to compromise many machines
are very bad. As long as these edges are identified as im-
portant to cut, the exact value of the objective function
is not important, allowing Heat-ray to compute a looser
approximation than Young’s algorithm.

Heat-ray exploits this additional flexibility in two
ways, which we initially describe at a high level. First,
Heat-ray applies stochastic gradient descent rather than
classic gradient descent. This allows the use of sampling,
dramatically reducing the time to compute the gradient at
some cost in accuracy. Second, Heat-ray uses a change of
variables to eliminate the inequality constraints present
in Young’s formulation, which in turn eliminates con-
straints on the step size in gradient descent. This makes
the problem non-linear, which makes the convergence
guarantees more complicated. However, Heat-ray’s re-
duced need for accuracy means it does not need to run
to convergence, and so avoiding expensive calculations
around step size is worthwhile.

We perform the aforementioned change of variables
in two steps. First, we make the problem non-linear by
moving the constraint of equation 2 into the objective
function. The revised formulation is shown in Figure 10.
Note that this re-formulation has not changed the under-
lying model: an optimal solution to the re-formulated
problem can be trivially converted to an optimal solution
to the original problem through scaling, and vice versa.
Second, we substitute in expressions using new variables
u(e) for the original variables d(e). The expressions are
given in equation 5. These new variables u(e) are left un-

minimize Σe∈Ec(e)d(e) (1)
subject to Σix(si, ti) · dem(i) = 1 (2)

∀(u, v) ∈ V × V,∀puv ∈ Puv :
Σe∈puv

d(e) ≥ x(u, v) (3)
d(e) ≥ 0, x(u, v) ≥ 0 (4)

Figure 9: Hajiaghayi-Räcke sparsest cut formulation.

minimize ln β
γ (6)

β = Σe∈Ec(e)d(e) (7)
γ = Σix(si, ti) · dem(i) (8)

subject to ∀(u, v) ∈ V × V,∀puv ∈ Puv :
Σe∈puv

d(e) ≥ x(u, v) (9)
d(e) ≥ 0, x(u, v) ≥ 0 (10)

Figure 10: Sparsest cut formulation used by Heat-ray.

constrained, but because of the expressions used in the
substitution, the non-negativity constraints on d(e) can
be dropped.

d(e) =
{
u(e) if u(e) > 1
eu(e)−1 if u(e) ≤ 1

(5)

Heat-ray deals with the constraints of equations 3
and 9 in the same way as Young’s algorithm. Rather than
represent the x(u, v) directly, Heat-ray simply computes
shortest paths on the variables d(e) (now expressions in-
volving u(e) because of our change of variables).

As in Young’s algorithm, Heat-ray begins with an ini-
tial uniform assignment of edge distances, and then it-
eratively refines this assignment using steps of gradient
descent. To estimate the gradient using sampling, Heat-
ray chooses a small number of nodes, and from each
node it conducts a bounded-horizon search both forwards
and backwards using Dijkstra’s algorithm [14]. Each tree
constructed by Dijkstra’s algorithm is interpreted as a set
of shortest paths for the purpose of estimating the gra-
dient. In particular, the shortest path yields the distance
x(si, ti) that contributes to the numerator of the objective
function. The number of shortest paths that each edge e
appears on yields the contribution to the denominator of
the objective function, and can be interpreted as the ben-
efit b(e) assigned by the linear program to cutting this
edge:

b(e) = # shortest paths crossing e.

To avoid degeneracies when there are multiple shortest
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paths with the same distance between two given nodes,
we perturb each edge distance by a small random mul-
tiplicative factor (between 0.95 and 1.05) before each
shortest path computation.

The algorithm used by Heat-ray has a number of
parameters, and in future work we hope to explore
the tradeoffs among these parameters more thoroughly.
However, we found that the following parameter values
suffice for our purposes: a gradient descent step size of
1.0, a bound of 1 on the number of iterations, a bound of
1,000 on the size of each shortest-path tree, and a bound
of 1,000 on the number of shortest-path trees. With these
parameters, Heat-ray’s algorithm for sparsest cut com-
pletes in just under a minute on a dual-processor AMD
Opteron server with 10 GB of RAM. In contrast, running
just Heat-ray’s implementation of shortest path in the
configuration required by Young’s algorithm (i.e., with-
out sampling 1,000 starting nodes and 1,000 shortest path
trees) would require over 4 orders of magnitude more
running time, simply because many more nodes have to
be visited in the graph.

6 Learning Edge Costs

As mentioned in Section 3, the implementability of re-
moving different edges in the attack graph can vary dra-
matically. The sparsest cut algorithm can incorporate
such differences as different edge costs, but the number
of edges in the graph makes it infeasible to set all their
costs manually.

After considering heuristics for setting edge costs, we
instead decided to use a machine learning algorithm de-
rived from Support Vector Machines (SVM) to learn
the costs based on feedback from the IT administrator
about their willingness to make a security configura-
tion change. After each application of sparsest cut, we
present the administrator with a list of proposed edge
cuts. The IT administrator can label each edge as “should
be cut,” “should be kept,” or “no opinion.” These deci-
sions give us implicit feedback on the relative magnitude
of the cost: If an edge is marked as worth keeping, then
the cost must be larger than the benefit of cutting it, while
if an edge is marked as worth cutting, its cost must be
less than the benefit. The machine learning algorithm
generalizes from the feedback on individual edges to re-
estimate the costs of all edges on every iteration. In this
way, Heat-ray learns over time to propose primarily con-
figuration changes that the administrator is interested in
implementing. This learning approach has the advantage
that the recommendations are tailored to each organiza-
tion, and no a priori assumptions are required about any
given usage pattern being correlated with edge cost (e.g.,
whether or not a mostly unused administrative privilege
must be kept around for unusual events). As in Section 5,

the paper following this section can be read without the
details presented in the remainder of this section.

Heat-ray defines a set of features on each edge from
which it tries to learn the best approximation to the true
edge costs. The set of features are 12 basic graph prop-
erties of each edge: the number of accounts, security
groups and machines pointing in to the start node of
the edge (3 features), the number of accounts, security
groups and machines that the start node points to (3 more
features), and the corresponding numbers for the end
node of the edge (6 more features). Let fe denote the
feature vector for edge e. The edge cost c(e) is modeled
as a linear function of these features, i.e.,

c(e) = wT fe + w0,

where w0 and the vector w are the parameters to be
learned.

Heat-ray uses the “cut/kept” edge labels to generate
constraints that the cost function should satisfy with a
certain margin. For every edge that is marked as “should
be cut,” Heat-ray creates a constraint that this edge’s cost
is less than the benefit assigned by the sparsest cut lin-
ear program for cutting this edge. For every edge that is
marked as “should be kept,” Heat-ray creates a constraint
that this edge’s cost is greater than the benefit assigned
by the linear program to cutting this edge. Thus, the set
of labeled edges translate into a set of linear constraints
on the cost:

b(e)− c(e) ≤ −1 if e is to be kept, (11)
b(e)− c(e) ≥ 1 if e is to be cut. (12)

Heat-ray uses the linear SVM framework [11] to learn
the parameters of the cost function. The constraints in
Eqns. (11) and (12) can be translated into a classification
problem as follows. Let ye encode the label on edge e:
ye = 1 if the edge is to be cut, and ye = −1 if it is to
be kept. The problem of learning the cost function boils
down to learning a separating hyperplane (specified by
the normal vector w = [w w0]), such that the cost of
each labeled edge falls on the correct side of the benefit
b(e). SVM approaches this problem via the large-margin
principle, with the aim of finding not only a separating
hyperplane but one that provides the largest margin (sep-
aration) between the positive and the negative classes. In
cases where it is impossible to find a linear hyperplane
to separate the data, the soft-margin version of SVM al-
lows for some slack. This translates into the following
optimization problem:

min
w

∑
e

max(0, 1− ye(b(e)− c(e))) + λwTw, (13)

where the value of λ is chosen to minimize the 5-fold
cross-validation error. The function max(0, 1−ye(b(e)−
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c(e))) is called the hinge loss; it is zero if the cost esti-
mate of edge e falls on the correct side of the benefit,
otherwise it is equal to the error. However, the hinge loss
function can be difficult to optimize. Instead, Heat-ray
applies the scaled logistic loss, which is differentiable
everywhere and closely approximates the hinge loss [56].

At each iteration, Heat-ray obtains more labeled edges
from the IT administrator and incorporates them into the
training set for SVM. The features and cost-benefit con-
straints for kept edges are updated in subsequent itera-
tions, while those for cut edges are frozen at the values
in the iteration they are cut since they henceforth disap-
pear from the graph. The optimal value of w is found via
gradient descent, and it is then used to re-estimate the
cost of every edge before the next iteration of the linear
program of Section 5.

7 Proposing Edge Groups To Cut

Early in the development of Heat-ray, we discovered that
IT administrators commonly want to apply a single ac-
tion to an entire group of edges with a common start or
end node. For example, an IT administrator will some-
times want to remove a group’s administrative permis-
sions on all machines – this corresponds to removing ev-
ery edge where this group is the start node. In another
example, an IT administrator will sometimes want to re-
quire a given powerful account to only log in to one ma-
chine – this corresponds to removing all but one edge
where a machine is the start node and the particular pow-
erful account is the end node.

To make it easier to act on edge groups, Heat-ray
presents administrators with two kinds of groupings: all
outgoing edges of some start node or all incoming edges
of some end node. Heat-ray also proposes specific edges.
Edges and edge groups are then ranked by a function of
their cost and benefit. In the case of edge groups, the
cost and benefit are defined to be the sum of the costs and
benefits of all the edges in the group. Intuitively, edges
and edge groups should be ranked highly if they have
very high benefit, or if they have modest benefit but low
cost. The ranking function max{b(e),−c(e)b(e)} cap-
tures this intuition, and we found that it worked well in
our experiments (indeed, it performed better than either
the benefit b(e) or the distance d(e) alone).

Finally, we applied a filter to the edge groups based
on our experience with IT administrators: IT administra-
tors never want to remove every login from a particular
machine without looking at the identity of the accounts
logging in. Therefore, we do not propose cutting edge
groups where the specified node is a machine, though we
do allow these same edges to be cut as part of other edge
groups or as individual edges.

The IT administrator should only accept or reject

some modest number of configuration changes in each
round. After making these decisions, the IT adminis-
trator should re-run the algorithm (a matter of a few
minutes), so that the algorithm can incorporate the feed-
back from this round and produce new recommendations
that better reflect the IT administrator’s notion of imple-
mentability. Through a small amount of experimenta-
tion, we found that presenting 900 items at a time worked
well: Heat-ray recommends many worthwhile configura-
tion changes, yet the IT administrator can scroll through
the entire set with ease. The 900 items consist of 300 in-
coming edge groups, 300 outgoing edge groups, and 300
individual edges.

Each edge group may correspond to a very large num-
ber of individual edges, and the learning algorithm ben-
efits little from large numbers of similar examples. Be-
cause of this, we marked only a subset of the edge groups
that were not cut as explicitly “should be kept” – most
were marked as “no opinion” – and we sampled the indi-
vidual edges in each group before using them as input to
the learning algorithm. We labeled on average 10 groups
of outgoing and incoming edges as “should be kept” on
each iteration, and we sampled 3 individual edges for
learning from all labeled edge groups. We found this to
be sufficient for the learning algorithm.

8 Evaluation

We begin by presenting statistics about the data set that
we used to evaluate Heat-ray, and quantifying the sever-
ity of the threat from identity snowball attacks in the
status quo. Then in Section 8.1, we show that Heat-
ray quickly and effectively identifies a set of high-impact
and implementable configuration changes, and that these
changes significantly reduce the threat of identity snow-
ball attacks. In Section 8.2, we examine these configu-
ration changes. In Section 8.3, we compare Heat-ray’s
algorithmic approach to potential heuristics for propos-
ing configuration changes.

We evaluated Heat-ray on a data set from the database
described in Section 4. This data set covers a period of
8.5 days, from 2:00:27 AM on Monday March 5th, 2007
to 1:28:40 PM on Tuesday March 13th, 2007. Table 1
shows the number of each type of entity that comprises
a node or edge in the attack graph (as explained in Sec-
tion 3). The set of unique logins is derived by filtering
the total set of logins to disregard the time at which the
login occured, only retaining logins that differ in either
the machine or account involved.

Figure 11 depicts the number of each node after group-
ing by the number of other nodes it points to in the attack
graph. The lesson of this figure is that all four different
kinds of edges in the attack graph have a similar distri-
bution. Figure 11(a) shows that most accounts log in to
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Machines 197,631
Accounts 91,563
Security Groups 62,725
Total Nodes 351,919
Unique Logins 130,796
AccountIsAdminOnMachine 309,182
SecurityGroupIsAdminOnMachine 380,320
AccountIsMemberOfSecurityGroup 3,695,878
Total Edges 4,516,176

Table 1: Number of each entity in Heat-ray evaluation
data set.

Figure 11: Relative quantity of each node by number of
other nodes it points to.

a very small number of machines (approximately 30,000
log in to only one machine), but a small number of ac-
counts log in to a very large number of machines. Fig-
ure 11(b) shows that most accounts have administrative
privileges on a small number of machines, but a small
number of accounts have administrative privileges on a
large number of machines. Figure 11(c) shows a similar
phenomenon for the administrative privileges of security
groups. Figure 11(d) shows that most security groups are
small, but a few security groups are very large.

This distribution suggests that a small number of ac-
counts, security groups or machines may play a large role
in the exposure of an organization to identity snowball
attacks. For example, granting administrative privileges
on a machine to a large group poses a far greater risk
than granting administrative privileges to a small group.
In such cases, Heat-ray may have the opportunity to pro-
pose a small number of configuration changes that pro-
duce a large reduction in the exposure of the organiza-
tion to identity snowball attacks. The results we present
in Section 8.2 show that this is indeed the case.

We now justify the statement in Section 3.2 that iden-
tity snowball attacks pose an acute threat even under the
best-case assumption that no login we observe in our
measurement window ever reoccurs. We randomly sam-

Figure 12: Compromises from a random starting node as
a function of time under the assumption that TGTs are
quickly destroyed after login.

pled 100 machines from the set of machines where at
least one user logs in over the course of our observation
period. From each machine, we calculated the number
of machines reached using an identity snowball attack as
a function of time. We assumed that TGTs are destroyed
immediately after login, minimizing the attacker’s win-
dow of opportunity.

Figure 12 shows the results of this experiment. The
curves show the 25th percentile, median and 75th per-
centile for the number of machines reached via an iden-
tity snowball attack under this defender-favorable as-
sumption. In the median curve, the attacker can com-
promise over 700 machines within 1 day, and over 1,000
machines within 4 days. The 75th and 25th percentile
curves show similarly rapid rates of compromise. For
reasons of confidentiality, we cap the number of reach-
able machines we report at 1,000. These results demon-
strate the threat of identity snowball attacks even under
best-case assumptions about TGT lifetime for the de-
fender.

8.1 Heat-ray Effectiveness
Heat-ray is designed to be run periodically on an orga-
nizations’s security configuration (e.g., to review config-
uration changes made in the past week). However, our
evaluation focuses on the initial use of Heat-ray to reduce
the threat of identity snowball attacks in an organization
that has not previously been running Heat-ray.

Figure 13 shows the effectiveness of running Heat-ray
for ten iterations. To produce each curve, we randomly
sampled 1,000 machines from the set of machines where
at least one user logs in over the course of our observa-
tion period, and we used these as points of initial com-
promise. We resampled the set of initial compromises at
each iteration. We then calculated the number of ma-
chines that could be reached by launching an identity
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snowball attack from each different initial compromise.
For confidentiality reasons, we do not display the exact
number of machines that could be compromised when
that number is in excess of 1,000.

The curve labelled “Original” shows the graph before
running Heat-ray. For 981 out of the 1,000 sampled ma-
chines, it is possible to launch an identity snowball attack
that results in the compromise of over 1,000 machines.
Applying the configuration changes identified in the first
iteration of Heat-ray reduces this to only 453 out of the
1,000 sampled machines being able to launch an iden-
tity snowball attack that reaches over 1,000 other ma-
chines. The second iteration shows a similar sharp drop.
Progress slows in the subsequent iterations, but by the
tenth iteration, only 41 out of the 1,000 machines (4.1%)
can be used to launch an identity snowball attack that
compromises over 1,000 machines. The reduction from
981 to 41 is a decrease of 96%.

After 10 iterations of Heat-ray, there still remains a
small set of machines that can be used to launch a large-
scale identity snowball attack. Though we would like to
drive the number of such machines to zero, it is not clear
whether this is feasible: accounts with important admin-
istrative responsibilities in an organization must continue
to log in somewhere.

The number of initial compromises that can lead to a
large number of other compromises is only one of many
reasonable metrics. The right metric may vary for each
organization: an organization may want to focus on the
number of initial compromises that can threaten even a
small number of other machines (e.g., 50), or it may want
to minimize some weighted sum of the number of ma-
chines threatened by each initial compromise. Figure 13
shows that Heat-ray reduces the number of machines
reachable from most initial compromises, and hence im-
proves a wide range of reasonable metrics, including the
examples given above.

We now turn to the effort required from the IT ad-
ministrator over these ten iterations. Heat-ray proposed
a total of 9,000 edges and edge groups over these ten
iterations. These proposals are drawn from a total of
308,576 potential edge groups, and millions of potential
edges. Out of the 9,000 proposals, 1,745 were imple-
mentable changes under the criteria given in Section 3.1,
and were thus marked as “should be cut.” This is a man-
ageable number of configuration changes for an organi-
zation with almost a hundred thousand accounts. All ten
iterations together took less than three hours on a dual-
processor AMD Opteron 250 with 10 GB of RAM. Less
than half an hour was spent waiting on Heat-ray to make
proposals; the rest of the time was spent examining the
proposals. This demonstrates that Heat-ray meets its goal
of allowing an IT administrator to identify desirable se-
curity configuration changes in a large organization with

Figure 13: Graph showing threat reduction after running
Heat-ray for ten iterations, measured on 1,000 randomly
selected machines as points of initial compromise. A
point (x,y) indicates that, out of the 1,000 initial compro-
mises, x of them could reach y or fewer machines using
an identity snowball attack. Further to the right is better;
the “Original” curve is on the far left of the graph.

modest effort. The IT administrators can then apply stan-
dard management technologies [54] to implement these
changes.

For comparison purposes, we also ran a version of
Heat-ray with the machine learning aspect disabled, in-
stead consistently setting edges to have unit cost – we
refer to this approach as UnitCost. We evaluated the dif-
ference in threat reduction between the two approaches
using the same methodology as used to produce Fig-
ure 13. We found that UnitCost almost always pro-
duced a smaller reduction in the number of machines
that can be used to launch an identity snowball attack
reaching over 1,000 machines. However, the benefit of
machine learning was very uneven. In the first 2 itera-
tions, the edges that need to be identified are quite ob-
vious to both algorithms, and UnitCost averaged only
2.6% more such launching point machines compared to
Heat-ray. In the next 6 iterations, the edges became less
obvious and UnitCost started to do much worse: Unit-
Cost averaged 21.4% more launching point machines
than Heat-ray, and peaked at 27.1% more such machines.
In the last 2 iterations, the total number of remaining im-
plementable configuration changes decreased. Because
there were so few changes for Heat-ray to find, Unit-
Cost started to catch up with Heat-ray: it averaged only
7% more launching point machines in the final 2 iter-
ations. From this experiment, we conclude that on the
whole, machine learning does indeed allow Heat-ray to
do better at proposing configuration changes that can ac-
tually be implemented, though when the number of im-
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plementable changes becomes sufficiently small, the ad-
vantage of machine learning decreases.

Examining the performance of the SVM cost learner
in more detail, we find that, averaged across the ten iter-
ations of Heat-ray, its misclassification rate on the train-
ing sets is 4.05% and on the testing sets 19.7%. (An
edge is misclassified if the learned cost falls on the wrong
side of the benefit, e.g., if the cost of an edge labeled
as “cut” is greater than the benefit.) The low training
error rate shows that SVM successfully fits the training
data. A significant reason for the high testing misclassifi-
cation rate lies in the sampling procedure for creating the
training and testing data sets. As discussed in Section 7,
the training set contains 3 individual edges selected from
each edge group, regardless of group size. The testing
set contains the rest of the labeled edges. As a result, the
training set encourages the SVM to prioritize explaining
the numerous small edge groups (typically account lo-
gins) over the smaller number of large edge groups (typ-
ically the administrative privileges of security groups).
This manifests itself in the larger testing error.

The patterns learned by SVM change with the feed-
back given at each iteration. It consistently assigns pos-
itive weights to the machine in-degree and the group
out-degree of the starting node, and negative weights
to the group in-degree of the starting node. It some-
times assigns negative weights to the group in-degree
and out-degree of the destination node. The positive
weights drive up the cost of removing the administrative
privileges or group memberships of individual accounts,
whereas the negative weights drive down the cost of re-
moving account logins or the administrative privileges of
groups.

8.2 Examination of Changes

The configuration changes identified by Heat-ray on this
data set all fall in to the categories described in Sec-
tion 3.1. Table 2 shows the number of each type of
configuration change that was approved on each itera-
tion. The dramatic initial reduction in the identity snow-
ball threat in the first Heat-ray iteration results from
changes that fit the “removing overly-large group priv-
ilege assignments” category: some machines were grant-
ing administrative privileges to security groups contain-
ing thousands of accounts. We continued to find group
admin privileges to remove in later iterations, though
their impact was smaller.

Both the first and second iterations identified a large
number of changes from the “securing automated script
execution” category. Heat-ray found that a small number
of scripted tasks were being carried out through logins by
highly privileged accounts; these were marked for con-
version to use the mechanism described in Section 3.1.

Heat-ray
iteration

Removing
large group
admin privs

Securing
scripts

Preventing
unnecessary
logins

1 9 69 0
2 63 55 0
3 36 29 228
4 14 24 223
5 5 15 231
6 5 11 235
7 9 8 224
8 1 5 241
9 17 7 228
10 1 5 219

Table 2: Configuration change statistics by iteration.

As in the category of group administrative privilege re-
movals, later iterations continued to yield changes in this
category but with diminishing importance.

In the third iteration and later, most security configu-
ration changes identified by Heat-ray are from the “pre-
venting unnecessary logins with powerful accounts” cat-
egory. We found that applying simple policies, such as
requiring these powerful administrators to log in only to
their own desktops or laptops, was sufficient to eliminate
large numbers of potential identity snowball attacks.

8.3 Comparison to Heuristics
In this section, we compare Heat-ray’s algorithms to
a set of heuristics for enterprise security policy. Note
that while these heuristics are specific to stopping iden-
tity snowball attacks in enterprise networks, Heat-ray’s
combinatorial optimization and machine learning algo-
rithms are applicable to arbitrary attack graphs where the
graph’s edges have arbitrary feature sets.

For this comparison, we design the heuristics to focus
on the edge classes identified in Section 8.2. To make
the comparison fair, we limit each heuristic to proposing
the same number of edges or edge groups as proposed by
Heat-ray; this allows the heuristic to use an equal amount
of the IT administrator’s time. We evaluate the heuris-
tics using the same methodology as used to produce Fig-
ure 13, where we found that after 10 Heat-ray iterations,
only 41 out of 1,000 randomly selected potential initial
compromises would still allow an identity snowball at-
tack to reach over 1,000 other machines. Previewing our
results, we find that 10 Heat-ray iterations significantly
out-performs the heuristics.

The first heuristic we consider is to identify the secu-
rity groups that contain the largest numbers of accounts.
This heuristic is based on the rule of thumb that large se-
curity groups should not have administrative privileges
on any machine. Because Heat-ray proposed 300 out-
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going edge groups in each of its 10 iterations, we allow
this first heuristic to propose 3,000 security groups that
should no longer have administratrative privileges on any
machine. After running the heuristic, we find that it fails
to identify many edge groups to cut for the simple reason
that very few large security groups (only 2.4% of the top
3,000) have administrative privileges anywhere.

The second heuristic we consider is designed to ad-
dress the shortcoming of the first heuristic. The second
heuristic ranks security groups by the product of their
in- and out-degrees in the attack graph (i.e., the number
of accounts that belong to the group times the number of
machines where the group has administrative privileges).
We find that this does identify 167 security groups where
administrative privileges can be removed, more than the
160 identified by Heat-ray, and we proceed to remove the
privileges of every one of these 167 groups. After doing
this, we find that out of 1,000 potential initial compro-
mises, over 503 would still allow an identity snowball
attack to reach over 1,000 other machines.

The third heuristic we consider focuses on reducing
the number of machines where powerful accounts log in.
Based on our experience with the second heuristic, we
rank accounts by the product of the number of machines
where the account logs in and the number of machines
where the account has administrative privileges. We then
restrict every possible account (including ones not orig-
inally considered by Heat-ray) to only log in to one ma-
chine. We find that out of 1,000 potential initial compro-
mises, over 776 would still allow an identity snowball
attack to reach over 1,000 other machines.

Finally, we evaluate combining the second and third
heuristics, allowing 3,000 proposals to remove the ad-
ministrative privileges of a security group and 3,000 pro-
posals to reduce the number of machines where an ac-
count logs in. Even after running this combined heuris-
tic, over 240 out of 1,000 potential initial compromises
can still compromise over 1,000 other machines. Thus,
all the heuristics we have considered are significantly
inferior to 10 Heat-ray iterations. This also suggests
that considering the larger impact of a configuration
change on the network, as Heat-ray does by using spars-
est cut, provides a significant benefit compared to heuris-
tics based on simply considering local properties of a
configuration change.

9 Related Work

Much research has focused on preventing anonymous
machine compromise (i.e., a compromise launched with-
out a Kerberos ST or any other form of authentica-
tion) [5, 13, 19, 12, 36]. Other work has targeted iden-
tifying compromises and their subsequent effects once
they have occurred [24, 26]. Most intrusion preven-

tion and detection systems (IPS/IDS) fall into these cat-
egories. Heat-ray complements this work by containing
the damage of any individual compromise that still does
occur without relying on being able to detect the com-
promise.

Singer [49] describes an incident in 2004 where a
semi-automated attack with an identity snowball compo-
nent successfully exploited machines across a number of
sites. Schechter et al [43] analyze the feasibility of fully
automating this attack and several methods for decreas-
ing the propagation rate by obscuring the addresses of
target hosts. Heat-ray differs from the work of Schechter
et al in its focus on limiting the propagation of a com-
promise by proposing implementable changes to security
configuration, not by attempting to obscure the set of tar-
get hosts.

In the rest of this section, we compare Heat-ray with
other closely related prior work grouped by the major
techniques in Heat-ray: attack graphs (Section 9.1), com-
binatorial optimization (Section 9.2) and machine learn-
ing (Section 9.3). In Section 9.4, we discuss work on al-
ternative approaches to authentication and authorization.

9.1 Attack Graphs and Analysis

Attack graphs are a very general technique for modelling
security in a network of machines. They have been used
to model both local and remote elevation of privilege
attacks due to software vulnerabilities, insecure Access
Control Lists (ACLs), insecure network firewall rules
and other issues [2, 52, 48, 38, 35]. Prior work has looked
at automating the construction of attack graphs, sophis-
ticated modeling of network features, and graph analy-
sis using both algorithmic and visualization approaches.
Heat-ray models only the features necessary for iden-
tity snowball attacks, and its algorithmic approach differs
from prior algorithmic approaches in two main ways.

First, the algorithmic techniques in prior work have
assumed that administrators can wade through every po-
tential configuration change, either assigning costs to the
changes a priori, or if they do not assign costs, reject-
ing a large number of proposed changes that are too high
in cost (i.e., infeasible). Heat-ray uses machine learn-
ing to estimate the feasibility of configuration changes,
thereby avoiding both of these burdens: the administra-
tor does not have to assign costs manually, but because
the proposed changes reflect the estimated costs, infea-
sible changes are proposed less often. This significantly
reduces the burden on IT administrators and allows Heat-
ray to be applied more easily in a large organization (i.e.,
one with hundreds of thousands of users and machines).

Second, the algorithmic techniques in prior work gen-
erally assume a well-defined set of high-value machines
that must be protected, and then use techniques such as
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model checking, approximate shortest paths, or the Dat-
aLog reasoning engine to find particular attacks from a
low-value machine to a high-value machine. Mulval [38]
allows an arbitrary DataLog policy to be specified, but
the only policy examples they provide are for protecting
particular high-value machines or files.

In a large organization, it is not enough to protect par-
ticular high-value machines. It is also unacceptable for
a large number of “low-value” desktops to be compro-
mised, and identity snowball attacks pose exactly this
threat. Because Heat-ray cannot focus on just protect-
ing a small number of high-value machines, none of the
algorithmic techniques from prior work are directly ap-
plicable. Instead, Heat-ray uses a new algorithm based
on sparsest cut.

Visualization is a powerful technique for understand-
ing data, but it has been difficult to apply to large attack
graphs. A recent paper on improving attack graph visu-
alization only demonstrated scaling to 16 machines [37].
Though techniques have been developed for visualiz-
ing massive graphs [34], no prior work has evaluated
whether these techniques can succeed at illuminating the
small sets of high impact and implementable configura-
tion changes needed by the IT administrator.

Prior work on attack graphs has not specifically fo-
cused on identity snowball attacks, and to the best of our
knowledge, our work is the first to measure the severity
of this threat in a large organization. Though this analysis
could have been done in frameworks proposed by earlier
work, Heat-ray’s more directed focus made this measure-
ment easier. For example, compared to prior work that
examined the ACLs on every file system and registry ob-
ject [35], Heat-ray needed to collect far less data per ma-
chine. This allowed Heat-ray to more easily scale to the
hundreds of thousands of machines and users in the large
organization we studied. Nonetheless, it is an interesting
area of future work to understand whether Heat-ray can
help with the classes of attack graphs considered in prior
work or the even larger attack graphs that arise from in-
cluding additional attack vectors, such as local elevation
of privilege exploits.

9.2 Combinatorial Optimization

Heat-ray’s sparsest cut algorithm leverages prior work on
this problem. Recent work has made significant progress
in the sparsest cut approximation ratio [4, 1, 33]. There is
also a large body of work on efficiently computing these
approximations [47, 31, 27, 3]. Heat-ray borrows most
directly from Young’s algorithm [59], but Heat-ray ex-
ploits its greater flexibility around approximating the ob-
jective function. Section 5 explains in detail how Heat-
ray exploits this flexibility.

Heat-ray uses random sampling to estimate the gradi-

ent in its sparsest cut algorithm. Prior work has some-
times referred to this general approach as stochastic ap-
proximation, stochastic optimization, or stochastic gradi-
ent descent [22, 6]. Though we are not aware of any prior
work using Heat-ray’s sampling strategy, Heat-ray’s pri-
mary contribution is its overall technique for managing
security configuration, not the particularities of its spars-
est cut algorithm.

9.3 Machine Learning
SVM [11] is a widely-used machine learning algorithm
for classification and regression. The cost learning algo-
rithm we present in Section 6 is subtly different from the
usual application of SVM to classification: rather than
learning a linear function that is bounded above +1 or
below -1, we learn a linear function that is greater or less
than the benefit assigned by the linear program by some
margin. SVM with varying offsets has also been applied
to learn ranking functions [20, 10], solving for both rela-
tive constraints (e.g., item 1 should be ranked above item
2) and for optimal ranking boundaries (in our setting, this
would mean estimating b(e)). In contrast, our algorithm
operates over absolute constraints (e.g., cost of edge 1
should be higher than benefit of edge 1, a fixed number).

9.4 Alternative Approaches to Authentica-
tion

A large amount of research has focused on the de-
velopment of alternative authentication and authoriza-
tion technologies. Much research has focused on de-
centralized systems, such as GSI [7], SFS [25] and
SDSI/SPKI [42, 16]. Applying Heat-ray to such systems
would require centralizing the data needed to create the
attack graphs, a task made harder by these systems’ de-
centralized nature.

One area that has seen significant adoption is multi-
factor authentication, e.g., combining smartcards or bio-
metrics with passwords [41, 21]. These techniques ef-
fectively prevent password stealing, but they do not pre-
vent hijacking of a Kerberos TGT by a compromised sys-
tem. As mentioned in Section 2, modern identity sys-
tems entrust computers to perform actions on behalf of
a user. Heat-ray is designed to prevent this trust from
being abused if a computer is compromised.

Other areas of active research in authentication and au-
thorization include restricted delegation, multi-principal
systems, and information flow security. In restricted del-
egation, a user Alice can empower another user Bob to
perform only particular actions on her behalf (as opposed
to classic Kerberos delegation, which is more analogous
to a blank check) [29]. In a multi-principal system,
ACLs can incorporate more than just a user’s identity,
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e.g., restricting a file’s access to Alice, and further re-
quiring Alice to access the file only through a particular
program [58]. Information flow security enables access
checks based on the flow of information between pro-
cesses or other entities [28, 60, 9].

All these systems increase the information available
for security decisions, e.g., by taking more than just
the user’s identity into account. Compared to Heat-ray,
these systems require significantly more effort to deploy;
Heat-ray works on the security configuration of existing
systems. Furthermore, even if these alternative systems
were widely deployed, it seems unlikely that administra-
tors would perfectly configure system security. In turn,
Heat-ray could potentially be used in these alternative
systems to identify the security configuration changes
that were both high impact and implementable.

10 Conclusion

Computers are becoming ever more interconnected, both
in the enterprise and in the emerging world of cloud com-
puting. This paper has focused on analyzing Kerberos
and Windows, but the importance of interconnection is
common to other identity systems and other operating
systems. This suggests that identity snowball attacks will
pose an ever more acute threat unless we take defensive
measures.

Heat-ray is the first system to defend against identity
snowball attacks in large organizations. We have mea-
sured the threat of such attacks in a single large organi-
zation, and demonstrated the effectiveness of Heat-ray in
addressing this threat. Heat-ray accomplishes this goal
by applying novel machine learning and combinatorial
optimization techniques to attack graphs. We are opti-
mistic that the techniques introduced by Heat-ray can be
applied to other types of attack graphs, further enhancing
our ability to secure distributed systems.
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