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ABSTRACT

Sensor-actuator networks require sharing of actua-
tors across multiple applications. Here, simple de-
vice arbitration is not enough because actuators
have lasting (or irreversible) effects on their envi-
ronment. For example, actuating a heater not only
affects the internal program state of the controlling
application, but the nearby temperature as well.
This change in external environment often has im-
pact on application-level decision making. We present
CAhoot, a preliminary software infrastructure to

enable cooperative sensor actuator applications through

communication of actuator ranges, and show how it
can be applied to automate building-level energy
control.

1. INTRODUCTION

Sensor network applications have predominantly
been passive monitoring applications that collect
and sometimes process data. Domain experts then
make policy decisions, if any, based on this collected
data. In this paper, we focus specifically on joint
control of building heating, ventilation, air condi-
tioning (HVAC) and IT power control as an example
of a sensor-actuator network application. Studies
show that space heating, cooling, and lighting make
up 45% of the total energy use [10], and buildings
constitute over 70% of power used on the electric-
ity grid [8]. In this context, one policy may be to
dim lights and turn off air-conditioning after busi-
ness hours. However, waiting for a human opera-
tor to update a policy when conditions change may
be costly. For example, a machine room inside a
building may need to be rapidly cooled if it receives
a burst in computing workloads to avoid localized
heating conditions. Similarly, applicances that do
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not need to be ON in a home should be turned
OFF automatically during an electricity shortage
(i.e. demand response).

Sensor-actuator networks are fundamentally dif-
ferent from traditional sensor networks in that they
change the nearby environment rather than simply
observe it. Naive applications attempting to share
actuator usage may end up conflicting on their goals
and wasting their collective efforts. If the applica-
tions require a precise value to be passed to the
actuator, then arbitration of the corresponding ac-
tuator will be necessary. In reality, however, many
applications instead specify a range for the actuator
to achieve desired application goals. For example,
Intel recommends using variable fan speeds for CPU
temperatures between 30C and 38C [5]. The Occu-
pational Health and Safety Administration (OSHA)
recommends 200-500 lux for office environments [3].
The HIN1 virus is most contagious in a building at
humidity levels between 35% and 40% [2]. Each of
these specifies a range for environmental variables
that are controlled directly or indirectly by acuta-
tors.

Given this range of specification, it is possible to
satisfy requirements from multiple applications by
finding the necessary overlap in range requirements.
Let’s take a look at a simple example. In a home
with centralized heating, the living room should
have a higher temperature for human activity and a
bedroom should have a lower temperature for sleep-
ing. Thus we can write two applications, one for
both rooms. A simple way is to check the time, and
adjust the temperature based on this. In fact, this is
how a static policy would work. However, suppose
there is more information, such as who is in which
room (based on cell phone presence). Each person
can adjust a particular temperature comfort range,
and if they overlap the heater can be actuated to
a single value. If there is no overlap, then the ap-
plications themselves can adjust their requirements
if possible. Furthermore, if no other person is in a
room, its temperature setting should not matter in
terms of human comfort.

In this paper we address the problem of specifying
and managing the coordination of shared sensor ac-
tuators that affect their surrounding environment.



Applications need to be actuator-aware. This allows
applications to cooperate rather than compete for
actuator use. In particular, applications can change
their behavior when they detect another application
attempting to use a shared actuator. A centralized
policy with knowledge of all actuators and applica-
tions can detect and possibly resolve actuator con-
flicts, but this couples the policy with specific de-
ployment scenarios, which may not be completely
known a priori. In the remainder of this paper,
we briefly examine related work before describing
our design and briefly evaluating it against an au-
tomated building management example.

2. RELATED WORK

Operating systems typically have sophsticated pro-
gramming support for controlling hardware periph-
erals |4]. Hardware virtualization and arbitration is
done to avoid unwanted dependencies or race con-
ditions, but this does not take into account depen-
dencies in the physical world. The sharing of actua-
tors fundamentally comes down to resource sharing,
where the resources are sensor actuators. There is
a rich background in resource sharing, control and
management of resources.

The operating system and database communities

have explored resource sharing through locking. Mech-

anisms include semaphores, monitors, and condition
variables [15]. An alternative approach is optimistic
concurrency control (OCC) [13]. OCC assumes that
there is no conflict, and begins writing the shared
values. If a conflict is later detected, then the op-
erations are aborted. OCC is particularly good for
resources with low contention.

Application control of resources has been seen in
the past with disk scheduling [7] and even the ma-
chine as a whole [9]. In the disk scheduling work, ap-
plications are assumed to know best what their disk
access pattern is and can thus give this information
to the operating system. However, applications give
only suggestions and the operating system still has
full control over disk scheduling. In the exokernel,
hardware resource control is given to the applica-
tion, and the kernel enforces a minimal amount of
protection among applications.

ECOSystem [16] and ICEM [12] are both systems
that provide energy resource management. ECOSys-
tem shares hardware devices by treating energy as
a first-class resource through energy “currentcy”.
ICEM is a device driver architecture that manages
energy based on driver concurrency. Energy is saved
by inferring usage based on acquisition of locks.
Another resource management system specifically
for sensor networks is Pixie [14], which allows for
resource-aware programming.

Concurrency control, although necessary, is not
enough for operation of sensor actuator networks
given the coupled and time-bound interactions with
the environment. Giving applications full control
of sensor actuators may also lead to fairness or se-

curity issues, and also burdens application writers
with actuator details. The existing energy manage-
ment schemes provide general purpose techniques
for dealing with hardware devices, but further im-
provements can be made by taking advantage of
how sensor actuators are used.

3. MOTIVATING EXAMPLE

Consider the operation of a "mixed-use” building.
Mixed-use buildings are buildings where their bal-
ance of power usage is evenly divided between hu-
man comfort and IT equipment. This is in con-
trast to data centers that are predominantly IT
power consumers, or enterprise buildings where hu-
man comfort (HVAC) is the dominant consumer of
electrical power.

We use the CallT2 [1] building on the UC San
Diego campus as motivation with six floors, open
work environments, server room, fabrication facil-
ity, and lecture auditoriums. The automation of
HVAC and lighting systems in the building is done
using a combination of static policies and events in-
side the building. Building security is automated,
but those are mostly set with static policies.

CallT2’s lighting system is currently managed from
a single computer. These lights include hallway
lights, lab lights, and exterior building lights. How-
ever, each light cannot be individually controlled
due to an artifact of the underyling electrical wiring.
They can only be controlled as a cluster. Further-
more, the lights currently in use cannot be variably
controlled. They are either ON or OFF. The cur-
rent lighting policy policy is to leave them ON from
4:30AM to 10PM, and OFF at other times. Alter-
nate policies can be set based on circuit load values
to deal with energy supply problems. During night
and weekends, motion and infrared sensors are used
to automatically turn on lights when humans are
present and light switches can be programmed for
override-on for a specific time, usually for 1 hour
[6]. However, this is not always ideal particularly
for people working at desks for long periods of time.

The HVAC system includes energy inputs from
both electrical and mechanical sources. Besides elec-
tricity input from the campus power grid, the build-
ing is also on a closed chilled/hot water system loop
through the campus that uses heat exchangers. A
single computer is used to control all aspects of
the water system once it enters the building. The
chilled water supply system delivers 44°F water,
while the hot water supply system delivers 180°F
water. As the water is pumped into a particular
temperature controlled zone, a variable air volume
(VAV) controller nearby controls the flow of the air
duct. The water changes the temperature of the air,
which in turn heats or cools the zone. If the zone
needs to be heated, the VAV controller reduces the
air flow to allow the heat from the hot water to dif-
fuse into the air and hence heat the zone. The VAV
increases the air flow and shuts off the hot water



valve if the room needs to be cooled. Several opti-
mizations can also be made regarding the air flow.
For example, an economizer can be used to bring in
outside air if it is beneficial. The temperature pa-
rameters of each zone are scheduled from a central
computer, but can be tuned 2 degrees from individ-
ual thermostats. It cannot be tuned more because
that would begin to impact other zones [6].

Through just heating and lighting, numerous de-
pendencies and possible inefficiencies exist. For ex-
ample, temperature zones are mapped to multiple
offices, and server rooms and labs have different
temperature requirements from the rest of the build-
ing. While thermostats and VAV controllers (actua-
tors) can be used to augment the zone, the building
is still heated and cooled through the main water
pumps. Another dependency is when actuators af-
fect different parameters. For example, an econo-
mizer bringing in outside air has the inadvertant
effect of also bringing in particulates. A heater con-
tinuously maintaining a high temperature has the
side-effect of reducing the humidity.

3.1 Example Applications

There are numerous actuators for controlling en-
ergy use at CallT2. For controlling the temperature
alone there are water and air valves that can be
applied separately at different temperature zones.
Let us assume for discussion that we can abstract
each of these actuators into a single environmental
variable. For example, a specific temperature range
can be mapped to a specific hot water valve and
air flow range. This is not unrealistic since these
values are currently manually set to achieve a de-
sired temperature. Thus from an application per-
spective, the available actuators are: temperature,
light, and computation. The available sensors are:
human presence, circuit load, and the actuator vari-
ables. Based on these actuators and sensors, we give
example applications that could be run in CallT2.

Openspace Environment: This application con-
trols temperature and lighting for employees in open-
space work environments. These are specified by
the occupants and can vary depending on which oc-
cupants are in a given area, or if it is unoccupied.

Server Room: This application controls how
many machines are active based on the tempera-
ture. It makes several simplifying assumptions. It
assumes that all machines are physical and not vir-
tual, and that all machines and workloads are ho-
mogeneous. If the temperature becomes too high,
it will start shutting down machines. The applica-
tion will periodically try to set a low temperature
to maximize computing availability. If it is not able
to set a low temperature, it will progressively allow
higher temperatures, but shutdown computers.

Low Energy Handling: This application en-
sures that application preferences do not cause ex-
cessive circuit load. If current settings cause avail-
able energy levels to fall below a threshold, conser-

vation can be done. For example, the temperature
requirement can be relaxed to take advantage of
ambient air temperature.

4. DESIGN

We have built a programming environment, CA-
hoot, to enable specification and use of actuator re-
quirements and to reduce actuation overheads. This
is a preliminary proof-of-concept implementation.
It is currently not designed to work in a network
setting. Our key idea is that using the range of
a monitored variable provides an application-level
intent that can be shared among multiple appli-
cations. CAhoot does not make any policy deci-
sions regarding how the actuators should be used.
It merely communicates an application’s intent of
actuator use and sets an actuator value that satis-
fies all applications if possible. CAhoot first makes
the assumption that application developers are con-
cerned with the results of the actuator rather than
programming the actuator itself. For instance, ap-
plications typically specify the temperature rather
than actuate the heater directly. In the CallT2 ex-
ample, a temperature application would know how
to actuate the various components to achieve a de-
sired temperature. These values often do not need
to be precise. Thus it is possible for applications to
concurrently set multiple actuator ranges provided
that there is overlap. We define the actuator range
to be the range of values for a particular sensor ac-
tuator that an application wishes to set.

CAhoot introduces an actuator lock for dealing
with actuator ranges. By adding actuator range in-
formation to traditional locks, we can create a par-
tially shared write lock. When actuator ranges over-
lap, the intersection of the two ranges is used to sat-
isfy both applications. As actuator ranges continue
to shorten over time and applications will inevitably
have non-overlapping actuator ranges. As a result,
CAhoot must also track lock holders, in addition
to actuator range information, so that they can be
signalled when conflicts occur. Formally, CAhoot
allows applications to set actuators with the follow-
ing properties:

Atomicity: Applications need to be able to atom-
ically actuate multiple sensor actuators. Either all
actuators are set or none at all. For example, a hu-
man comfort application might choose to increase
the temperature range only if it can set higher humdity
to prevent the air from drying out.

Range Abstraction: To allow applications to
share actuators more effectively, applications spec-
ify value ranges instead of using actuator-specific
commands. For example, a human comfort appli-
cation can tolerate a wider range of temperatures
than an application for a fabrication lab.

Priorities: When an application requires low la-
tency or when two different applications conflict on
the range of an actuator and no compromise can
be made, there must be an unambiguous way to



Application Calls

beginTransaction()

setActuator(actuatorld, priority, min, max)
endTransaction()

getPriority (actuatorld)

getMin(actuatorId)

getMax(actuatorld)

Application Events

conflict(actuatorId, min, max)

changed()

Table 1:
events.

CAhoot application calls and

decide a range setting. For example, safety appli-
cations should have precedence over energy-saving
applications.

Table |1| presents the interface that applications
use to control a particular actuator. It abstracts
the underlying actuator through an actuator range.
If a precise value is needed, the range consists of
two identical values. In order to set a new actu-
ator range on a sensor actuator, the application
must begin a transaction (a term we borrow from
databases primarily to indicate atomicity). While
a transaction is in progress, other applications can-
not attempt to change the range of any actuator.
Note that actuator locks are not used for making
transactions atomic. Actuator locks are for man-
aging actuator ranges after they are set. Once the
transaction begins, the application gives new ranges
and priorities for every actuator it wishes to set. A
return value is given for each actuator whether the
new actuator range could be satisfied. When the
application ends the transaction successfully, all ac-
tuator ranges (or the respective intersections) be-
come set. This implicitly acquires the proper actu-
ator locks for the application. The priority allows
conflicting actuator ranges to be resolved. How-
ever, CAhoot leaves the semantics of priority levels
to the application domains. Applications setting
actuators with equal priority values are processed
with a FIFO policy. Actuator locks can implicitly
be “released” when applications choose to set an ac-
tuator range of (—oo, 00). CAhoot also provides an
interface for simply reading values.

The last two functions of the CAhoot interface
are events that signal applications. When an appli-
cation attempts to set an actuator range that con-
flicts with the existing range, a notification is sent to
the application with the strictest actuator rang
The notified application then has a chance to re-
lax its requirements if it can, but it is not required
to. A notification is not sent to every application
because only the application with the strictest ac-
tuator range can change it. However, when an ap-
plication successfully sets a new actuator range, ev-

LIf the application iself has the strictest actuator range,
in which case the new actuator range will succeed.

START:
if (beginTransaction())
setActuator (TEMP, 2, 0, 40)
setActuator (COMP, 2, 90, 100)
if (!endTransaction())
// try with relaxed constraints

conflict (ACT_ID, X, Y):
if (ACT_ID == TEMP && X > 40)
if (beginTransaction())
setActuator (TEMP, 2, 0, 50)
setActuator (COMP, 2, 70, 80)
if (!endTransaction())
// try with relaxed constraints

changed (ACT_ID):

if (ACT_ID == TEMP && getMin(TEMP) > 40)
// similar to conflict code

Figure 1: Server room application code.
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Figure 2: Total number of actuation actions
used as applications are added in order given.

ery application must be notified because applica-
tions may depend on actuator values for correctness.
Note that CAhoot does not provide any protection
against malicious applications. If applications make
very restrictive actuator ranges at the highest pri-
ority, then they can lock use of the actuator.

As an example, figure [I] shows a code snippet
of the server room application using CAhoot func-
tions. In this simplified example, we assume only
this application will control the the computation
amount. If not, event handlers can be written for
that as well. The application attempts to set the
temperature between 0°C and 40°C and compute
capability at 90% to 100%. If it cannot, it will
try with a more relaxed set of constraints. If an-
other application attempts to change the tempera-
ture, it will try to relax the constraint, but decrease
compute capability. Similarly, if it detects the tem-
perature range has changed, it will check to see it
requires changing compute capability.

4.1 Initial Results



We run the applications in simulation based on
preliminary building occupancy data from the ACme
building energy measurement deployment [11]. For
our evaluation, we run the simulation from 9AM to
6PM and use the previously stated example appli-
cations. While this is a work in progress and we
do not have the data on actual energy savings, the
results show the value of CAhoot in reducing the
number of actuator actions. Figure [2| shows that
applications can conserve actuation usage in cer-
tain scenarios. The Energy application has a much
higher sampling frequency, which contributes to its
actuator usage count. The Environment and Server
applications were able to share a common temper-
ature range.

S. FUTURE WORK

We have presented an API that enables a bet-
ter specification of sensor-actuator actions, and its
use in cooperative control. A number of issues and
challenges remain to be addressed:

Deployment: CAhoot is not currently deployed
in a real building. We plan to eventually use it auto-
mate building energy use in CallT2, but questions
remain how to deploy and evaluate it in a “live”
building, as well as what kinds of savings can be
achieved with CAhoot.

Enforcement: CAhoot currently does not en-
force any fairness. It requires that all applications
are cooperative. A malicious application can set
narrow ranges at the highest priority.

Multiple Actuators: Situations exist where there
are multiple localized actuators, such as with light-
ing control. In this case, specific actuation zones
should be specified in addition to the actuator ranges.

Actuator Dependencies: There exist acuators
that may not be abstracted into a single range. For
example, a heater may unexpectedly dry the air as
it heats it. An intelligent actuator manager, how-
ever, may know this and adjust a combination of
actuators rather than a single one.

Actuator Latency: Not all actuators can be in-
stantaneously set, which can affect application re-
quirements. For example, temperature is not a vari-
able that can instantaneously change.
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