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ABSTRACT
N-modular redundancy (NMR) [1] has long been the
most prevalent fault-tolerance technique. However,
traditional NMR is agnostic of application charac-
teristics (especially, an application’s error tolerance)
causing it be overly expensive in terms of perfor-
mance and power. In this paper, we investigate
fluid NMR, a framework for NMR-based fault tol-
erance that takes into account an application’s er-
ror tolerance to perform dynamic power/reliability
tradeoffs. Our case study using face detection as
an example application with error tolerance demon-
strates that a fluid NMR framework can produce
significant power and performance benefits over tra-
ditional NMR

1. INTRODUCTION
N-modular redundancy (NMR) is a traditional

voting-based fault tolerance technique in which N-
copies of a program/hardware module are run in
parallel, and their results are voted on using some
fixed voting strategy. Triple Modular Redundancy
(TMR), for example, executes three copies of a pro-
gram/hardware module in parallel, and compares
the results of execution of each of the copies against
each other. If two or more results agree (i.e, have
the same value), the matching result is accepted as
the correct result of execution. If none of the results
agree (a highly unlikely case), the three copies are
re-executed and voting is done again.

While the simplicity of NMR implementations make
them popular [1,2], one notable limitation of NMR-
based fault tolerance is high overhead in terms of
performance and power. Redundancy represents up
to linear opportunity cost in terms of performance
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and at least linear cost in terms of power. Such
costs can be prohibitive if the extent of redundancy
needs to be high. Considerable redundancy may be
required when a large number of errors must be de-
tected/corrected by the NMR framework or when
reliability targets for the framework are high.

One way to reduce the amount of redundancy
required by an NMR framework is by making the
framework aware of the inherent error tolerance in
applications. A large class of important emerging
applications [3, 4, 5] has inherent algorithmic error
tolerance [6]. Algorithmic error tolerance refers to
the property of soft computations [7] to absorb er-
rors in the form of degraded system outputs instead
of treating them as exceptions. Traditional NMR is
agnostic of any error tolerance that may be inherent
in the applications and thus assumes the respon-
sibility for detecting/correcting every error. This
places an increased burden on the NMR framework,
thereby increasing its power and performance cost.

In this paper, we examine the potential benefits of
fluid NMR, a framework for NMR-based fault tol-
erance that takes into account an application’s error
tolerance to perform dynamic performance/power/reliability
tradeoffs. We first present an analytical model that
relates system reliability to application characteris-
tics and motivates the need for a fluid NMR frame-
work. Then, through a case study that uses face de-
tection as an example of an application with error
tolerance, we demonstrate that there can be signifi-
cant power and performance benefits from having a
fluid NMR framework. The hardware and software
implementations of the framework will be part of
future work.

2. A SIMPLE ANALYTICAL MODEL RE-
LATING APPLICATION CHARACTER-
ISTICS AND SYSTEM RELIABILITY

System reliability (Rsys) can be characterized as
a function of the following four factors:

• Component reliability (p) – the probability that
execution gives the correct result. Note that
non-unit component reliability can be due to



a software or a hardware fault.

• Size of output space (r) – the number of possi-
ble incorrect outputs in the face of faults plus
k, the number of acceptable outputs. For ap-
plications with error tolerance, a range of out-
puts (e.g., outputs with higher order bits being
correct) may be acceptable (even if some out-
puts may be less desirable than others). For
simplicity, we assume that the probability of a
given wrong output is the same for all wrong
outputs.

• Latency guarantee (imax) – the maximum num-
ber of re-executions allowed in case NMR fails
to proceed successfully 1. Traditional NMR re-
quires re-executions until an acceptable output
is reached. For applications with error toler-
ance, an inexact/incorrect output may be ac-
cepted after imax iterations in order to meet a
latency guarantee.

• Voting strategy (m of n) – an m of n voting
strategy involves executing n copies in parallel
and accepting a result that is produced by at
least m modules. TMR, for example, follows a
2 of 3 voting strategy.

Consider q, the probability that a module fails
with a particular output. Assuming that all incor-
rect outputs are equally probable [8]:

q =
1 − p

r − k

(note that there are r − k wrong outputs)
Pd, the probability that a fault is detected by

NMR, can then be calculated as follows:

Pd =

m−1
∑

i=0

(

n

i

)

E(r − k, n − i, m − 1)piqn−i

where

E(t, k, s) =
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0<nij≤s,
P

t
j=1

nij

k!

ni1!ni2! · · ·nit!

To calculate R, the probability that NMR accepts
the correct result and moves forward, we must con-
sider the cases where m < ceil(n + 1/2) and m ≥

ceil(n + 1/2) separately. When m < ceil(n + 1/2),
there can be multiple sets of modules of size m or
more that agree on different values. To resolve the
non-determinism during voting, we use following
two policies:
1 A success is defined as the NMR signaling that no
error occurred or that an error was masked. NMR can
succeed with an incorrect value when several modules
agree on an incorrect value; however, this is unlikely.

• If there are multiple sets of matching values of
size ≥ m, accept the largest unique set.

• If there is no unique set (i.e., several sets have
the largest size), then randomly select the ac-
cepted value from one of these sets.

R can then be computed with the following equa-
tion (when m < ceil(n + 1/2)):

R =

n
∑

i=m

(

n

i

)

E(r − k, n − i, i− 1)piqn−i

The equation for R when m ≥ ceil(n + 1/2) is:

R =

n
∑

i=m

(

n

i

)

pi(1 − p)n−i

To calculate expected system reliability, Rsys, we
assume that no more than imax re-executions are
allowed and that the same voting strategy with the
same value of r is used for re-executions.

Rsys = R

imax
∑

i=0

Pdi = R
1 − Pdimax+1

1 − Pd

The above equation relates expected system re-
liability to application characteristics. The vari-
ous parameters can be tuned to perform perfor-
mance/power/reliability tradeoffs for applications
with error tolerance.

3. FLUID NMR TRADEOFFS
Figures 1a, 1b, and 1c use the above equation to

show the dependence of system reliability on com-
ponent reliability, latency guarantee, and the size
of the output space for NMR when up to 8 nodes
can be used for voting. The graphs show system
reliabilities only for the voting strategies that are
optimal in at least one interval.

The first thing to note in all three graphs is that
there are several voting strategies that are optimal
in at least one interval. For example, in Figure 1a,
while simplex is optimal for component reliability
less than 0.32, 5-of-8 is optimal when the component
reliability is between 0.44 and 0.72. Similarly, in
Figure 1b, while 5-of-8 is the optimal strategy when
no more than 10 re-executions are allowed, 5-of-7
is the optimal strategy when up to 16 re-executions
are allowed. In Figure 1c, while 5-of-8 is the optimal
strategy when the output space is less than 5, 4-
of-7 is the best strategy when the output space is
between 6 and 8.

The graphs also show that while up to 8 cores are
available for voting, there are several optimal strate-
gies that use fewer cores. For example, in Figure
1a, the optimal strategy uses 8 cores when the com-
ponent reliability is between 0.44 and 0.72, while



the optimal strategy uses 5 cores when the com-
ponent reliability is 0.34. We observe similar cases
in Figures 1b and 1c. For certain operating condi-
tions (i.e. output space of voting, voting/checkpoint
period, latency guarantees) additional redundancy
may lead to lower reliability, since the probability
of false positives during voting and/or the proba-
bility of not reaching quorum by deadline may be
significant.

The results show that a fluid NMR framework
that allows dynamic switching between voting strate-
gies, as well as between the number of modules
constituting an NMR group (N) based on an ap-
plication’s characteristics (e.g., latency constraints,
output space, etc.), has the potential for significant
power and performance benefits for the same relia-
bility for applications with error tolerance. This is
because any time a module is freed up from NMR
(e.g., when then the optimal voting strategy uses
fewer cores), it can be either disabled to save power
or can be used to do other useful work, improving
overall throughput. In Figure 1a, for example, up
to 37.5% power can be saved by turning three cores
off when component reliability is 0.34. Note that
switching to fewer cores in this case means lower
power AND higher system reliability.

The results also show that higher reliability tar-
gets can be met for the same power or performance
(i.e., same value of N) by switching to the currently
optimal voting strategy. Optimality, of course, de-
pends on the component reliability as well the cur-
rent latency constraint and output space of the error-
tolerant application.

4. CASE STUDY: FACE DETECTION ON
A MULTICORE ARCHITECTURE

To demonstrate the benefits of fluid NMR, we
select face detection [9] as the target application.
Face detection is naturally robust to errors and does
not require strict computational correctness. Er-
rors result in reduced output quality (false posi-
tive or negative detections) rather than program
failure. Also, our algorithm for face detection [9]
is naturally parallelizable – i.e., using more cores
can increase the number of images for which de-
tection can be performed with the same accuracy
per unit time. Figure 2 shows how image through-
put increases with increased parallelism when run-
ning face detection on a multicore processor simula-
tor [10] simulating chips with 32 UltraSparc T1-like
single-threaded cores. For such an application, a
natural tradeoff exists between parallelism (or through-
put) and redundancy (or reliability/power) when it
is run on a multi-core architecture. The cores of a
multicore architecture can either be used to improve
the image throughput of face detection or improve
the accuracy of face detection.

The redundancy/power tradeoffs are even stronger

when there is a direct relationship between power
and error rate. For our study, we consider a sce-
nario in which errors are introduced due to volt-
age overscaling [11,12], which is used to save power
in a processor. Figure 3 shows how error rate in-
creases and power consumption decreases as voltage
is scaled down for our simulated processor that con-
sists of gracefully degrading datapath units (e.g.,
ripple carry adder, Wallace tree multiplier, etc.).
Power estimation is done using Wattch [13]. Er-
ror rates are estimated through circuit-level simu-
lations of processor modules containing arithmetic
logic units. These modules account for approxi-
mately 80% of the dynamic power consumption of
the processor.

The goal of a fluid NMR framework is to exploit
the above tradeoffs for power and throughput ben-
efits. Figure 4 shows how face detection accuracy
degrades as voltage is scaled down on the processor,
where accuracy is defined as:

good detections− false positives

good detections + false negatives

To simulate the effects of faulty arithmetic units
as voltage scales down, we inject errors into the re-
sults of arithmetic operations in the face detection
program, based on the characteristics of the error
distribution in Figure 3.

Figure 4 shows detection accuracy at maximum
throughput (70 fps), when all cores are devoted to
parallelism. When the target throughput is lower,
however, not all cores are needed for throughput,
and the fluid NMR framework can make tradeoffs
between various objectives to achieve the optimal
system configuration in terms of reliability and power.
For example, if the objective is power efficiency rather
than throughput, fluid NMR can configure the sys-
tem to use 16 cores instead of 32, trading 10 fps for
46% power savings while achieving the same relia-
bility.

For a target throughput of 45 fps, each face de-
tection module needs 8 parallel threads, allowing for
up to 4-way redundancy (N ≤ 4). Figure 5 shows
detection accuracy for available redundancy strate-
gies. In the face detection algorithm, redundant
computations vote on whether or not a sub-window
in the image contains a face. The first thing to no-
tice is that the strategy that uses the most cores (3
of 4) also has the lowest accuracy. Thus, switching
to 2 of 3 for higher voltages provides both power
savings (23%) and improved reliability. At 45 fps,
a higher accuracy can be obtained than at higher
frame rates, evidencing the ability of fluid NMR to
trade throughput for reliability. Fluid NMR can
also trade reliability for power by switching to sim-
plex and reducing power consumption by 69% while
sacrificing at most 11% accuracy (7% on average).
At low voltages, this strategy even produces the



highest reliability at an extreme power savings of
84%. Note that these tradeoffs would not be possi-
ble in a traditional NMR system.

30 fps represents a common frame rate for many
applications. Since this throughput can be sus-
tained with 4 parallel threads, fluid NMR can em-
ploy strategies with N ≤ 8. Figure 6 shows the de-
tection accuracy and power efficiency (in accuracy
per watt) achieved by different redundancy strate-
gies.

Figure 6 further motivates fluid NMR by demon-
strating several tradeoffs between reliability and power.
In scenarios when low power operation is most im-
portant, 2 of 3 represents the best configuration, es-
pecially for low voltages, where it also provides the
highest detection accuracy. However, other strate-
gies (4 of 7 and 3 of 5) provide higher accuracy over
a wide range of voltages. Also, since 4 of 7 has
higher accuracy than 3 of 5 but lower power effi-
ciency, another tradeoff is possible for a fluid NMR
system, depending on the reliability and power re-
quirements of the system.

Finally, not all applications require the same frame
rates. Figure 7 shows the optimal strategy in terms
of accuracy and power efficiency at each frame rate,
demonstrating several throughput/reliability/power
tradeoffs that are available in a fluid NMR system
but unavailable in traditional NMR.

5. SUMMARY AND CONCLUSIONS
We presented fluid NMR – an NMR-based fault

tolerance framework that dynamically switches be-
tween various voting strategies and the number of
modules to be used for voting based on an applica-
tion’s error tolerance. We first developed an analyt-
ical model that expresses the relationship between
expected system reliability and an error-tolerant ap-
plication’s characteristics, such as latency require-
ments and output space. The model motivates the
need for a fluid NMR framework. Then, we showed
significant simulated power and throughput bene-
fits for a face detection algorithm when using fluid
NMR. As a large class of emerging applications have
algorithmic and cognitive error tolerance, the po-
tential benefits from fluid NMR will only increase.
Our future work will address hardware and software
implementations of fluid NMR.
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Figure 1: Dependence of System Reliability
on (a) Component Reliability, (b) Latency
Guarantee, and (c) Size of Output Space for
NMR (Nmax = 8)
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Figure 2: Devoting more cores to parallel
face detection increases throughput in fps.
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power efficiency of several techniques for a
frame rate of 30 fps.
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