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1 Introduction

Today, many large organizations operate multiple data
centers. The reasons for this include natural business dis-
tribution, the need for high availability and disaster toler-
ance, the sheer size of their computational infrastructure,
and/or the desire to provide uniform access times to the
infrastructure from widely distributed client sites. Re-
gardless of the reason, these organizations consume sig-
nificant amounts of energy and this energy consumption
has both a financial and environmental cost.

Interestingly, the geographical distribution of the data
centers often exposes many opportunities for optimizing
energy consumption and costs by intelligently distribut-
ing the computational workload. We are interested in
three such opportunities. First, we seek to exploit data
centers that pay different and perhaps variable electric-
ity prices. In fact, many power utilities now allow con-
sumers to choose hourly pricing, e.g. [1]. Second, we
seek to exploit data centers that are located in different
time zones, which adds an extra component to price vari-
ability. For example, one data center may be under peak-
demand prices while others are under off-peak-demand
prices. Third, we seek to exploit data centers located near
sites that produce renewable (hereafter called “green’)
electricity to reduce “brown” energy consumption that
is mostly produced by carbon-intensive means, such as
coal-fired power plants.

To make our investigation of these degrees of free-
dom more concrete, in this paper we consider multi-data-
center Internet services, such as Google or iTunes. These
services place their data centers behind a set of front-end
devices. The front-ends are responsible for inspecting
each client request and forwarding it to one of the data
centers that can serve it, according to a request distribu-
tion policy. Despite their wide-area distribution of re-
quests, services must strive not to violate their service-
level agreements (SLAS).

This paper proposes and evaluates a framework for
optimization-based request distribution. The framework
enables services to manage their energy consumption
and costs, while respecting their SLAs. It also allows
services to take full advantage of the degrees of freedom
mentioned above. Based on the framework, we propose
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two request distribution policies. For comparison, we
also propose a greedy heuristic designed with the same
goals and constraints as the other policies.

Operationally, an optimization-based policy defines
the fraction of the clients’ requests that should be di-
rected to each data center. The front-ends periodically
(e.g., once per hour) solve the optimization problem de-
fined by the policy. After fractions are computed, the
front-ends abide by them until they are recomputed. The
heuristic policy operates quite differently. During each
hour, it first exploits the data centers with the best power
efficiency, and then starts exploiting the data centers with
the cheapest electricity.

Our evaluation uses a day-long trace from a commer-
cial service. Our results show that the optimization-
based policies can accrue substantial cost reductions by
intelligently leveraging time zones and hourly electricity
prices. The results also show that we can exploit green
energy to achieve significant reductions in brown energy
consumption for small increases in cost.

Related work. The vast majority of the previous work
on data center energy management has focused on a
single data center. We are not aware of any previous
work that addresses load distribution across data centers
with respect to their energy consumption or energy costs.
Moreover, we are not aware of other works on leverag-
ing time zones, variable electricity prices, or green en-
ergy sources. The exception here is [10], which leverages
electricity price diversity to shut down entire data centers
when their electricity costs are relatively high. Finally,
we know of no previous work on optimization-based re-
quest distribution in Internet services, besides our own
[8]. However, our previous work did not address energy
issues, time zones, or heuristics at all.

2 Request Distribution Policies

We assume that a front-end is chosen to first handle a
client request via round-robin DNS or some other high-
level policy. The front-ends execute one of our policies
and forward each request to a data center that can serve it.
Typically, a request can only be served by 2 or 3 mirror
data centers; further replicating content would increase
the state-consistency traffic without a meaningful benefit
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| Symbol | Meaning
fi(t) % requests to be forwarded to center ¢
Overall Cost Total energy cost ($)

Costi(t), ci(t)
CZgT'€€7l (t)

Avg. cost ($) of a request at center ¢
Avg. cost ($) of a request at center 4
using green energy
Base energy costs ($) of center &
under offered, load

BCost;(offered,, t),
b (offered,, ),
b9"e" (offered,, t)

GE; Amount of green energy that
green center ¢ can consume
LC; Load capacity (reqs/sec) of center ¢
LR(t) Expected peak service rate (reqs/sec)
LT(t) Expected total service load (#reqs)
offered, LR(t) times f;(t) (reqs/sec)

CDF;(L,offered,) Expected % requests that complete

within L time, given offered, load

Table 1: Framework parameters. () represents time.

in availability or performance. The reply is sent to the
original front-end, which in turn forwards it to the client.

2.1 Principlesand Guidelines

For our policies to be practical, it is not enough to min-
imize energy costs; we must also guarantee high perfor-
mance and availability. Our policies respect these re-
quirements by having the front-ends: (1) prevent data
center overloads; and (2) monitor the response time of
the data centers, and adjust the request distribution to
correct any performance or availability problems.

We assume that the service has a single SLA with its
customers, which is enforced on a daily basis, the “ac-
counting period”. The SLA is specified as (L, P), mean-
ing that at least P% of the requests must complete in
less than L time, as observed by the front-end devices.
The SLA guarantee provided by our policies and frame-
work can be combined with Internet QoS approaches to
achieve end-to-end guarantees [11].

Note the SLA definition implies that the service does
not need to select a front-end device and data center that
are closest to each client for the lowest response time
possible; all it needs is to have respected the SLA at the
end of each accounting period.

We assume that each data center reconfigures itself by

| leaving only as many servers active as necessary to ser-

vice the expected load for the next hour (plus an addi-
tional 20% slack for unexpected increases in load); other
servers can be turned off, as in [4, 5, 6, 9].

2.2 Optimization-Based Distribution

Our framework comprises the parameters listed in Table
1. Using these parameters, we can formulate optimiza-
tion problems defining the behavior of our request distri-
bution policies. The optimization seeks to find the frac-
tion f;(t) of requests that should be sent to each mirror
data center ¢, during “epoch” ¢. (An epoch is defined as
a period of fixed fractions. There can be many epochs
during a single accounting period.) The next subsection
describes two specific optimization problems (policies).
Section 2.2.2 describes the instantiation of the parame-
ters. Section 2.2.3 discusses how to solve the problems.

2.2.1 Problem Formulations

Policy EPrice: Leveraging time zones and variable
electricity prices. The f;(t) fractions should minimize
the overall energy cost, Overall Cost. Equation 1 de-
fines Overall Cost with two additive components. The
first represents the energy cost of processing the client
requests that are offered to the service. The second rep-
resents the “base” energy cost, i.e. the cost of the en-
ergy that is spent when the active servers are idle. In
the EPrice policy, the per-request C'ost; and the base en-
ergy cost BCost; have trivial definitions (Equation 2).
Overall Cost should be minimized under the constraints
that follow the equations.

Policy GreenDC: Leveraging data centers powered
by green energy. The formulation above does not dis-
tinguish data centers based on their energy source. How-
ever, we expect that data centers will increasingly often
be located near sources of green energy, such as wind
and solar farms. In this scenario, the same service could
have some data centers that are powered by brown en-
ergy (brown data centers), and others that are powered
by green energy (green data centers). Because the sup-
ply of green energy may not be enough to power a data
center throughout the entire period, green data centers



must also be connected to the regular electrical grid.

To formalize this scenario, we can redefine C'ost; and
BCost; for the green data centers as in the GreenDC
policy (Equation 2), where GF; is the amount of green
energy that green center ¢ can consume during the ac-
counting period. The definitions of Cost; and BCost;
for brown data centers stay the same as before.

Other options. We have not yet explored services with
session state, i.e. soft state that only lasts a user’s ses-
sion with the service. In such services, the distribution is
constrained since all requests of a session must be sent
to the same data center. Nevertheless, it is easy to extend
our work to handle sessions by (1) estimating the aver-
age number of requests per session; and (2) computing
fractions that guide the distribution of the first request of
a session. It is also fairly easy to handle (1) requests that
involve writes to persistent state and (2) multiple request
types, instead of averaging across all types like we do
now. We will explore these issues in our future work.

2.2.2 Instantiating Parameters

To instantiate the parameters of our formulations exactly,
the front-ends would have to communicate and coordi-
nate their decisions. To avoid these overheads, we ex-
plore a simpler approach in which the optimization prob-
lem is solved independently by each of the front-ends. If
the front-ends guarantee that the constraints are satisfied
from their independent points of view, the constraints
will be satisfied globally.

In this approach, LT'(t) and LR(t) (and consequently
offered;) are defined for each front-end. In addition, the
load capacity of each data center is divided by the num-
ber of front-ends. To instantiate C' D Fj, each front-end
collects the recent history of response times of center ¢
when the front-end directs offered; load to it. For this
purpose, each front-end has a table of these <offered
load, percentage> entries for each data center that is
filled over time. Similarly, we create a table of <offered
load, base energy cost> entries to instantiate BC'ost;.

2.2.3 Solving the Optimization Problem

The solution for an entire accounting period provides the
best energy cost. However, such a solution is only pos-
sible when we can predict future load intensities, elec-
tricity prices, and data center response time distributions
(CDF;). Electricity price predictions are trivial when
the price is constant or when there are two prices. When
prices vary hourly, we can use the day-ahead prediction
that is provided by the utility for each day [1]. Typically,
these day-ahead prices are reasonably good predictions
of actual prices. For predicting load intensities, we con-
sider Auto-Regressive Moving Average (ARMA) mod-
eling [3]. We do not attempt to predict C DF;. Instead,

Characteristic Optimization CA-Heuristic
(EPrice & GreenDC)
Accounting period 1 day 1 day
Epoch length 4 hours 1 hour

Load predictions

Per front-end
for entire day

Per front-end
for next hour

Energy price predictions Entire day Next hour
Recomputation decision | Epoch boundary | Epoch boundary
Communication with DCs Yes Yes

Table 2: Main characteristics of distribution approaches.

we assume the current C D F; tables as predictions.

We cannot use fast Linear Programming (LP) solvers,
because solving for an entire day at once involves a few
non-linear functions (e.g., BCost; and CDF;). Instead
of LP, we use Simulated Annealing [7] and divide the day
into six 4-hour epochs, i.e. ¢ = 1..6. We will consider
running an LP solver every hour in our future work.

Because the assumptions/predictions that we
make/use when computing a solution may become
invalid/inaccurate over time, we must check for devia-
tions. If there is any significant deviation at an epoch
boundary, we recompute the solution. We must also
recompute if a data center becomes unavailable (or, in
our second formulation, the green energy expires at a
data center). In practice, recomputations occur at the
granularity of multiple hours.

After a recomputation and every hour, the front-ends
inform the data centers about their predicted loads for the
next hour, so that they can reconfigure. The “Optimiza-
tion” column of Table 2 summarizes our approach.

2.3 Heuristics-Based Request Distribution

We also propose a heuristic policy (CA-Heuristic) that
is still cost-aware, but is simpler and less computation-
ally intensive than the optimization-based approach. The
heuristic is greedy and uses 1-hour epochs. At each
epoch boundary, each front-end computes R = P x I (the
number of requests that must have lower latency than L),
where E is the number of requests the front-end expects
in the next epoch. E can be predicted using ARMA for
each front-end. Each front-end also orders the data cen-
ters that have CDF;(L, LC;) > P according to the ratio
Cost;(t)/CDF;(L, LC;), from lowest to highest ratio.
The remaining data centers are ordered by the same ra-
tio. A final list, called MainOrder, is created by concate-
nating the two lists of data centers.

Requests are forwarded to the first data center in Main-
Order until its capacity is met. At that point, new re-
quests are forwarded to the next data center on the list
and so on. After the front-end has served R requests in
less than L time, it can disregard MainOrder and start
forwarding requests to the cheapest data center (lowest
Cost;(t)) until its capacity is met. At that point, the next




Data Center Brown energy | Green energy | Capacity
(cents/KWh) (cents/KWh) (reqs/s)
DC 1 (West US) 11.1 15.0 (solar) 125
DC 2 (East US) 11.7 — 215
DC 3 (Europe) 9.7 8.0 (wind) 125

Table 3: Default simulation parameters. Capacities have been
scaled down to match our request trace.

cheapest data center can be exercised and so on.

If the prediction of the number of requests to be re-
ceived in an epoch consistently underestimates the of-
fered load, serving R requests within L time may not
be enough to satisfy the SLA. To prevent this situation,
whenever the prediction is inaccurate, the heuristic ad-
justs the R value for the next epoch to compensate.

At each epoch boundary, the front-ends inform the
centers about their predicted loads for the next epoch.
The last column of Table 2 overviews our heuristic.

3 Evaluation
3.1 Methodology

We implemented a simulator of a large Internet service.
For simplicity, we simulate a single front-end located on
the East Coast of the US. The front-end distributes re-
quests to 3 data centers, each of them located on the West
Coast, on the East Coast, and in Central Europe.

Request trace. Our day-long trace is a representative
fraction of the requests received by Ask.com. Figure
1 shows the 90th percentile of the actual and ARMA-
predicted request rates during each hour. The figure
shows that the ARMA predictions are very accurate.
Our trace does not include response times. To generate
realistic data center response times, we installed a simple
service on 3 PlanetLab machines in the right time zones.
The requests were made from a machine at Rutgers, i.e.
our front-end. We assume that the average raw process-
ing time of each request is 200 ms. To mimic the effect
of load intensity and network congestion, we increase the
response times based on the load offered to each center
(5% increase in time for each 25% increase in load).

Electricity prices, sources, and time zones. We simu-
late schemes with one electricity price, two prices (on/off
peak), and hourly prices. For the on/off-peak scheme
(On/Off), off-peak hours are from 9pm to 7am. For
the hourly scheme (Dynamic), Figure 2 shows the day-
ahead and actual brown electricity prices we use [1].
The day-ahead prices predict trends fairly accurately, but
not absolute prices. To mimic different brown electric-
ity prices for each data center, we simply shift our de-
fault prices 3 hours earlier or 6 hours later. To make all
pricing schemes comparable, the prices for the constant
and on/off-peak schemes are computed based on the real
prices in Figure 2. When we consider green data cen-

ters, their electricity price is always assumed constant.
We also assume that the amount of green energy avail-
able daily at each green site is enough to process 25% of
the requests in the trace. The constant brown and green
prices are listed in Table 3.

Other parameters. We assume that a request consumes
60 J of dynamic energy to process by 2 machines, includ-
ing cooling, conversion, and delivery overheads. This is
equivalent to consuming 150 W of dynamic power per
machine during request processing. By default, we study
machines that are fully energy-proportional [2], i.e. they
consume no base energy. In addition, we study the im-
pact of this assumption. The SLA requires 90% of the
requests to complete in 700 ms (processing time plus 500
ms) or less. The SLA was satisfied at the end of the ac-
counting period (one day) in all our simulations. Table 3
lists the data center capacities.

Cost-unaware distribution.  As the simplest basis
for comparison, we use a cost-unaware policy (CU-
Heuristic) that is similar to CA-Heuristic. It orders data
centers according to performance, i.e. CDF;(L,LC;),
from highest to lowest. Requests are forwarded to the
first data center on the list until its capacity is met. At
that point, new requests are forwarded to the next data
center on the list and so on. Data center reconfiguration
happens as in CA-Heuristic.

3.2 Results

Effect of cost-awareness and pricing scheme. Figure
3 depicts the energy cost of the EPrice, CA-Heuristic,
and CU-Heuristic policies under the three (brown) elec-
tricity pricing schemes. The figure shows many im-
portant results: (1) As expected, both cost-aware poli-
cies reduce costs compared to CU-Heuristic, even under
constant pricing; (2) the On/Off and Dynamic schemes
enable significant cost reductions compared to constant
pricing, especially under EPrice; and (3) EPrice always
achieves lower cost than CA-Heuristic. In fact, combin-
ing cost-awareness and dynamic pricing enables EPrice
to reduce cost by 25%. In general, EPrice behaves better
than CA-Heuristic because it often uses the cheapest but
worst-performing data center (Europe), instead of the ex-
pensive but best-performing data center (US East Coast).
The reason is that EPrice predicts that it can compen-
sate for the poor performance of the European data center
during future periods of low load.

Effect of time zones. Figure 3 assumes that each data
center is in a different time zone. When this is not the
case, serving a request costs the same at any data center.
For this reason, all policies achieve the same cost, regard-
less of pricing scheme. This cost is slightly higher than
that of CU-Heuristic in Figure 3, suggesting that multiple
time zones are critical to enable cost savings.
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Figure 1: Actual and predicted load intensities.
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Figure 2: Actual and day-ahead brown electricity prices.
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Figure 3: Pricing and cost-awareness.

Effect of green data centers. Figure 4 depicts the cost
and brown energy consumption of the GreenDC policy,
CA-Heuristic, and CU-Heuristic, under dynamic pricing.
The results are normalized against the default results for
EPrice with dynamic pricing (“All-Brown”), i.e. the left-
most bar in Figure 3. Figure 4 shows that GreenDC can
decrease brown energy consumption by 35% by leverag-
ing the green data centers at only a 3% cost increase. The
heuristic policies save substantially less brown energy at
much higher costs than GreenDC. Again, the reason is
that the heuristic policies often use the East Coast data
center, instead of the wind-based European data center.

Effect of base energy. The results above all assume
that servers do not consume any power when idle. Fig-
ure 5 quantifies the effect of the base energy by com-
paring the default results for EPrice, CA-Heuristic, and
CU-Heuristic to those when a server consumes 75W and
150W when idle. We assume that no data center con-
sumes green energy. This figure shows that increasing
the base energy reduces the cost savings achievable by
our optimization approach. The gains are smallest (but
still non-trivial) for Base = 150W. This result shows that
the benefits of our approach will increase with time, as
servers become more energy-proportional.

4 Conclusions

In this paper, we proposed a framework for optimization-
based request distribution in multi-data-center Internet
services. We also proposed two policies for managing
these services’ energy consumption and cost, while re-

Figure 4: Green data centers.
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Figure 5: Base energy.
specting their SLAs. The policies take advantage of time
zones, variable electricity prices, and green energy. Fi-

nally, we proposed a simple heuristic for achieving the
same goals. Our evaluation showed positive results.
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