
Space-shared and frequency scaling based task scheduler for many-
core OS

András Vajda
Group Function Technology, Ericsson

Hirsalantie 11, Jorvas, Finland
andras.vajda@ericsson.com

ABSTRACT
It is predicted that within the next decade chips with
several 100s or 1000s of processor cores will be
possible to build and will become available [1].
However, efficient usage of many-core chips will have
to overcome the limits imposed by Amdahl’s law ([3],
[4]). In this paper we introduce a novel task scheduling
method for chip multi-processors with at least several
tens, but scaling up to thousands of cores. It relies on a
few principles: space-shared approach for scheduling
processes on a many-core chip; adapting performance
of individual cores and the chip as a whole by
controlled and scheduled variation of the frequency at
which different cores execute, in contrast with today’s
thread migration strategies; reliance on application-
generated requests for computing resources instead of
thread assignment policies in the operating system.

Keywords
Multi-core systems on chip, parallel programming
models, operating systems, Amdahl’s law

INTRODUCTION
The computing industry’s development over the last
three decades has been largely defined by a dramatic
increase of the available computing power, driven
primarily by the self-fulfillment of Moore’s law.
Recently this development has been heavily impacted
by the inability to scale performance further through
increased frequency and complexity of processor
devices, due primarily to power and cooling issues; as
an answer, the industry turned to chip-multiprocessors
(CMP) or multi-core devices. It is predicted that the
advancement of manufacturing technology – in fact,
the continued development according to Moore’s law –
will allow for chips with 100s or even 1000s of
processor cores within the next decade.
Chip multiprocessors pose however new requirements
on operating systems and applications. It has been
shown by several studies (e.g.[2]) that current
symmetric multi-processing, time-shared operating
systems will be difficult to scale to several tens,
hundreds or thousands of processor cores. On the
application side, Amdahl’s law ([3], [4]) will put a
limit to the amount of performance increase that can be

achieved even for highly parallelized applications,
assuming static symmetric or asymmetric CMPs.
Better scalability could theoretically be obtained with
chips where computing resources can be utilized either
as several cores executing in parallel (for the execution
of the parallel sections of the applications) or as a
single, fast, powerful core for running the single-
threaded, sequential portions of the applications ([4]).
However, so far only small-scale proposals were put
forward relying mostly on ILP.
In this paper, we suggest a different approach, which
however is possible to realize with existing HW
technology. As we’ll detail it in further sections, it
relies on dynamically adjusting the frequency at which
the cores execute, temporarily boosting the frequency
of selected – very few – cores in order to cope with the
demands put by single-threaded portions of the
applications. As long as sequential code amounts for a
small fraction of the applications, this shall be possible
without breaking the limits set by the overall power
envelope and without overheating the chip. Running
cores at various frequencies and adjusting these ‘on-
the-fly’ shall be feasible, see [1].
On top of this mechanism we build a scheduling
algorithm relying on geometry-aware space-sharing of
processing cores and securing that overheating,
breaking of the power envelope and big hotspots are
avoided. The focus of the paper is OS scheduling
under the assumption of available hardware, hence the
realization alternatives in hardware are beyond the
scope of this paper.

ANALYSIS OF THE FREQUENCY SCALING
APPROACH
In our model we start from the assumptions that (a)
each application has a certain amount of cores
exclusively allocated to it and (b) when the sequential
portion of the application is executing, only one core
will actively execute application code.
Based on these assumptions, we conclude that when
the sequential portion of the application is executing,
all but one of the cores allocated to the application can
be switched completely off and the available power
used for temporarily boosting the performance of the
single core that will execute the sequential code.

mailto:andras.vajda@ericsson.com

In [4] a model for applying Amdahl’s law to dynamic
multi-core chips was introduced. Based on that model,
if we assume that for the duration of the execution of
the sequential code all other cores would be switched
off and once core’s performance would be enhanced,
we would actually get a much better result, close to
linear speed-up, even for applications with a sizable
sequential portion.

Hardware considerations
In [1], a HW design with three levels of execution
frequency for each core – 0, 0,5x, 1x – was proposed.
That approach allowed for the usage of only two
voltages (nominal and 0,7x). However, in order to
achieve a better scaling of applications with sequential
code, more fine-grained granularity is needed. Even
for 1024 and 2048 core systems however we believe
five frequency levels (0, 1x, 2x, 4x, 8x) will suffice,
with an acceptable impact on performance. All cores
shall support at least levels 0 and 1x.
In practice, this means that at least some cores shall be
able to execute – for a limited amount of time – at
frequencies up to 8 times higher than the usual
frequency. We will call these cores scalable cores
while for the other cores we’ll use the term non-
scalable cores. Having just 4 levels of frequency,
issues related to input voltages, power delivery and
synchronization shall be possible to manage with a
reasonable amount of extra logic and without
increasing latency or impacting meta-stability.
However, this requires further architecture studies,
beyond the scope of this paper. It’s important to note,
that the nominal frequency shall not be the maximum
frequency that the core is capable of running at for a
sustained period of time; indeed, assuming workloads
that are primarily parallel and thus can take advantage
of high number of cores, it’s more economical to have
chips with cores running at low frequencies (e.g. few
hundreds of MHz) as their nominal 1x frequency and
instead have support for radical scale-up when
necessary. For practical reasons the scalable cores are
assumed to be fixed during chip design.
These scaling values are possible to obtain for just one
core at a time for a given chip with the given number
of cores (e.g. on a 64 core chip, only one core can run
at 4x speed while all other cores are shut off). Thus,
it’s important to analyze how many cores can run on a
given chip at 2x, 4x, 8x speeds simultaneously,
without breaking the power envelope, based on the
assumption that power is function of square of
frequency, an approximation of real world values
between power of 2 and 3, 2 being the worse case
assumption. The results are shown below; each value
indicates the maximum number of cores that can run at

a specific frequency level, on a chip with a given
number of cores.

Number of cores 8 16 32 64 256 1024 2048

Speed-up factor

2 1 2 4 8 32 128 256

4 0 0 1 1 4 16 32

8 0 0 0 0 1 2 4

SPACE-SHARED SCHEDULING
Concepts
The concept of space-shared OS has been suggested on
several occasions, most notably in [2], [5], [12]. The
basic idea is that the OS executes as services on some
of the cores, while all the other cores execute just a
microkernel without threading support. Cores are
allocated to applications upon request.
We build on this model when introducing our
scheduling algorithm proposal. We start from the
current approach for single-core chips where the
computational resource managed by the OS is the time
of the single processor core, but we replace this with
another quantity, the total power the many-core chip
may use to execute applications. This global resource
is allocated to applications through two resources:
cores and frequencies at which these cores execute.
Each application will be allocated a number of
processor cores, but the total computing power of
these - the frequency at which these will execute – will
be adjusted based on application needs – expressed as
resource requests – and competing resource requests,
within the limits set by the amount of scalable cores
allocated to an application, the maximum frequency
scaling factor that can be used for those cores and the
total power budget of the chip.
Each application may request two types of computing
resources from the OS, much in the same way as
allocating memory. The first type of resource is
processor core resource, which may be of type non-
scalable (fixed frequency) or scalable (scalable
frequency). The allocation of this type of resource can
occur at any time (at application start-up or during
execution), based on application requests. The second
type of resource is execution speed. There are two
scenarios for an application to request such resources:
(1) temporary frequency boost/restore to normal for
the scalable cores allocated to it and (2) shut
off/restore to normal for a core allocated to it.
From application perspective, the algorithm assumes a
behavior similar to handling memory today: (a) the
application shall specify its minimal initial computing
power requirements at startup; (b) the application shall
request shutting off cores when cores are not needed
any further; (c) the application shall request frequency

boosting as a resource allocation request; (d) the
application is responsible for requesting restoring to
normal operating frequency of any core that was
previously shut down; (e) the application is
responsible for requesting allocation/release of
processor cores of various types.
These requirements are in-line with the approach that
processing resources are managed similarly to other
OS-provided resources such as memory. It does
require a shift from today’s approach where the
application just provides a set of threads that the OS
will deploy on available resources; in our approach,
the application itself is responsible to decide on which
processor core a certain computation is executed.

Space-shared, frequency scaling scheduling
algorithm
The scheduling solution relies on the following
principles:
• Processor cores are space-shared rather than time-
shared - each core is allocated to only one application
• Allocation of processor cores is geometry aware, in
the sense that the system will group resources allocated
to the same application close to each other
• The OS will only shut off or free up allocated
processor cores at the explicit request of the
application or when the application exits
• The OS may adjust the speed of individual scalable
cores if needed to accommodate new requests, but
always based on requests from applications, similarly
to memory allocation requests
• All non-allocated cores are kept in shut-off state
• Processing resource requests will have a wait time
attached; a request with a zero wait time will return
immediately – either with allocated resources or a
negative response; a request with a positive wait-time
will either return immediately with successfully
allocated resources or will be deferred until it can be
fulfilled or the timer expires.
The algorithm works as follows:
1. At start cores not executing OS code are shut off
2. When a new application is started, it gets allocated,
if possible, the amount of processor cores it indicates.
Initially, all cores are started at normal, 1x speed.
Allocation of processor cores is possible if power
requirements can be met (see below)
3. When an application requests the allocation of
more processor cores, the request will be fulfilled if
power requirements can be met (see below)
4. The OS actively re-calculates power budgets every
time a application requests shut off or restore of

individual cores and will process pending requests if
possible; restoring will only succeed if power
requirements can be met (see below)
5. When an application requests frequency boosting
or restoring for a core, the OS will fulfill the request to
the extent that the result does not go over the overall
power budget; if the application has a priority that may
trigger re-scheduling of power budgets, such re-
scheduling will be performed. If the request was to
reduce frequency, the OS will process pending
resource requests.
6. The OS shall keep track of the period for which a
scalable core was running at boosted frequency; in
order to avoid over-heating of the chip, the frequency
shall be scaled back after the pre-set maximum amount
of time the core is allowed to run at such high
frequency; the scale-back will also trigger re-
scheduling and servicing of outstanding requests. A
possible enhancement of this technique is to monitor
the amount of time a core needs to ‘cool down’ after
running at high frequency; for this period of time, the
core shall not support frequency boosting.
Power requirements are said to be met if (a) the
resulting power budget does not exceeds the total
budget, or (b) the application has a priority level that
triggers re-scheduling and the re-scheduling results in
having enough power budget freed up.
Re-scheduling of resource allocations is a key
component of our proposal. It will occur every time
when a request cannot be fulfilled without over-
stepping the power budget and the requesting
application has a higher priority than at least some of
the other executing applications. During re-scheduling
the OS will basically modify the clocking of
frequency-boosted cores. As we stated before, an
already allocated core is never taken away forcefully
by the OS, neither is it shut down. This is a pre-
requisite to allow applications to perform correctly.
However, modifying the frequency at which single-
threaded portions of lower-prioritized applications
execute is a sensible way of prioritizing applications,
without starving any. Hence, the OS will calculate how
much it shall reduce the frequency scaling factor of
some of the scalable cores executing lower-prioritized
applications in order to fit in the power budget the
requirements of higher prioritized applications. The
applications will be notified about the change and the
application with higher priority will get its resources
allocated. There may be several different policies used
by the scheduler such as spreading the scale-back as
evenly as possible to several applications, reducing the
impact on each individual application, but impacting
several applications; or focusing on just enough

applications (with the lowest priorities) to free up
sufficient power budget to fulfill the request.
Requests with non-zero wait time that cannot be
fulfilled will be queued and will be serviced based on
the priority of the application making the request. If a
request cannot be fulfilled before its timer expires, the
request will be rejected and the application notified.

PERFORMANCE ANALYSIS
The scheduling algorithm will handle two types of
resources: non-scalable cores and scalable-cores. Both
of these resources scale – quantity-wise – linearly with
the total number of cores; in fact, the maximum
number of scalable cores is n/8, where n is the total
number of processor cores in the chip.
From an algorithmic point of view, the scheduling
algorithm will perform two tasks: keeping track of
allocated cores (which core to which application) and
performing re-scheduling calculations. The first task is
complexity-wise quite similar to memory management
and there are algorithms with a constant complexity,
not dependent upon the actual number of resources or
users (number of cores and amount of applications).
The task of re-scheduling depends on the number of
scalable cores. In fact, every time a re-scheduling is
needed, the scheduler will perform the following steps:
• Step 1: Identify the number of scalable cores that
are candidate for scaling back: these are cores
allocated to applications with priority lower than the
application whose request that triggered the re-
scheduling. As this information may be stored for each
active scalable core (limited to n/8), it can be obtained
by traversing a list with n/8 elements, yielding a
complexity of O(n/8).
• Step 2: Out of the candidate scalable cores, the
algorithm shall select which shall have their frequency
reduced and by how much. The gain with each
frequency-step can be pre-calculated, hence the total
number of frequency changes can be easily calculated
independently of the total number of cores, but
dependent on the chosen policy; in any case it will be
limited to the number of scalable cores, hence O(n/8).
In conclusion, the complexity of the re-scheduling
algorithm will be O(n/8) in best case, with a worst case
complexity of O(n/4), hence scaling linearly with the
potential number of scalable cores and involves.
Concerning memory, the scheduler has to store only
four pieces of information for each scalable core – to
which application it is allocated, current frequency
scaling factor, dead-line until it can execute at this
frequency and application priority (for performance
reasons) – the amount of memory needed for even a
1024 core system will be just a few kilobytes. For each

non-scalable cores information such as current state
(on/off) and application information (identity) needs to
be stored, adding a few extra kilobytes.
An issue that needs to be considered is the access
latency and speed to memory and buses. There are a
number of potential ways to address these issues,
namely, using intelligent placing of data in memory,
design of big enough on-chip local memory around
scalable cores, pre-fetching of data just before entering
the single-threaded portion (for both data and code),
sharing of on-chip memories between scalable and
non-scalable cores, with direct access from both cores
(memory local to one scalable and a few non-scalable
cores) etc. These issues need to be addressed; however
we consider these beyond the scope of this paper.

Empirical evaluation
Empirical evaluation was done using a cycle-by-cycle
simulator. The simulator was executing workloads
defined in a table on an abstract HW defined in terms
of total number of cores, number of scalable cores and
number of non-scalable cores. The workloads were
defined in terms of stages. Each stage is either
sequential requiring one scalable core for a certain
amount of instructions, or parallel, requiring a
configured number of non-scalable cores, each
executing a configured number of instructions. Each
simulation was run up to a pre-configured number of
cycles, sufficient to execute all the workloads. For
simplicity, memory access issues were not considered
and it was assumed that a core running at say, 4x speed
can execute 4 instructions for each ‘regular’ cycle.
For the simulation we used 64 cores and seven
scenarios, each with 1-4 workloads. Each workload
contained two or three stages, usually one or two short
sequential and one parallel stage. The degrees of
parallelism chosen were f = 0.63, 0.98, 0.99 and 0.999.
The seven scenarios were: (I) one workload, f = 0.999,
62 non-scalable cores; (II) two workloads, both at the
same priority level, both with f = 0.999, both using 30
non-scalable cores; (III) two workloads with f = 0.999,
both using 40 non-scalable cores, but running at
different priorities; (IV) four different workloads, each
using 15 non-scalable cores, at the same priority; (V)
same workloads as in III, but each using 30 non-
scalable cores at different priority levels (f=0.999);
(VI) same as scenario V, in reverse priority order;
(VII) one workload (f=0.999), 15 non-scalable cores.
In the results table the rows represent workloads; the
columns contain the measured speedup (2); speedup
achievable according to [4] (3); total amount of cycles
needed on a single core (4); total amount of cycles
needed to execute the scenario (5); power used to
execute the scenario (6).

A few notes on the results: the speedup according to
Amdahl’s law assumes that specific workloads execute
alone, while the empirical result is observed while all
the workloads are executed at the same time; the
consumed power is calculated assuming 1 unit/1
cycle/1 non-scalable core, and (frequency
factor)*(frequency factor) /1 cycle/1 scalable core; the
simulator did not increase the frequency to the
maximum available in one step, but rather in several
smaller steps, each time with a factor of 2x. However,
this proved to be a good way to factor in HW latency
when adjusting frequencies.

Figure 1 Empirical results

In non-resource constrained scenarios (I, II, IV, VII)
the algorithm matches or outperforms the scalability
predicted by Amdahl’s law; e.g. in scenario VII the
performance is 55% better due to shutting off all cores
but one for the sequential part of the application. The
processor utilization expressed as consumed power
stayed at or above 95% for 75% percent of the time
and never drops below the 66% level for all scenarios.

RELATED WORK
An evaluation of technological issues for building
1000 core chips was done in [1], with the conclusion
that voltage and frequency scaling has the potential of
providing good theoretical performance within a
limited power budget. It also proposes the usage of
simpler cores, in line with [7], proposing a method for
estimating the optimal size of processor cores; the
proposal for implementing multiple clock domains
with dynamic voltage and frequency scaling in [11]
lays the architectural groundwork for the algorithm
described in this paper. Various many-core OSes (fOS,
Barrelfish, Corey) are described in [2], [12] and [13].
Scheduling algorithms for heterogeneous CMP
systems were proposed in [6], [8], [9] and [10]. All
rely however on static, heterogeneous architectures
and thus propose various thread migration policies.
[10] describes an approach based on architectural
signatures, with hints about the cores on which the

applications shall be scheduled. This is however
statically defined and hence has a limitation with
regards to which application characteristics can be
taken into account.

REFERENCES
1. Borkar, S. Thousand Core Chips – A Technology

Perspective. In Proceedings of DAC, 2007
2. Wentzlaff, D., Agarwal, A. The Case for a Factored

Operating System. MIT CSAIL Report, 2008
3. Amdahl, G.M. Validity of the Single-Processor

Approach to Achieving Large Scale Computing
Capabilities. In AFIPS Proceedings, 1967.

4. Hill, M.D., Marty, M.R. Amdahl’s Law in the
Multicore Era. IEEE Computer, July 2008.

5. Smith, B. Many-core Operating Systems, WIOSCA,
keynote speech, in conjunction with ISCA-34, 2007

6. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi,
N.P., Farkas, K.I. Single-ISA Heterogeneous
Multi-Core Architectures for Multithreaded
Workload Performance. In Proceedings of ISCA-31

7. Agarwal, A., Levy, M. The KILL Rule for
Multicore. At 44th DAC, June 2007

8. Becchi,M., Crowley,P. Dynamic Thread
Assignment on Heterogeneous Multiprocessor
Architectures. Proceed-ings of the Conference on
Computing Frontiers, 2006

9. Fedorova, A., Vengerov, D., Doucette, D.
Operating System Scheduling on Heterogeneous
Core Systems. In Proceedings of the Workshop on
OS Support for Heterogeneous Multicore
Architectures, 2007

10. Shepelow, D., Fedorova, A. Scheduling on
Heterogeneous Multicore Processors Using
Architectural Signatures. In Proceedings of
WIOSCA, at ISCA-35, 2008

11. Semeraro, G., Magklis, G., Balasubramonian, R.,
Albonesi, D.H., Dwarkadas, S., Scott, M.L.
Energy-efficient Processor Design Using Multiple
Clock Domains with Dynamic Voltage and
Frequency Scaling. In HPCA, February 2002

12. Boyd-Wickizer S. et al. Corey: An Operating
System for Many Cores. In Proceedings of the 8th
USENIX OSDI Symposium, , 2008

13. Schüpbach, A., et. al. Embracing diversity in the
Barrelfish manycore operating system. At
Workshop on Managed Many-Core Systems, June
2008

	ABSTRACT
	Keywords

	INTRODUCTION
	ANALYSIS OF THE FREQUENCY SCALING APPROACH
	Hardware considerations

	SPACE-SHARED SCHEDULING
	Concepts
	Space-shared, frequency scaling scheduling algorithm

	PERFORMANCE ANALYSIS
	Empirical evaluation

	RELATED WORK
	REFERENCES

