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ABSTRACT 
It is predicted that within the next decade chips with 
several 100s or 1000s of processor cores will be 
possible to build and will become available [1]. 
However, efficient usage of many-core chips will have 
to overcome the limits imposed by Amdahl’s law ([3], 
[4]). In this paper we introduce a novel task scheduling 
method for chip multi-processors with at least several 
tens, but scaling up to thousands of cores. It relies on a 
few principles: space-shared approach for scheduling 
processes on a many-core chip; adapting performance 
of individual cores and the chip as a whole by 
controlled and scheduled variation of the frequency at 
which different cores execute, in contrast with today’s 
thread migration strategies; reliance on application-
generated requests for computing resources instead of 
thread assignment policies in the operating system.  
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INTRODUCTION 
The computing industry’s development over the last 
three decades has been largely defined by a dramatic 
increase of the available computing power, driven 
primarily by the self-fulfillment of Moore’s law. 
Recently this development has been heavily impacted 
by the inability to scale performance further through 
increased frequency and complexity of processor 
devices, due primarily to power and cooling issues; as 
an answer, the industry turned to chip-multiprocessors 
(CMP) or multi-core devices. It is predicted that the 
advancement of manufacturing technology – in fact, 
the continued development according to Moore’s law – 
will allow for chips with 100s or even 1000s of 
processor cores within the next decade.  
Chip multiprocessors pose however new requirements 
on operating systems and applications. It has been 
shown by several studies (e.g.[2]) that current 
symmetric multi-processing, time-shared operating 
systems will be difficult to scale to several tens, 
hundreds or thousands of processor cores. On the 
application side, Amdahl’s law ([3], [4]) will put a 
limit to the amount of performance increase that can be 

achieved even for highly parallelized applications, 
assuming static symmetric or asymmetric CMPs.  
Better scalability could theoretically be obtained with 
chips where computing resources can be utilized either 
as several cores executing in parallel (for the execution 
of the parallel sections of the applications) or as a 
single, fast, powerful core for running the single-
threaded, sequential portions of the applications ([4]).  
However, so far only small-scale proposals were put 
forward relying mostly on ILP.  
In this paper, we suggest a different approach, which 
however is possible to realize with existing HW 
technology. As we’ll detail it in further sections, it 
relies on dynamically adjusting the frequency at which 
the cores execute, temporarily boosting the frequency 
of selected – very few – cores in order to cope with the 
demands put by single-threaded portions of the 
applications. As long as sequential code amounts for a 
small fraction of the applications, this shall be possible 
without breaking the limits set by the overall power 
envelope and without overheating the chip. Running 
cores at various frequencies and adjusting these ‘on-
the-fly’ shall be feasible, see [1]. 
On top of this mechanism we build a scheduling 
algorithm relying on geometry-aware space-sharing of 
processing cores and securing that overheating, 
breaking of the power envelope and big hotspots are 
avoided. The focus of the paper is OS scheduling 
under the assumption of available hardware, hence the 
realization alternatives in hardware are beyond the 
scope of this paper.  

ANALYSIS OF THE FREQUENCY SCALING 
APPROACH 
In our model we start from the assumptions that (a) 
each application has a certain amount of cores 
exclusively allocated to it and (b) when the sequential 
portion of the application is executing, only one core 
will actively execute application code. 
Based on these assumptions, we conclude that when 
the sequential portion of the application is executing, 
all but one of the cores allocated to the application can 
be switched completely off and the available power 
used for temporarily boosting the performance of the 
single core that will execute the sequential code.  
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In [4] a model for applying Amdahl’s law to dynamic 
multi-core chips was introduced. Based on that model, 
if we assume that for the duration of the execution of 
the sequential code all other cores would be switched 
off and once core’s performance would be enhanced, 
we would actually get a much better result, close to 
linear speed-up, even for applications with a sizable 
sequential portion.  

Hardware considerations 
In [1], a HW design with three levels of execution 
frequency for each core – 0, 0,5x, 1x – was proposed. 
That approach allowed for the usage of only two 
voltages (nominal and 0,7x). However, in order to 
achieve a better scaling of applications with sequential 
code, more fine-grained granularity is needed. Even 
for 1024 and 2048 core systems however we believe 
five frequency levels (0, 1x, 2x, 4x, 8x) will suffice, 
with an acceptable impact on performance. All cores 
shall support at least levels 0 and 1x. 
In practice, this means that at least some cores shall be 
able to execute – for a limited amount of time – at 
frequencies up to 8 times higher than the usual 
frequency.  We will call these cores scalable cores 
while for the other cores we’ll use the term non-
scalable cores. Having just 4 levels of frequency, 
issues related to input voltages, power delivery and 
synchronization shall be possible to manage with a 
reasonable amount of extra logic and without 
increasing latency or impacting meta-stability. 
However, this requires further architecture studies, 
beyond the scope of this paper. It’s important to note, 
that the nominal frequency shall not be the maximum 
frequency that the core is capable of running at for a 
sustained period of time; indeed, assuming workloads 
that are primarily parallel and thus can take advantage 
of high number of cores, it’s more economical to have 
chips with cores running at low frequencies (e.g. few 
hundreds of MHz) as their nominal 1x frequency and 
instead have support for radical scale-up when 
necessary.  For practical reasons the scalable cores are 
assumed to be fixed during chip design.  
These scaling values are possible to obtain for just one 
core at a time for a given chip with the given number 
of cores (e.g. on a 64 core chip, only one core can run 
at 4x speed while all other cores are shut off). Thus, 
it’s important to analyze how many cores can run on a 
given chip at 2x, 4x, 8x speeds simultaneously, 
without breaking the power envelope, based on the 
assumption that power is function of square of 
frequency, an approximation of real world values 
between power of 2 and 3, 2 being the  worse case 
assumption. The results are shown below; each value 
indicates the maximum number of cores that can run at 

a specific frequency level, on a chip with a given 
number of cores. 

Number of cores 8 16 32 64 256 1024 2048 

Speed-up factor               

2 1 2 4 8 32 128 256 

4 0 0 1 1 4 16 32 

8 0 0 0 0 1 2 4 

SPACE-SHARED SCHEDULING 
Concepts 
The concept of space-shared OS has been suggested on 
several occasions, most notably in [2], [5], [12]. The 
basic idea is that the OS executes as services on some 
of the cores, while all the other cores execute just a 
microkernel without threading support. Cores are 
allocated to applications upon request.  
We build on this model when introducing our 
scheduling algorithm proposal. We start from the 
current approach for single-core chips where the 
computational resource managed by the OS is the time 
of the single processor core, but we replace this with 
another quantity, the total power the many-core chip 
may use to execute applications. This global resource 
is allocated to applications through two resources: 
cores and frequencies at which these cores execute. 
Each application will be allocated a number of 
processor cores, but the total computing power of 
these - the frequency at which these will execute – will 
be adjusted based on application needs – expressed as 
resource requests – and competing resource requests, 
within the limits set by the amount of scalable cores 
allocated to an application, the maximum frequency 
scaling factor that can be used for those cores and the 
total power budget of the chip.  
Each application may request two types of computing 
resources from the OS, much in the same way as 
allocating memory. The first type of resource is 
processor core resource, which may be of type non-
scalable (fixed frequency) or scalable (scalable 
frequency). The allocation of this type of resource can 
occur at any time (at application start-up or during 
execution), based on application requests.  The second 
type of resource is execution speed. There are two 
scenarios for an application to request such resources: 
(1) temporary frequency boost/restore to normal for 
the scalable cores allocated to it and (2) shut 
off/restore to normal for a core allocated to it.  
From application perspective, the algorithm assumes a 
behavior similar to handling memory today: (a) the 
application shall specify its minimal initial computing 
power requirements at startup; (b) the application shall 
request shutting off cores when cores are not needed 
any further; (c) the application shall request frequency 



boosting as a resource allocation request; (d) the 
application is responsible for requesting restoring to 
normal operating frequency of any core that was 
previously shut down; (e) the application is 
responsible for requesting allocation/release of 
processor cores of various types. 
These requirements are in-line with the approach that 
processing resources are managed similarly to other 
OS-provided resources such as memory. It does 
require a shift from today’s approach where the 
application just provides a set of threads that the OS 
will deploy on available resources; in our approach, 
the application itself is responsible to decide on which 
processor core a certain computation is executed. 

Space-shared, frequency scaling scheduling 
algorithm  
The scheduling solution relies on the following 
principles:  
• Processor cores are space-shared rather than time-
shared  - each core is allocated to only one application 
• Allocation of processor cores is geometry aware, in 
the sense that the system will group resources allocated 
to the same application close to each other 
• The OS will only shut off or free up allocated 
processor cores at the explicit request of the 
application or when the application exits 
• The OS may adjust the speed of individual scalable 
cores if needed to accommodate new requests, but 
always based on requests from applications, similarly 
to memory allocation  requests  
• All non-allocated cores are kept in shut-off state 
• Processing resource requests will have a wait time 
attached; a request with a zero wait time will return 
immediately – either with allocated resources or a 
negative response; a request with a positive wait-time 
will either return immediately with successfully 
allocated resources or will be deferred until it can be 
fulfilled or the timer expires.   
The algorithm works as follows:  
1. At start cores not executing OS code are shut off 
2. When a new application is started, it gets allocated, 
if possible, the amount of processor cores it indicates.  
Initially, all cores are started at normal, 1x speed. 
Allocation of processor cores is possible if  power 
requirements can be met (see below) 
3. When an application requests the allocation of 
more processor cores, the request will be fulfilled if 
power requirements can be met (see below) 
4. The OS actively re-calculates power budgets every 
time a application requests shut off or restore of 

individual cores and will process pending requests if 
possible; restoring will only succeed if  power 
requirements can be met (see below) 
5. When an application requests frequency boosting 
or restoring for a core, the OS will fulfill the request to 
the extent that the result does not go over the overall 
power budget; if the application has a priority that may 
trigger re-scheduling of power budgets, such re-
scheduling will be performed. If the request was to 
reduce frequency, the OS will process pending 
resource requests. 
6. The OS shall keep track of the period for which a 
scalable core was running at boosted frequency; in 
order to avoid over-heating of the chip, the frequency 
shall be scaled back after the pre-set maximum amount 
of time the core is allowed to run at such high 
frequency; the scale-back will also trigger re-
scheduling and servicing of outstanding requests. A 
possible enhancement of this technique is to monitor 
the amount of time a core needs to ‘cool down’ after 
running at high frequency; for this period of time, the 
core shall not support frequency boosting. 
Power requirements are said to be met if (a) the 
resulting power budget does not exceeds the total 
budget, or (b) the application has a priority level that 
triggers re-scheduling and the re-scheduling results in 
having enough power budget freed up.  
Re-scheduling of resource allocations is a key 
component of our proposal. It will occur every time 
when a request cannot be fulfilled without over-
stepping the power budget and the requesting 
application has a higher priority than at least some of 
the other executing applications. During re-scheduling 
the OS will basically modify the clocking of 
frequency-boosted cores. As we stated before, an 
already allocated core is never taken away forcefully 
by the OS, neither is it shut down. This is a pre-
requisite to allow applications to perform correctly. 
However, modifying the frequency at which single-
threaded portions of lower-prioritized applications 
execute is a sensible way of prioritizing applications, 
without starving any. Hence, the OS will calculate how 
much it shall reduce the frequency scaling factor of 
some of the scalable cores executing lower-prioritized 
applications in order to fit in the power budget the 
requirements of higher prioritized applications. The 
applications will be notified about the change and the 
application with higher priority will get its resources 
allocated. There may be several different policies used 
by the scheduler such as spreading the scale-back as 
evenly as possible to several applications, reducing the 
impact on each individual application, but impacting 
several applications; or focusing on just enough 



applications (with the lowest priorities) to free up 
sufficient power budget to fulfill the request. 
Requests with non-zero wait time that cannot be 
fulfilled will be queued and will be serviced based on 
the priority of the application making the request. If a 
request cannot be fulfilled before its timer expires, the 
request will be rejected and the application notified.  

PERFORMANCE ANALYSIS 
The scheduling algorithm will handle two types of 
resources: non-scalable cores and scalable-cores. Both 
of these resources scale – quantity-wise – linearly with 
the total number of cores; in fact, the maximum 
number of scalable cores is n/8, where n is the total 
number of processor cores in the chip.  
From an algorithmic point of view, the scheduling 
algorithm will perform two tasks: keeping track of 
allocated cores (which core to which application) and 
performing re-scheduling calculations. The first task is 
complexity-wise quite similar to memory management 
and there are algorithms with a constant complexity, 
not dependent upon the actual number of resources or 
users (number of cores and amount of applications). 
The task of re-scheduling depends on the number of 
scalable cores. In fact, every time a re-scheduling is 
needed, the scheduler will perform the following steps:  
• Step 1: Identify the number of scalable cores that 
are candidate for scaling back: these are cores 
allocated to applications with priority lower than the 
application whose request that triggered the re-
scheduling. As this information may be stored for each 
active scalable core (limited to n/8), it can be obtained 
by traversing a list with n/8 elements, yielding a 
complexity of O(n/8). 
• Step 2: Out of the candidate scalable cores, the 
algorithm shall select which shall have their frequency 
reduced and by how much. The gain with each 
frequency-step can be pre-calculated, hence the total 
number of frequency changes can be easily calculated 
independently of the total number of cores, but 
dependent on the chosen policy; in any case it will be 
limited to the number of scalable cores, hence O(n/8). 
In conclusion, the complexity of the re-scheduling 
algorithm will be O(n/8) in best case, with a worst case 
complexity of O(n/4), hence scaling linearly with the 
potential number of scalable cores and involves.  
Concerning memory, the scheduler has to store only 
four pieces of information for each scalable core – to 
which application it is allocated, current frequency 
scaling factor, dead-line until it can execute at this 
frequency and application priority (for performance 
reasons) – the amount of memory needed for even a 
1024 core system will be just a few kilobytes. For each 

non-scalable cores information such as current state 
(on/off) and application information (identity) needs to 
be stored, adding a few extra kilobytes.  
An issue that needs to be considered is the access 
latency and speed to memory and buses. There are a 
number of potential ways to address these issues, 
namely, using intelligent placing of data in memory, 
design of big enough on-chip local memory around 
scalable cores, pre-fetching of data just before entering 
the single-threaded portion (for both data and code), 
sharing of on-chip memories between scalable and 
non-scalable cores, with direct access from both cores 
(memory local to one scalable and a few non-scalable 
cores) etc. These issues need to be addressed; however 
we consider these beyond the scope of this paper.  

Empirical evaluation 
Empirical evaluation was done using a cycle-by-cycle 
simulator. The simulator was executing workloads 
defined in a table on an abstract HW defined in terms 
of total number of cores, number of scalable cores and 
number of non-scalable cores. The workloads were 
defined in terms of stages. Each stage is either 
sequential requiring one scalable core for a certain 
amount of instructions, or parallel, requiring a 
configured number of non-scalable cores, each 
executing a configured number of instructions. Each 
simulation was run up to a pre-configured number of 
cycles, sufficient to execute all the workloads. For 
simplicity, memory access issues were not considered 
and it was assumed that a core running at say, 4x speed 
can execute 4 instructions for each ‘regular’ cycle. 
For the simulation we used 64 cores and seven 
scenarios, each with 1-4 workloads. Each workload 
contained two or three stages, usually one or two short 
sequential and one parallel stage. The degrees of 
parallelism chosen were f = 0.63, 0.98, 0.99 and 0.999.  
The seven scenarios were: (I) one workload, f = 0.999, 
62 non-scalable cores; (II) two workloads, both at the 
same priority level, both with f = 0.999, both using 30 
non-scalable cores; (III) two workloads with f = 0.999, 
both using 40 non-scalable cores, but running at 
different priorities; (IV) four different workloads, each 
using 15 non-scalable cores, at the same priority; (V) 
same workloads as in III, but each using 30 non-
scalable cores at different priority levels (f=0.999); 
(VI) same as scenario V, in reverse priority order; 
(VII) one workload (f=0.999), 15 non-scalable cores. 
In the results table the rows represent workloads; the 
columns contain the measured speedup (2); speedup 
achievable according to [4] (3); total amount of cycles 
needed on a single core (4); total amount of cycles 
needed to execute the scenario (5); power used to 
execute the scenario (6). 



A few notes on the results: the speedup according to 
Amdahl’s law assumes that specific workloads execute 
alone, while the empirical result is observed while all 
the workloads are executed at the same time; the 
consumed power is calculated assuming 1 unit/1 
cycle/1 non-scalable core, and (frequency 
factor)*(frequency factor) /1 cycle/1 scalable core; the 
simulator did not increase the frequency to the 
maximum available in one step, but rather in several 
smaller steps, each time with a factor of 2x. However, 
this proved to be a good way to factor in HW latency 
when adjusting frequencies.  

 
Figure 1 Empirical results 

In non-resource constrained scenarios (I, II, IV, VII) 
the algorithm matches or outperforms the scalability 
predicted by Amdahl’s law; e.g. in scenario VII the 
performance is 55% better due to shutting off all cores 
but one for the sequential part of the application. The 
processor utilization expressed as consumed power 
stayed at or above 95% for 75% percent of the time 
and never drops below the 66% level for all scenarios.  

RELATED WORK 
An evaluation of technological issues for building 
1000 core chips was done in [1], with the conclusion 
that voltage and frequency scaling has the potential of 
providing good theoretical performance within a 
limited power budget. It also proposes the usage of 
simpler cores, in line with [7], proposing a method for 
estimating the optimal size of processor cores; the 
proposal for implementing multiple clock domains 
with dynamic voltage and frequency scaling in [11] 
lays the architectural groundwork for the algorithm 
described in this paper. Various many-core OSes (fOS, 
Barrelfish, Corey) are described in [2], [12] and [13].  
Scheduling algorithms for heterogeneous CMP 
systems were proposed in [6], [8], [9] and [10]. All 
rely however on static, heterogeneous architectures 
and thus propose various thread migration policies. 
[10] describes an approach based on architectural 
signatures, with hints about the cores on which the 

applications shall be scheduled. This is however 
statically defined and hence has a limitation with 
regards to which application characteristics can be 
taken into account.  
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