
The Case for a Versatile Storage System

Samer Al-Kiswany, Abdullah Gharaibeh, Matei Ripeanu
Electrical and Computer Engineering Department, The University of British Columbia

{samera, abdullah, matei}@ece.ubc.ca
ABSTRACT
Storage systems in emerging large-scale (a.k.a. peta-scale)
computing systems often introduce a performance or scalability
bottleneck. To deal with these limitations we propose a new
operational approach: versatile storage, an application-optimized
and highly configurable storage system that harnesses node-local
resources, is configured and deployed at application deployment
time, and has a lifetime dependent on the application lifetime.
Our prototype evaluation, using synthetic and application-level
benchmarks, on a small cluster as well as on a 96K processor
machine, provides evidence that the versatile storage approach can
bring valuable benefits to large scale deployments in terms of
storage system performance and scalability.

Categories and Subject Descriptors
D.4.3 (Operating Systems): File Systems Management -
Distributed file systems. D.4.7 (Operating Systems): Organization
and Design - Distributed systems. C.4 (Performance of Systems)
Design studies.

General Terms
Performance, Design, Experimentation.

Keywords
Versatile storage system, Storage system specialization, Dynamic
deployment, High performance storage

1. INTRODUCTION
Today’s large-scale computing systems (e.g., supercomputers,
cloud computing infrastructures) aggregate thousands of
computing nodes and offer ample computational power. These
systems support applications that generate an intense storage
workload. For instance, large-scale data-intensive scientific
applications [1, 2] often use thousands of compute nodes to
analyze terabytes of stored data. For such applications, the storage
system throughput and scalability play a key role in the overall
application performance. The risk is that the I/O system is the
bottleneck for an expensive set of compute resources.

Moreover, the applications that use these resources are highly
heterogeneous over multiple axes related to storage system usage
patterns and required semantics. These axes include: file
granularity, read vs. write workload composition (applications
may produce read- or write-only workload), data lifetimes, data
durability requirements (e.g., some files can be recomputed),
consistency requirements, data sharing levels (e.g., sometimes
thousands of nodes concurrently access the same data), and
security requirements (e.g., in terms of authentication, integrity
and confidentiality). Further, and equally important, data is rarely
shared between applications.

A one-size-fits-all storage system that serves such diverse
requirements while meeting the access throughput requirements of
data-intensive applications is particularly complex and costly.
Moreover, this approach often introduces a scalability bottleneck.

An alternative approach is specialization: that is, exploiting
workload characteristics to optimize the data store for application-
specific usage patterns. Google File System (GFS) [3] and PVFS
[4] are only two examples of this approach: GFS optimizes for
large datasets and append access patterns, while PVFS optimizes
for sequential reads/writes to large datasets.

Apart from specialization, a second opportunity is present in
the environments we target: underutilized resources. In batch-
oriented computing systems, applications are often allocated a set
of dedicated nodes for the duration of the application run. While a
central storage system may struggle to provide reasonable storage
performance, the node-local resources (storage space, IO channels,
sometimes memory) and the interconnections are often
underutilized yet ‘close’ to the running application.

Versatile storage is our solution to exploit these two
opportunities. Versatile storage aggregates node-local resources to
build a dedicated storage system that is optimized for the
application usage patterns and has a lifetime coupled to the
application’s lifetime. MosaStore, our versatile storage system
prototype, can aggregate the underutilized resources available on
cluster/commodity nodes allocated to the application. Unlike
specialized storage systems (e.g. GFS, PVFS) MosaStore provides
a broader set of optimizations that target specific workloads and
can be switched on/off and configured at deployment time.

The contribution of this paper is three fold: First, it proposes
‘versatile storage’: a storage-system-per-application deployment
approach in which a highly configurable storage system is
configured at deployment time as part of the application
initialization script and has a lifetime tied with the lifetime of the
application it supports. Multiple storage system instances may be
deployed at the same time to serve concurrently running
applications. Second, it presents a modular, configurable, and
extensible storage system architecture that supports a set of
application specific optimizations. Finally, it presents preliminary
experience deploying and evaluating MosaStore, our versatile
storage system prototype.

The rest of this paper presents the characteristics of the target
workloads that motivate our approach (Section 2), derives the
system requirements (Section 3), presents the MosaStore design
(Section 4) and preliminary experience deploying it (Section 5),
presents related work (Section 6), and concludes (Section 7).

2. WORKLOAD CHARACTERISTICS
To highlight the diversity of the workloads we target, and the
opportunity for application-specific optimizations, this section
presents three motivating scenarios for versatile storage, then
discusses in detail the characteristics of the workloads we aim to
support.

First, in a data parallel processing scenario, compute nodes
perform the same task on mutually disjoint subsets of a larger
dataset. For instance, BLAST [1], a popular bioinformatics
application, searches a set of novel protein sequences in a large
dataset of known sequences. Often the search set is partitioned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HotStorage’09, Octorber 11, 2009, Big Sky, MT, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

over thousands of compute nodes where each node matches a
subset of the proteins against the complete dataset, a scenario that
leads to an intense read load for the storage nodes holding the
dataset. This scenario is particularly demanding in large-scale
deployments in which a compute node’s local storage is not large
enough to hold the complete dataset, preventing caching it locally
and leading to a situation where all nodes access the dataset stored
on the central storage for each protein sequence [5]. A versatile
storage system that aggregates the nodes’ local storage to cache the
input dataset and is optimized for sequential read operations can
dramatically reduce the stress on the central storage and increase
system overall performance. While refactoring the application for a
different partitioning mechanism is possible, we are looking for
file-system level support that does not require application changes.

A second example is checkpointing. Long-running applications
periodically write large snapshots to the storage system to capture
their current state. In the event of a failure, applications recover by
rolling-back their execution state to a previously saved checkpoint.
The checkpoint operation and the associated data have unique
characteristics [6]. First, checkpointing is a write-intensive
operation. Second, checkpoint data is written once and often read
only in case of failure. Finally, consecutive checkpoint images
present the application state at consecutive time steps and hence
may have a high level of similarity. A versatile storage system that
can absorb the bursty checkpointing writes, reduce the data
transfers and storage space usage by detecting similarities between
checkpoint images, and asynchronously write the checkpoints to
the central storage can increase the system overall performance.

Third, workflow based processing, used by a large number of
scientific applications, is generally composed of three main phases:
stage-in input-data from central storage to the compute nodes local
storage, multiple computation stages that communicate through
intermediate files, and stage-out the final results to the central
storage. These three phases impose an intense workload on the
storage system: The stage-in and stage-out phases are composed of
sequential read-only, and sequential write-only, respectively,
operations by all the compute nodes. The computation phase
imposes an intense disjoint read/write access pattern. A shared
versatile storage system that is deployed with the workflow control
engine and aggregates the storage resources of allocated compute
nodes can offer the following advantages: reduce the load on the
central storage system in the stage-in phase by transferring
significantly fewer copies of the input data to the aggregate storage
space; reduce the overhead generated by the intermediate files’
operations in the computation phase by keeping the intermediate
files in the aggregate storage space, instead of the central storage;
and, for applications composed of many small tasks (e.g., BLAST),
increase the system performance by overlapping the transfer of
completed tasks’ results and the computation of the remaining
tasks in the stage-out phase.
Workload Characteristics: We classify applications' storage
workload along the following axes:
 Data life-time. While computation results generally need to be

durably stored, some files (e.g., workflow’s intermediate files
and checkpoint images) are only temporary.

 Read/Write composition. Large-scale scientific applications
often generate mostly read loads (e.g., bioinformatics sequence
matching), or mostly write workloads (e.g., checkpointing), or
different phases of the application generate different types of
workloads (e.g., workflows).

 Data compressibility. Some scientific applications generate
large outputs that are highly compressible by detecting
similarities across files (e.g., checkpointing, visualization data,
and Monte-Carlo simulations).

 Locality. Some applications exhibit high access locality, that is,
the working sets of multiple application instances running on
different nodes significantly overlap, while in other cases
application instances running on different nodes have disjoint
working sets.

 Consistency requirements. A large group of scientific
applications do not require consistency guarantees. In the space
defined so far, read-only workloads, such as the aforementioned
bioinformatics application, are a clear and extreme example.
Similarly, workloads with good locality leading to completely
disjoint read/write set (e.g., workflows and checkpointing) are
another example. Elsewhere in this space, the consistency
requirements cannot be inferred from workload properties and
depend entirely on the application semantics.

These characteristics can be exploited through different
optimization techniques to enhance storage system performance
with regard to different metrics. For instance, buffering can
dramatically enhance throughput for write only workloads.
Likewise, similarity detection mechanisms can save considerable
storage space for highly compressible workloads.

However, it is important to note that different optimizations
may negatively impact each other's performance. For instance,
consistency mechanisms often have a negative impact on write
throughput. Consequently, these optimizations do not generally
coexist on the same data pipeline.

3. VERSATILE STORAGE SYSTEM DESIGN
REQUIREMENTS

From the target computing systems and workload characteristics
detailed above, we derive the following requirements for a
versatile storage system design:
 Easy to deploy. A versatile storage system should be easy to

deploy as part of the application startup script. Further, it should
be able to access the system central storage for automatic data
pre-fetching or storing persistent data or results.

 Easy to integrate with applications. The storage system should
implement POSIX API to facilitate access to the aggregated
storage space, without requiring changes to the application.

 Easy to configure. The storage system should be easy to
configure and tune for an application workload and deployment
environment. This includes ability to control local resource
usage, in addition to controlling application-level storage
system semantics, such as file lifetime, consistency and data
reliability requirements.

 Performance and scalability. The storage system should
efficiently use the node-local storage and networking resources
to provide high performance access to the stored data, and it
should be able to scale to support thousands of compute nodes.

 Tunable security. Applications should be able to tune the
security level in terms of access control, data integrity, data
confidentiality, and accountability. Further, the security
mechanism should be compatible with the security
infrastructure deployed on exiting production systems.

 Range of consistency guarantees. The storage system should
provide a set of consistency models ranging from no-

consistency (e.g., suitable for read only workloads), to session
consistency, to application-specific consistency models.

 Efficient storage of partially similar data. The storage system
should enable optimizations for workloads producing partially
similar outputs, for example, by supporting versioning and
content-based addressability.

4. MOSASTORE ARCHITECTURE
This section presents an overview of MosaStore and discusses the
design of its main features.

4.1 Overview
MosaStore integrates three components: a metadata manager, a
number of donor nodes that contribute storage space to the system,
and the client-side System Access Interface (SAI). Datasets are
fragmented into smaller chunks that are striped across donor nodes
for fast storage and retrieval.
 The metadata manager maintains the entire system metadata
(e.g., donor node status, file chunk distribution and dataset
attributes). Similar to a number of other storage systems we
choose a metadata service decoupled from stored data.

 The donor nodes contribute storage space (memory or disk
based) to the system. Donor nodes interact with the manager to
publish their status using soft-state registration, serve clients’
chunk store/retrieve requests, and perform garbage collection.

 The system access interface (SAI) implements the mechanisms
to access the storage space and client side optimizations
including caching and content addressability functions. From an
application perspective, the SAI provides two methods to access
the storage system: a mountable kernel module that supports the
POSIX file system API and a storage system library that
facilitates direct integration with the application.

Data storage and retrieval operations are initiated by the client (the
SAI) via the manager. To retrieve a file, the SAI first contacts the
metadata manager to obtain the chunk-map (i.e., the location of all
chunks corresponding to the file). Then, the actual transfer of
chunks occurs directly between the storage nodes and the SAI. The
write operation follows a similar protocol. After the completion of
the write operation, the new data chunks are replicated
asynchronously in the system.

The following subsections present the design of MosaStore IO
pipeline (section 4.2), as well as that of the stages we have
experimented with to date: read/write optimizations (section 4.3),
content addressability (section 4.4), and configurable security
(section 4.5).

4.2 The Configurable IO Pipeline
To support a broad set of optimizations, the data pipeline at the
SAI is configurable (Figure 1). The pipeline includes a number of
fixed, yet configurable, stages and an extensible set of optimization
modules that can be enabled at configuration time.

The set of fixed modules (white modules in Figure 1) include
the following modules: The metadata operations module that
implements the mechanism to create/query metadata entries. The
buffer management module that manages the read/write buffers.
The IO request queue that effectively decouples the application
from the request processing (i.e., the application is released after
putting the IO request in the queue allowing the rest of the pipeline

operations to perform asynchronously). The dispatcher module that
creates multiple threads to handle the rest of the pipeline thus
enabling parallel processing to harness the host’s multicore
capabilities and parallel striping to multiple donor nodes. Finally,
the communication agent manages the network connection to the
donor nodes at the end of the pipeline.

The rest of the pipeline is composed of a set of modules (e.g.,
content addressability, consistency, data security, pre-fetching, and
data compression) whose existence, order in the pipeline, and
specific parameters are entirely configurable (grey modules in
Figure 1). Further, this set of optimization modules is extensible:
MosaStore provides a generic API that new modules must
implement. Moreover, the SAI implements a flow manager that
orchestrates the processing of these pipeline modules based on the
application provided configuration information.

To support the pipeline both the manager and the donor nodes
implement an extensible request-processing engine to process the
pipeline modules' requests. The extensibility of the request-
processing engine is necessary to facilitate developing pipeline
modules that require module-specific interaction with the manager
and/or donor nodes to support system-wide operations (e.g., they
may require access to metadata). The request-processing engine
loads the developer-defined modules that implement request
processing callbacks, dispatches requests to the appropriate
callback, and provides a stable interface to expose manager or
donor nodes’ internal state that may be needed for request
processing.

To configure the system at deployment time, the user specifies
through a configuration file which modules (e.g., optimization for
sequential access, content addressability) should be enabled and
their specific configuration. This requires that the user has some
information about the application’s generated workload and is able
to translate this information into specific configuration directives.
While these tasks are definitely not trivial, they are beyond the
scope of this paper.
4.3 Optimizations for High Throughput
The read/write optimization stage implements optimizations for
sequential read/write access, a frequent pattern in our target
workloads. For the read, MosaStore enables concurrent read ahead
operations: the SAI fetches multiple data chunks at the same time
to efficiently harness the node network connection. For writes, the
SAI writes to a stripe-width of donors to achieve maximum
throughput, and uses buffering to decouple the application write
operations from the actual data transfer to achieve higher
application perceived throughput.

4.4 Support for Content Based Addressability
Scientific applications often generate massive amounts of data,
sometimes with high data similarity. This property can be used to
reduce storage and data transfer requirements. Further, the
management of these files is simplified by supporting versioning to
maintain the tight relationship between related files. The challenge,
however, is to offer similarity detection at runtime without
operating system or application support. Addressing data by its
content supports this feature in a natural way. Thus, MosaStore
provides:

 Content-based chunk naming. MosaStore identifies data chunks

Figure 1. SAI configurable IO pipeline. A pipeline configuration example.

by the hash of their content. The current version supports equal-
sized chunks rather than variable size chunks whose boundaries
are determined based on content as well (e.g., similar to LBFS
[7]). The tradeoff is between the computational overheads to
detect chunk boundaries based on content and potential savings
in terms of storage and lower generated network traffic.

 Support for copy-on-write and versioning. MosaStore supports
versioning and copy-on-write so that chunks that are identified
as similar can be shared between different file versions. When a
new version of a file is produced, only the new chunks need to
be propagated to donor nodes. The new file version metadata
will integrate the information of the new chunks and the chunks
already stored.

4.5 Configurable Security
We aim to provide a number of configurable security levels [8]
allowing the administrator to enable/disable the following security
services: authentication, data confidentiality and integrity during
transfers and while stored on the donor nodes, and accountability
(the ability to identify malicious clients or donor nodes). The
complexity of the design is increased by the fact that we aim to
operate MosaStore in both completely trusted environments (e.g., a
cluster where the applications have dedicated nodes) and partially
trusted environments (e.g., a desktop grid where only the metadata
manager is hosted on a trusted node).

Security is integrated in the pipeline as multiple stages: for
instance, data channel security (i.e., transport integrity and
confidentiality) is part of the underlying communication layer
where it can be enabled or disabled, while stored data security
(e.g., integrity and confidentiality) is supported as a developer-
provided stage , that is a gray stage in Figure 1.

5. SYSTEM EVALUATION
The current prototype implements the pipeline described with all
its fixed components and two optimization modules: content
addressability and data security. We evaluated this prototype using
a range of benchmarks that focus on the performance of each
supported optimization independently. Due to space limitations we
only present here a large-scale experiment that evaluates
MosaStore’s scalability and performance and demonstrates our
ability to deploy and configure the versatile file system at
application deployment time – we use a synthetic workload as well
as a real workflow-processing application deployed on up to 96K
processors.

The MosaStore prototype has been deployed on the
BlueGene/P supercomputer at ANL – a peta-scale machine with
around 160K processors, served by a GPFS storage system with 24
IO servers (each with 20Gbps network connectivity), and with a
sustained IO rate of around 8GBps. The compute nodes are
diskless and mount a RAM disk for the OS. A complete
description of the application and the BlueGene/P platform is
presented in [5]. One characteristic worth mentioning is that the
application input data does not fit entirely in the memory of a
single compute node.

In the following experiments MosaStore is deployed as part of
the application startup script to aggregate the preciously little
RAM-based storage space available at each compute node such
that the input data can be staged-in and accessed locally by a pool
of compute nodes. The deployment is configured for optimized
sequential read/write access. As we argue in Section 2, a versatile
storage system brings benefits to all three stages of a workflow-
based application, mainly by offering a fast, intermediate data store

co-located with the application that reduces the demand on the
central storage.

Synthetic evaluation. Figure 2 presents the system throughput
while running two synthetic applications each running on up to
96K processors. To simulate a real data-intensive application that
generates intermediate files after computing for some time, each
synthetic application writes 1MB of data to the storage system
after waiting for 4sec or 32sec. The two applications differ only in
the wait time and, consequently, generate different loads on the
storage system. The applications are executed with three storage
configurations: GPFS – the applications write directly to the GPFS
deployed with the machine, GPFS+MosaStore (MS) – the
applications write to MosaStore aggregated memory-based storage,
and MosaStore asynchronously flushes the data to GPFS, and
RAM – the applications write to the local, RAM-based disk. This
configuration cannot be used in a real-world deployment (due to
limited space and lack of support for data-aware scheduling),
however it provides an upper bound for the achievable write
throughput.

Figure 2. The write throughput of two synthetic applications
(4sec and 32sec) running on up to 96K processors writing to:
GPFS, GPFS+MosaStore(MS), and local RAM. (source [5])

From this experiment (Figure 2) we can derive two
observations: First, in terms of performance, the application
writing through MosaStore achieves throughput close to the
maximum achievable write throughput (that achieved by directly
writing to the RAM of independent nodes) in spite of using a
centralized metadata service. Additionally, we note that MosaStore
enables one order of magnitude write throughput increase
compared to the deployed GPFS. Second, in terms of scalability,
while GPFS performance peaks at less than 250MBps, MosaStore
write throughput scales well with the number of nodes even under
this intense workload. Two reasons explain this performance
difference. First, while GPFS uses fixed number of dedicated
storage nodes and IO paths, MosaStore is able to exploit more
resources as the system incorporates more nodes. In particular,
MosaStore is able to transparently exploit the RAM based storage
at the compute nodes and the high bandwidth interconnect
compared to GPFS with fewer network connections and disk based
storage nodes. Second, unlike GPFS, MosaStore’s IO path is
optimized for sequential write operations with no consistency
checks, avoiding unnecessary overheads. This preliminary result
highlights the potential benefits the versatile storage approach can
bring to large scale computing systems.

Application-level evaluation. MosaStore was used [5] to
support DOCK6 [2], a compute bound bioinformatics application
that screens drug compounds against metabolic protein targets. The

protein dataset used by DOCK6 is larger than a single compute
node’s local storage. DOCK6 application is composed of three
main phases: first, it reads input, computes the docking, and writes
temporary results; second, it summarizes, sorts, and selects the
results; and, third, it archives the results. We deployed a
MosaStore instance per group of nodes, each group contains up to
256 nodes. This decision was made mainly to control the load on
MosaStore’s central manager, and to distribute the IO load on
more storage nodes. The later point is desirable since the current
prototype does not implement smart replication and data
placement. The experiment runs DOCK6 on 8K processors. While
MosaStore enables moderate improvements for the first (1.06x
faster) and third (1.51x faster) application phases, it enables an
11.76x performance improvement for the second phase. This
improvement is mainly explained by MosaStore's ability to store
the temporary files produced by the first application phase locally
and avoid shipping them to the central storage system. Overall,
MosaStore enabled 1.52x performance improvement for the
complete application. Further, running the first phase of DOCK6
workflow with MosaStore support on 96K processors achieved
1.12X application-level speedup, an expected moderate
enhancement for a compute-bound stage.

6. RELATED WORK
Workload-optimized storage systems. Building storage systems
geared for a particular class of I/O operations or for a specific
access pattern is not uncommon. For example, GFS [3] optimizes
for large datasets and append access; BAD-FS [9] optimizes for
batch job submission patterns over wide area network connections;
parallel file systems (PVFS [4], GPFS [10]) also target large
datasets and provide high I/O throughput for parallel applications.

Versatile storage differs in its design and deployment goals.
MosaStore aims to incorporate a broad set of optimization
techniques, enable high configurability at deployment time, and
support multiple applications through customized, per application
deployment.

Contributory storage. A number of storage systems [11, 12]
aggregate space contributions from collaborating nodes to provide
a shared data store. Their basic premise is the availability of a large
amount of idle disk space on nodes that are online for the vast
majority of the time. The specific technical solutions vary widely
as a result of different targeted deployment environments (local vs.
wide-area networks) and workloads (e.g., read/write vs. read-only).

Aspect-oriented systems. Finally, our work is in the spirit of
aspect-oriented system building, as different modules in
MosaStore’ data pipeline address different system needs. A recent
related effort in this direction, the FLUXO [13] project, aims to
separate Internet services logical functionality from the
architectural decisions made to support performance, scalability
and reliability. FLUXO approach is to profile the target application
load and restructure the service at compile time, to include
commonly used optimizations such as caching or replication.

7. SUMMARY AND FUTURE WORK
This paper proposes versatile storage: an operational approach for
efficient resource usage in emerging large-scale computing
systems. A versatile storage system implements a set of
optimization techniques and is highly configurable at deployment
time, such that application-specific workload can be exploited
through dedicated, per-application deployments. Further, such an
approach can be built at low cost by exploiting the underutilized
node-local resources and interconnect bandwidth. We developed

MosaStore, an initial versatile storage system prototype. Our
preliminary evaluation indicates that MosaStore can bring valuable
benefits to a diverse set of workloads.

Our future efforts will be focused on two main directions: First,
we plan to complete the implementation and the evaluation of our
system. We are extending the prototype with a set of modules that
provide commonly used optimizations and plan to evaluate the
versatile storage system prototype with a diverse set of
applications. The experience thus gathered will help back up our
extensibility and configurability claims, and equally important,
will help better understand the degree to which the building blocks
and the structure of the data-pipeline depend fundamentally on the
optimization criteria at hand (e.g., performance vs. reliability vs.
power). The second direction is to explore solutions to simplify
and possibly automate the task of determining optimal versatile
storage systems configurations. Past work on auto-tuning and
autonomous systems offer good starting points in this direction.

8. ACKNOWLEDGMENTS
We thank Allan Espinosa of University of Chicago for running the
DOCK6 experiment. We also thank the anonymous reviewers and
our shepherd, Kimberly Keeton, for their insightful comments.

9. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. Myers, et al., Basic

Local Alighnment Tool. Molecular Biology, 1990. 215: p.
403–410.

[2] Overview of DOCK. [cited 2009;
http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. in 19th ACM Symposium on Operating Systems
Principles. 2003. Lake George, NY.

[4] P. H. Carns, W. B. Ligon-III, R. B. Ross, and R. Thakur.
PVFS: A Parallel File System for Linux Clusters. in 4th
Annual Linux Showcase and Conference. 2000. Atlanta, GA.

[5] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, et al. Design and
Evaluation of a Collective I/O Model for Loosely-coupled
Petascale Programming. in Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS). 2008.

[6] S. Al-Kiswany, M. Ripeanu, S. Vazhkudai, and A. Gharaibeh.
stdchk: A Checkpoint Storage System for Desktop Grid
Computing. in International Conference on Distributed
Computing Systems (ICDCS ‘08). 2008. Beijing, China.

[7] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
bandwidth Network File System. SOSP. 2001. Banff, Canada.

[8] A. Gharaibeh, S. Al-Kiswany, and M. Ripeanu. Configurable
Security for Scavenged Storage Systems. in Workshop on
Storage Security and Survivability (StorageSS). 2008.

[9] J. Bent, D. Thain, A. C.Arpaci-Dusseau, R. H. Arpaci-
Dusseau, et al. Explicit Control in a Batch-Aware Distributed
File System. NSDI.2004. San Francisco, California.

[10] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. FAST. 2002.

[11] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, et al.,
Constructing collaborative desktop storage caches for large
scientific datasets. ACM Transaction on Storage (TOS), 2006.
2(3): p. 221 - 254.

[12] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a Serverless Distributed File System Deployed
on an Existing Set of Desktop PCs. SIGMETRICS. 2000.

[13] E. Kıcıman, B. Livshits, and M. Musuvathi. FLUXO: A
Simple Service Compiler. in Workshop on Hot Topics in
Operating Systems (HotOS). 2009.

