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ABSTRACT 
Storage systems in emerging large-scale (a.k.a. peta-scale) 
computing systems often introduce a performance or scalability 
bottleneck. To deal with these limitations we propose a new 
operational approach: versatile storage, an application-optimized 
and highly configurable storage system that harnesses node-local 
resources, is configured and deployed at application deployment 
time, and has a lifetime dependent on the application lifetime. 
Our prototype evaluation, using synthetic and application-level 
benchmarks, on a small cluster as well as on a 96K processor 
machine, provides evidence that the versatile storage approach can 
bring valuable benefits to large scale deployments in terms of 
storage system performance and scalability. 

Categories and Subject Descriptors 
D.4.3 (Operating Systems): File Systems Management - 
Distributed file systems. D.4.7 (Operating Systems): Organization 
and Design - Distributed systems. C.4 (Performance of Systems) 
Design studies. 

General Terms 
Performance, Design, Experimentation. 

Keywords 
Versatile storage system, Storage system specialization, Dynamic 
deployment, High performance storage 

1. INTRODUCTION 
Today’s large-scale computing systems (e.g., supercomputers, 
cloud computing infrastructures) aggregate thousands of 
computing nodes and offer ample computational power. These 
systems support applications that generate an intense storage 
workload. For instance, large-scale data-intensive scientific 
applications [1, 2] often use thousands of compute nodes to 
analyze terabytes of stored data. For such applications, the storage 
system throughput and scalability play a key role in the overall 
application performance. The risk is that the I/O system is the 
bottleneck for an expensive set of compute resources. 

Moreover, the applications that use these resources are highly 
heterogeneous over multiple axes related to storage system usage 
patterns and required semantics. These axes include: file 
granularity, read vs. write workload composition (applications 
may produce read- or write-only workload), data lifetimes, data 
durability requirements (e.g., some files can be recomputed), 
consistency requirements, data sharing levels (e.g., sometimes 
thousands of nodes concurrently access the same data), and 
security requirements (e.g., in terms of authentication, integrity 
and confidentiality). Further, and equally important, data is rarely 
shared between applications.  

A one-size-fits-all storage system that serves such diverse 
requirements while meeting the access throughput requirements of 
data-intensive applications is particularly complex and costly. 
Moreover, this approach often introduces a scalability bottleneck. 

An alternative approach is specialization: that is, exploiting 
workload characteristics to optimize the data store for application-
specific usage patterns. Google File System (GFS) [3] and PVFS 
[4] are only two examples of this approach: GFS optimizes for 
large datasets and append access patterns, while PVFS optimizes 
for sequential reads/writes to large datasets.  

Apart from specialization, a second opportunity is present in 
the environments we target: underutilized resources. In batch-
oriented computing systems, applications are often allocated a set 
of dedicated nodes for the duration of the application run. While a 
central storage system may struggle to provide reasonable storage 
performance, the node-local resources (storage space, IO channels, 
sometimes memory) and the interconnections are often 
underutilized yet ‘close’ to the running application.  

Versatile storage is our solution to exploit these two 
opportunities. Versatile storage aggregates node-local resources to 
build a dedicated storage system that is optimized for the 
application usage patterns and has a lifetime coupled to the 
application’s lifetime. MosaStore, our versatile storage system 
prototype, can aggregate the underutilized resources available on 
cluster/commodity nodes allocated to the application. Unlike 
specialized storage systems (e.g. GFS, PVFS) MosaStore provides 
a broader set of optimizations that target specific workloads and 
can be switched on/off and configured at deployment time.  

The contribution of this paper is three fold: First, it proposes 
‘versatile storage’: a storage-system-per-application deployment 
approach in which a highly configurable storage system is 
configured at deployment time as part of the application 
initialization script and has a lifetime tied with the lifetime of the 
application it supports. Multiple storage system instances may be 
deployed at the same time to serve concurrently running 
applications. Second, it presents a modular, configurable, and 
extensible storage system architecture that supports a set of 
application specific optimizations. Finally, it presents preliminary 
experience deploying and evaluating MosaStore, our versatile 
storage system prototype. 

The rest of this paper presents the characteristics of the target 
workloads that motivate our approach (Section  2), derives the 
system requirements (Section  3), presents the MosaStore design 
(Section  4) and preliminary experience deploying it (Section  5), 
presents related work (Section  6), and concludes (Section  7).  

2. WORKLOAD CHARACTERISTICS 
To highlight the diversity of the workloads we target, and the 
opportunity for application-specific optimizations, this section 
presents three motivating scenarios for versatile storage, then 
discusses in detail the characteristics of the workloads we aim to 
support. 

First, in a data parallel processing scenario, compute nodes 
perform the same task on mutually disjoint subsets of a larger 
dataset. For instance, BLAST [1], a popular bioinformatics 
application, searches a set of novel protein sequences in a large 
dataset of known sequences. Often the search set is partitioned 
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over thousands of compute nodes where each node matches a 
subset of the proteins against the complete dataset, a scenario that 
leads to an intense read load for the storage nodes holding the 
dataset. This scenario is particularly demanding in large-scale 
deployments in which a compute node’s local storage is not large 
enough to hold the complete dataset, preventing caching it locally 
and leading to a situation where all nodes access the dataset stored 
on the central storage for each protein sequence [5]. A versatile 
storage system that aggregates the nodes’ local storage to cache the 
input dataset and is optimized for sequential read operations can 
dramatically reduce the stress on the central storage and increase 
system overall performance. While refactoring the application for a 
different partitioning mechanism is possible, we are looking for 
file-system level support that does not require application changes. 

A second example is checkpointing. Long-running applications 
periodically write large snapshots to the storage system to capture 
their current state. In the event of a failure, applications recover by 
rolling-back their execution state to a previously saved checkpoint. 
The checkpoint operation and the associated data have unique 
characteristics [6]. First, checkpointing is a write-intensive 
operation. Second, checkpoint data is written once and often read 
only in case of failure. Finally, consecutive checkpoint images 
present the application state at consecutive time steps and hence 
may have a high level of similarity. A versatile storage system that 
can absorb the bursty checkpointing writes, reduce the data 
transfers and storage space usage by detecting similarities between 
checkpoint images, and asynchronously write the checkpoints to 
the central storage can increase the system overall performance. 

Third, workflow based processing, used by a large number of 
scientific applications, is generally composed of three main phases:  
stage-in input-data from central storage to the compute nodes local 
storage, multiple computation stages that communicate through 
intermediate files, and stage-out the final results to the central 
storage. These three phases impose an intense workload on the 
storage system: The stage-in and stage-out phases are composed of 
sequential read-only, and sequential write-only, respectively, 
operations by all the compute nodes. The computation phase 
imposes an intense disjoint read/write access pattern. A shared 
versatile storage system that is deployed with the workflow control 
engine and aggregates the storage resources of allocated compute 
nodes can offer the following advantages: reduce the load on the 
central storage system in the stage-in phase by transferring 
significantly fewer copies of the input data to the aggregate storage 
space; reduce the overhead generated by the intermediate files’ 
operations in the computation phase by keeping the intermediate 
files in the aggregate storage space, instead of the central storage; 
and, for applications composed of many small tasks (e.g., BLAST), 
increase the system performance by overlapping the transfer of 
completed tasks’ results and the computation of the remaining 
tasks in the stage-out phase. 
Workload Characteristics: We classify applications' storage 
workload along the following axes: 
 Data life-time. While computation results generally need to be 

durably stored, some files (e.g., workflow’s intermediate files 
and checkpoint images) are only temporary.  

 Read/Write composition. Large-scale scientific applications 
often generate mostly read loads (e.g., bioinformatics sequence 
matching), or mostly write workloads (e.g., checkpointing), or 
different phases of the application generate different types of 
workloads (e.g., workflows). 

 Data compressibility. Some scientific applications generate 
large outputs that are highly compressible by detecting 
similarities across files (e.g., checkpointing, visualization data, 
and Monte-Carlo simulations).  

 Locality. Some applications exhibit high access locality, that is, 
the working sets of multiple application instances running on 
different nodes significantly overlap, while in other cases 
application instances running on different nodes have disjoint 
working sets. 

 Consistency requirements. A large group of scientific 
applications do not require consistency guarantees. In the space 
defined so far, read-only workloads, such as the aforementioned 
bioinformatics application, are a clear and extreme example. 
Similarly, workloads with good locality leading to completely 
disjoint read/write set (e.g., workflows and checkpointing) are 
another example. Elsewhere in this space, the consistency 
requirements cannot be inferred from workload properties and 
depend entirely on the application semantics.  

These characteristics can be exploited through different 
optimization techniques to enhance storage system performance 
with regard to different metrics. For instance, buffering can 
dramatically enhance throughput for write only workloads. 
Likewise, similarity detection mechanisms can save considerable 
storage space for highly compressible workloads.  

However, it is important to note that different optimizations 
may negatively impact each other's performance. For instance, 
consistency mechanisms often have a negative impact on write 
throughput. Consequently, these optimizations do not generally 
coexist on the same data pipeline.  

3. VERSATILE STORAGE SYSTEM DESIGN 
REQUIREMENTS 

From the target computing systems and workload characteristics 
detailed above, we derive the following requirements for a 
versatile storage system design: 
 Easy to deploy. A versatile storage system should be easy to 

deploy as part of the application startup script. Further, it should 
be able to access the system central storage for automatic data 
pre-fetching or storing persistent data or results. 

 Easy to integrate with applications. The storage system should 
implement POSIX API to facilitate access to the aggregated 
storage space, without requiring changes to the application. 

 Easy to configure. The storage system should be easy to 
configure and tune for an application workload and deployment 
environment. This includes ability to control local resource 
usage, in addition to controlling application-level storage 
system semantics, such as file lifetime, consistency and data 
reliability requirements. 

 Performance and scalability. The storage system should 
efficiently use the node-local storage and networking resources 
to provide high performance access to the stored data, and it 
should be able to scale to support thousands of compute nodes. 

 Tunable security. Applications should be able to tune the 
security level in terms of access control, data integrity, data 
confidentiality, and accountability. Further, the security 
mechanism should be compatible with the security 
infrastructure deployed on exiting production systems.  

 Range of consistency guarantees. The storage system should 
provide a set of consistency models ranging from no-



consistency (e.g., suitable for read only workloads), to session 
consistency, to application-specific consistency models. 

 Efficient storage of partially similar data. The storage system 
should enable optimizations for workloads producing partially 
similar outputs, for example, by supporting versioning and 
content-based addressability. 

4. MOSASTORE ARCHITECTURE 
This section presents an overview of MosaStore and discusses the 
design of its main features. 

4.1 Overview  
MosaStore integrates three components: a metadata manager, a 
number of donor nodes that contribute storage space to the system, 
and the client-side System Access Interface (SAI). Datasets are 
fragmented into smaller chunks that are striped across donor nodes 
for fast storage and retrieval.  
 The metadata manager maintains the entire system metadata 
(e.g., donor node status, file chunk distribution and dataset 
attributes). Similar to a number of other storage systems we 
choose a metadata service decoupled from stored data. 

 The donor nodes contribute storage space (memory or disk 
based) to the system. Donor nodes interact with the manager to 
publish their status using soft-state registration, serve clients’ 
chunk store/retrieve requests, and perform garbage collection. 

 The system access interface (SAI) implements the mechanisms 
to access the storage space and client side optimizations 
including caching and content addressability functions. From an 
application perspective, the SAI provides two methods to access 
the storage system: a mountable kernel module that supports the 
POSIX file system API and a storage system library that 
facilitates direct integration with the application. 

Data storage and retrieval operations are initiated by the client (the 
SAI) via the manager. To retrieve a file, the SAI first contacts the 
metadata manager to obtain the chunk-map (i.e., the location of all 
chunks corresponding to the file). Then, the actual transfer of 
chunks occurs directly between the storage nodes and the SAI. The 
write operation follows a similar protocol. After the completion of 
the write operation, the new data chunks are replicated 
asynchronously in the system. 

The following subsections present the design of MosaStore IO 
pipeline (section  4.2), as well as that of the stages we have 
experimented with to date: read/write optimizations (section  4.3), 
content addressability (section  4.4), and configurable security 
(section  4.5). 

4.2 The Configurable IO Pipeline 
To support a broad set of optimizations, the data pipeline at the 
SAI is configurable (Figure 1). The pipeline includes a number of 
fixed, yet configurable, stages and an extensible set of optimization 
modules that can be enabled at configuration time.  

The set of fixed modules (white modules in Figure 1) include 
the following modules: The metadata operations module that 
implements the mechanism to create/query metadata entries. The 
buffer management module that manages the read/write buffers. 
The IO request queue that effectively decouples the application 
from the request processing (i.e., the application is released after 
putting the IO request in the queue allowing the rest of the pipeline 

operations to perform asynchronously). The dispatcher module that 
creates multiple threads to handle the rest of the pipeline thus 
enabling parallel processing to harness the host’s multicore 
capabilities and parallel striping to multiple donor nodes. Finally, 
the communication agent manages the network connection to the 
donor nodes at the end of the pipeline. 

The rest of the pipeline is composed of a set of modules (e.g., 
content addressability, consistency, data security, pre-fetching, and 
data compression) whose existence, order in the pipeline, and 
specific parameters are entirely configurable (grey modules in 
Figure 1). Further, this set of optimization modules is extensible: 
MosaStore provides a generic API that new modules must 
implement. Moreover, the SAI implements a flow manager that 
orchestrates the processing of these pipeline modules based on the 
application provided configuration information. 

To support the pipeline both the manager and the donor nodes 
implement an extensible request-processing engine to process the 
pipeline modules' requests. The extensibility of the request-
processing engine is necessary to facilitate developing pipeline 
modules that require module-specific interaction with the manager 
and/or donor nodes to support system-wide operations (e.g., they 
may require access to metadata). The request-processing engine 
loads the developer-defined modules that implement request 
processing callbacks, dispatches requests to the appropriate 
callback, and provides a stable interface to expose manager or 
donor nodes’ internal state that may be needed for request 
processing.  

To configure the system at deployment time, the user specifies 
through a configuration file which modules (e.g., optimization for 
sequential access, content addressability) should be enabled and 
their specific configuration. This requires that the user has some 
information about the application’s generated workload and is able 
to translate this information into specific configuration directives. 
While these tasks are definitely not trivial, they are beyond the 
scope of this paper.  
4.3 Optimizations for High Throughput 
The read/write optimization stage implements optimizations for 
sequential read/write access, a frequent pattern in our target 
workloads. For the read, MosaStore enables concurrent read ahead 
operations: the SAI fetches multiple data chunks at the same time 
to efficiently harness the node network connection. For writes, the 
SAI writes to a stripe-width of donors to achieve maximum 
throughput, and uses buffering to decouple the application write 
operations from the actual data transfer to achieve higher 
application perceived throughput.  

4.4 Support for Content Based Addressability 
Scientific applications often generate massive amounts of data, 
sometimes with high data similarity. This property can be used to 
reduce storage and data transfer requirements. Further, the 
management of these files is simplified by supporting versioning to 
maintain the tight relationship between related files. The challenge, 
however, is to offer similarity detection at runtime without 
operating system or application support. Addressing data by its 
content supports this feature in a natural way. Thus, MosaStore 
provides: 

 Content-based chunk naming. MosaStore identifies data chunks 

 
Figure 1. SAI configurable IO pipeline. A pipeline configuration example. 



by the hash of their content. The current version supports equal-
sized chunks rather than variable size chunks whose boundaries 
are determined based on content as well (e.g., similar to LBFS 
[7]). The tradeoff is between the computational overheads to 
detect chunk boundaries based on content and potential savings 
in terms of storage and lower generated network traffic. 

 Support for copy-on-write and versioning. MosaStore supports 
versioning and copy-on-write so that chunks that are identified 
as similar can be shared between different file versions. When a 
new version of a file is produced, only the new chunks need to 
be propagated to donor nodes. The new file version metadata 
will integrate the information of the new chunks and the chunks 
already stored. 

4.5 Configurable Security 
We aim to provide a number of configurable security levels [8] 
allowing the administrator to enable/disable the following security 
services: authentication, data confidentiality and integrity during 
transfers and while stored on the donor nodes, and accountability 
(the ability to identify malicious clients or donor nodes). The 
complexity of the design is increased by the fact that we aim to 
operate MosaStore in both completely trusted environments (e.g., a 
cluster where the applications have dedicated nodes) and partially 
trusted environments (e.g., a desktop grid where only the metadata 
manager is hosted on a trusted node). 

Security is integrated in the pipeline as multiple stages: for 
instance, data channel security (i.e., transport integrity and 
confidentiality) is part of the underlying communication layer 
where it can be enabled or disabled, while stored data security 
(e.g., integrity and confidentiality) is supported as a developer-
provided stage , that is a gray stage in Figure 1. 

5. SYSTEM EVALUATION 
The current prototype implements the pipeline described with all 
its fixed components and two optimization modules: content 
addressability and data security. We evaluated this prototype using 
a range of benchmarks that focus on the performance of each 
supported optimization independently. Due to space limitations we 
only present here a large-scale experiment that evaluates 
MosaStore’s scalability and performance and demonstrates our 
ability to deploy and configure the versatile file system at 
application deployment time – we use a synthetic workload as well 
as a real workflow-processing application deployed on up to 96K 
processors. 

The MosaStore prototype has been deployed on the 
BlueGene/P supercomputer at ANL – a peta-scale machine with 
around 160K processors, served by a GPFS storage system with 24 
IO servers (each  with 20Gbps network connectivity), and with a 
sustained IO rate of around 8GBps. The compute nodes are 
diskless and mount a RAM disk for the OS. A complete 
description of the application and the BlueGene/P platform is 
presented in [5]. One characteristic worth mentioning is that the 
application input data does not fit entirely in the memory of a 
single compute node.  

In the following experiments MosaStore is deployed as part of 
the application startup script to aggregate the preciously little 
RAM-based storage space available at each compute node such 
that the input data can be staged-in and accessed locally by a pool 
of compute nodes. The deployment is configured for optimized 
sequential read/write access. As we argue in Section  2, a versatile 
storage system brings benefits to all three stages of a workflow-
based application, mainly by offering a fast, intermediate data store 

co-located with the application that reduces the demand on the 
central storage.  

Synthetic evaluation. Figure 2 presents the system throughput 
while running two synthetic applications each running on up to 
96K processors. To simulate a real data-intensive application that 
generates intermediate files after computing for some time, each 
synthetic application writes 1MB of data to the storage system 
after waiting for 4sec or 32sec. The two applications differ only in 
the wait time and, consequently, generate different loads on the 
storage system. The applications are executed with three storage 
configurations: GPFS – the applications write directly to the GPFS 
deployed with the machine, GPFS+MosaStore (MS) – the 
applications write to MosaStore aggregated memory-based storage, 
and MosaStore asynchronously flushes the data to GPFS, and 
RAM – the applications write to the local, RAM-based disk. This 
configuration cannot be used in a real-world deployment (due to 
limited space and lack of support for data-aware scheduling), 
however it provides an upper bound for the achievable write 
throughput.  

 
Figure 2. The write throughput of two synthetic applications 
(4sec and 32sec) running on up to 96K processors writing to: 
GPFS, GPFS+MosaStore(MS), and local RAM. (source [5]) 

From this experiment (Figure 2) we can derive two 
observations: First, in terms of performance, the application 
writing through MosaStore achieves throughput close to the 
maximum achievable write throughput (that achieved by directly 
writing to the RAM of independent nodes) in spite of using a 
centralized metadata service. Additionally, we note that MosaStore 
enables one order of magnitude write throughput increase 
compared to the deployed GPFS. Second, in terms of scalability, 
while GPFS performance peaks at less than 250MBps, MosaStore 
write throughput scales well with the number of nodes even under 
this intense workload. Two reasons explain this performance 
difference. First, while GPFS uses fixed number of dedicated 
storage nodes and IO paths, MosaStore is able to exploit more 
resources as the system incorporates more nodes. In particular, 
MosaStore is able to transparently exploit the RAM based storage 
at the compute nodes and the high bandwidth interconnect 
compared to GPFS with fewer network connections and disk based 
storage nodes. Second, unlike GPFS, MosaStore’s IO path is 
optimized for sequential write operations with no consistency 
checks, avoiding unnecessary overheads. This preliminary result 
highlights the potential benefits the versatile storage approach can 
bring to large scale computing systems. 

Application-level evaluation. MosaStore was used [5] to 
support DOCK6 [2], a compute bound  bioinformatics application 
that screens drug compounds against metabolic protein targets. The 



protein dataset used by DOCK6 is larger than a single compute 
node’s local storage. DOCK6 application is composed of three 
main phases: first, it reads input, computes the docking, and writes 
temporary results; second, it summarizes, sorts, and selects the 
results; and, third, it archives the results. We deployed a 
MosaStore instance per group of nodes, each group contains up to 
256 nodes. This decision was made mainly to control the load on 
MosaStore’s central manager, and to distribute the IO load on 
more storage nodes. The later point is desirable since the current 
prototype does not implement smart replication and data 
placement. The experiment runs DOCK6 on 8K processors. While 
MosaStore enables moderate improvements for the first (1.06x 
faster) and third (1.51x faster) application phases, it enables an 
11.76x performance improvement for the second phase. This 
improvement is mainly explained by MosaStore's ability to store 
the temporary files produced by the first application phase locally 
and avoid shipping them to the central storage system. Overall, 
MosaStore enabled 1.52x performance improvement for the 
complete application. Further, running the first phase of DOCK6 
workflow with MosaStore support on 96K processors achieved 
1.12X application-level speedup, an expected moderate 
enhancement for a compute-bound stage.  

6. RELATED WORK 
Workload-optimized storage systems. Building storage systems 
geared for a particular class of I/O operations or for a specific 
access pattern is not uncommon. For example, GFS [3] optimizes 
for large datasets and append access; BAD-FS [9] optimizes for 
batch job submission patterns over wide area network connections; 
parallel file systems (PVFS [4], GPFS [10]) also target large 
datasets and provide high I/O throughput for parallel applications.  

Versatile storage differs in its design and deployment goals. 
MosaStore aims to incorporate a broad set of optimization 
techniques, enable high configurability at deployment time, and 
support multiple applications through customized, per application 
deployment. 

Contributory storage. A number of storage systems   [11, 12] 
aggregate space contributions from collaborating nodes to provide 
a shared data store. Their basic premise is the availability of a large 
amount of idle disk space on nodes that are online for the vast 
majority of the time. The specific technical solutions vary widely 
as a result of different targeted deployment environments (local vs. 
wide-area networks) and workloads (e.g., read/write vs. read-only). 

Aspect-oriented systems. Finally, our work is in the spirit of 
aspect-oriented system building, as different modules in 
MosaStore’ data pipeline address different system needs. A recent 
related effort in this direction, the FLUXO [13] project, aims to 
separate Internet services logical functionality from the 
architectural decisions made to support performance, scalability 
and reliability. FLUXO approach is to profile the target application 
load and restructure the service at compile time, to include 
commonly used optimizations such as caching or replication.    

7. SUMMARY AND FUTURE WORK 
This paper proposes versatile storage: an operational approach for 
efficient resource usage in emerging large-scale computing 
systems.  A versatile storage system implements a set of 
optimization techniques and is highly configurable at deployment 
time, such that application-specific workload can be exploited 
through dedicated, per-application deployments. Further, such an 
approach can be built at low cost by exploiting the underutilized 
node-local resources and interconnect bandwidth. We developed 

MosaStore, an initial versatile storage system prototype. Our 
preliminary evaluation indicates that MosaStore can bring valuable 
benefits to a diverse set of workloads. 

Our future efforts will be focused on two main directions: First, 
we plan to complete the implementation and the evaluation of our 
system. We are extending the prototype with a set of modules that 
provide commonly used optimizations and plan to evaluate the 
versatile storage system prototype with a diverse set of 
applications. The experience thus gathered will help back up our 
extensibility and configurability claims, and equally important, 
will help better understand the degree to which the building blocks 
and the structure of the data-pipeline depend fundamentally on the 
optimization criteria at hand (e.g., performance vs. reliability vs. 
power). The second direction is to explore solutions to simplify 
and possibly automate the task of determining optimal versatile 
storage systems configurations. Past work on auto-tuning and 
autonomous systems offer good starting points in this direction.  

8. ACKNOWLEDGMENTS  
We thank Allan Espinosa of University of Chicago for running the 
DOCK6 experiment. We also thank the anonymous reviewers and 
our shepherd, Kimberly Keeton, for their insightful comments. 

9. REFERENCES 
[1] S. F. Altschul, W. Gish, W. Miller, E. Myers, et al., Basic 

Local Alighnment Tool. Molecular Biology, 1990. 215: p. 
403–410. 

[2] Overview of DOCK.   [cited 2009; 
http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm 

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File 
System. in 19th ACM Symposium on Operating Systems 
Principles. 2003. Lake George, NY. 

[4] P. H. Carns, W. B. Ligon-III, R. B. Ross, and R. Thakur. 
PVFS: A Parallel File System for Linux Clusters. in 4th 
Annual Linux Showcase and Conference. 2000. Atlanta, GA. 

[5] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, et al. Design and 
Evaluation of a Collective I/O Model for Loosely-coupled 
Petascale Programming. in Workshop on Many-Task 
Computing on Grids and Supercomputers (MTAGS). 2008. 

[6] S. Al-Kiswany, M. Ripeanu, S. Vazhkudai, and A. Gharaibeh. 
stdchk: A Checkpoint Storage System for Desktop Grid 
Computing. in International Conference on Distributed 
Computing Systems (ICDCS ‘08). 2008. Beijing, China. 

[7] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
bandwidth Network File System. SOSP. 2001. Banff, Canada. 

[8] A. Gharaibeh, S. Al-Kiswany, and M. Ripeanu. Configurable 
Security for Scavenged Storage Systems. in Workshop on 
Storage Security and Survivability (StorageSS). 2008. 

[9] J. Bent, D. Thain, A. C.Arpaci-Dusseau, R. H. Arpaci-
Dusseau, et al. Explicit Control in a Batch-Aware Distributed 
File System. NSDI.2004. San Francisco, California. 

[10] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System 
for Large Computing Clusters. FAST. 2002. 

[11] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, et al., 
Constructing collaborative desktop storage caches for large 
scientific datasets. ACM Transaction on Storage (TOS), 2006. 
2(3): p. 221 - 254. 

[12] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. 
Feasibility of a Serverless Distributed File System Deployed 
on an Existing Set of Desktop PCs. SIGMETRICS. 2000. 

[13] E. Kıcıman, B. Livshits, and M. Musuvathi. FLUXO: A 
Simple Service Compiler. in Workshop on Hot Topics in 
Operating Systems (HotOS). 2009. 


