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ABSTRACT

We introduce SelfTalk, a novel declarative language that allows
users to query and understand the status of a large scale system.
SelfTalk is sufficiently expressive to encode an administrator’s high
level hypotheses/expectations about normal system behavior, such
as, “I expect that the throughputs across all system components are
linearly correlated”. SelfTalk works in conjunction with Dena, a
runtime support system designed to help system administrators de-
tect the root cause of system misbehavior quickly and accurately.
Given a user hypothesis, Dena instantiates and validates it using
actual monitored data within specific system contexts. We evalu-
ate Dena by posing several hypotheses about system behavior and
querying Dena to diagnose anomalies in a virtual storage system.
We find that Dena can automatically validate the system perfor-
mance based on the user hypotheses and also accurately diagnose
system misbehavior.

1. INTRODUCTION

As storage systems become exceedingly large and complex, and
their applications increasingly sophisticated, system administrators
find themselves incapable to diagnose and manage these systems
anymore. Many industry and academic initiatives e.g., Intel’s Plat-
form Computing, HP’s OpenView set of tools, IBM’s Autonomic
Computing [10], etc., have been launched to address this, by now,
acute problem. The general consensus is that solutions for enabling
storage systems to self-configure, self-heal, self-tune and therefore
self-manage, are crucial for the very survival of IT over the long
haul.

While we concur with this long-term view, we observe that cur-

rent approaches have centered around the fallacy that a self-managing

system can and should replace most or all system administrator
skills. Existing approaches [3, 7, 9] following this principle did
produce systems that are able to self-configure, self-heal, and self-
tune to some degree. On the down side, in most of these exist-
ing systems, when something goes wrong, the system can typically
produce nothing more intelligible to the administrator than generic
alarms.

Indeed, whether the self-managed system is fed a costly full-
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fledged analytical model of its own structure and behavior, or a
set of event-condition-action rules from the get-go, or left to dy-
namically evolve its own statistical model of functional correla-
tions between self-monitored metrics [3, 7, 9], system self-* abili-
ties never include the crucial capability to self-express, i.e., for the
system to talk about its own status in a human intelligible way.
Even worse, with very few exceptions [6], self-managed systems
cannot tell the difference between unknown faults and unknown
workloads or configurations, hence may alarm frequently, and un-
necessarily. This is potentially very annoying, as the administrator
can only start scratching their head, poring over logs, or at best a
list of ranked metric correlation violations [17] upon each system
alarm. This pitfall is intuitively inherent to the approach. If human
children were given a set of rigid event-condition-action assertions
upon birth, or left to learn entirely from their environment, without
communicating with their parent, they would also find it hard to
distinguish or verbalize dangerous from benign situations.

With this paper, we take the first step in evolving self-expression
for self-managing systems beyond the hard to understand baby cry.
Towards establishing the necessary dialogue between the system
administrator and the self-managed system, as a cornerstone of
their symbiotic relationship, we make the following contributions.
We introduce (i) a new high-level declarative language, called Self-
Talk and (i) new runtime support, called Dena, for an adaptive stor-
age system, capable of learning, self-monitoring its metrics, and
evolving dynamic models of metric correlations, as well as inter-
acting with its administrator in SelfTalk.

With SelfTalk, the system administrator can, for the first time,
easily express her beliefs and expectations about what constitutes
normal system behavior, ask the system to validate those beliefs
within given contexts or periods of time, query the system status
at any point in time, and obtain meaningful responses. Our lan-
guage is powerful and can encode known generic laws that govern
system behavior, such as Little’s law [8] that correlates through-
put and latency values, or the monotonically decreasing property
of the miss-ratio curve (MRC) [18] in any system cache, known re-
lationships between any metric classes, such as the expectation of
an exponential correlation between latency and the resource quotas
allocated to an application, as well as more specific administrator
insights, experience with the system, or a given application.

For example, Selflalk allows the human administrator to express
their beliefs in close to the following high-level format: “I expect
that the average query latency measured at the database system is
greater than the average data access latency measured at its back-
end storage server”. The beliefs do not need to be always correct,
and should be viewed more as expressed hypotheses to the system,
rather than rigid assertions.

An automatic parser, included with SelfTalk, parses each admin-



Listing 1: Invariant Hypothesis
HYPOTHESIS
LESS_EQ[ ‘name=cache_miss’, ‘name=cache_get’]
CONTEXT []

Listing 2: Hypothesis with a Context
HYPOTHESIS
LINEAR[ ‘unit=1/s’, ‘unit=1/s’]
CONTEXT [ ‘cache_size<=512"]

istrator hypothesis, constructs a concrete mathematical expression
to describe the relationship between metric classes, and evaluates
compliance by fitting the monitored data within any given context
to the mathematical expression. The system thus specializes the
high level hypotheses into concrete internal assertions that match
each hypothesis within a particular context, and enters the hypoth-
esis, matching assertions, contexts, and a confidence score, reeval-
uated periodically, into a knowledge base.

In this way, whenever a benign change in the environment, such
as a workload change occurs, the system can automatically retrain
any of its own internal assertions to verify whether the high level
hypotheses still hold. The system alerts the administrator only in
the case that one or more previously validated hypotheses do not
hold anymore, and in such anomaly cases, can provide specific in-
stances of violations of any hypotheses in the system.

As in humans, development of self-expression is incremental, as
new guidance is received from the administrator, and new situa-
tions occur, where the guidance received is applicable and valid, or
not. The status of Dena relative to any and all hypotheses can be
queried at any point in time; Dena outputs to the administrator its
confidence degree that the system conforms to any given hypothe-
sis, by checking whether its monitored data fits the hypothesis well.

We perform an evaluation of our approach by posing several hy-
potheses to understand normal behavior, and to diagnose misbehav-
ior in an experimental virtual storage system called Akash [15]. We
find that Dena can quickly validate system performance to users’
hypotheses and can help in diagnosing faults, or other system mis-
behavior.

2. DESIGN

We introduce novel language and runtime support for interac-
tive diagnosis of a virtual storage system. Specifically, we design a
high-level query language, called SelfTalk, which allows the system
administrator to express generic hypotheses about normal system
behavior, including known system laws, and relationships between
metric classes. The system administrator submits hypotheses in
SelfTalk to a runtime system called Dena, which is in charge of
instantiating and validating them, based on automatic metric mon-
itoring, statistics collection, and correlation at various points in the
storage system. In the following, we describe our query language,
the design of Dena, our tool, and how the administrator and the
system interact to check compliance to expectations, and to alarm
on anomalies, respectively.

2.1 The SelfTalk Query Language

A hypothesis consists of a relationship on a set of metric classes
and the associated validity context for that relationship. The context
can be a set of configurations, or workload properties that could po-

tentially affect the given relationship. If the relationship is believed
to be an invariant, then its corresponding context is empty. For ex-
ample, a simple invariant that can be checked is that the number
of cache misses (cache_miss) must be less than or equal to the
number of cache accesses (cache_gets), as shown in Listing 1.
This is an invariant of the cache — that is, it must hold true for all
configurations and workloads. Thus, the administrator can submit
the hypothesis without a context and Dena will check if this rela-
tionship is indeed valid for all configurations.

However, some hypotheses are valid only for particular config-
urations. For example, in a database system, as the rate of queries
processed increases so does the rate of operations within the oper-
ating system, i.e., more I/Os per second (assuming not all data is
cached). The database administrator of this system can then hy-
pothesize “I expect that the throughput of all components are lin-
early correlated” — that is, throughput related metrics, i.e., those
with units 1/seconds are correlated. In Listing 2, we show how
the above hypothesis is specified in Dena. It states that the through-
put metrics, i.e., those with units 1/s are expected to be linearly
correlated in configurations where the cache_size is less than or
equal to 512MB.

2.2 The Dena Runtime System

In the following, we provide the steps taken by Dena when the
administrator submits a hypothesis to the system.

1. The system automatically instantiates the hypothesis and gener-
ates a (much larger) set of expectations, by enumerating all pos-
sible metrics within the metric classes and configurations that
match the hypothesis.

2. The system validates each expectation with experimental data,

computes a confidence score per expectation and stores the ex-
pectations in a database. The system is now ready for statis-
tics collection. A wide variety of queries are possible including
querying validity of expectations over components in a sub-part
of the system, confidence intervals, number of expectations gen-
erated, standard deviations, etc.

3. The administrator asks the system to create assertions corre-

sponding to the generated expectations with confidence above
given confidence thresholds. The system will periodically check
the validity of these assertions and will trigger alarms only when
specific assertions fail, signaling the part of the system where
they do.

Details of Query Execution: Given a hypothesis, Dena creates
a list of expectations by iteratively applying the hypothesis for each
metric matching the qualifiers, Q Next, it selects a function (from
a dictionary of functions) that best describes the relationship be-
tween the metrics, R(Cj) Then, it evaluates the validity of each
expectation using the monitored data. We describe each step in
detail next.

First, Dena creates a list of expectations by applying the hy-
pothesis for each set of metrics matching the qualifiers. For a
set of metrics, M , Dena extracts a subset of metrics m; € M
such that m; matches all conditions specified in qualifier set Q
For example, for the query described in Listing 2, Dena applies
the hypothesis to all throughput metrics creating a list of expec-
tations. In this list, one expectation would be EXPECT LINEAR
(‘queries_per_sec’, ‘io_per_sec’).

To support flexible matching, we annotate each metric with its
metadata, specifically its unit of measurement and how the unit
of measurement relates to the base unit. For example, the operat-



ing system records throughput as sectors per second (where a sec-
tor equals 512 bytes), while we would like to measure throughput
in kilobytes per second. In this case, we record that the metric
io_per_sec is measured in units sectors/s, and that it can be
converted to our base unit by multiplying the metric value by 0. 5.

Next, Dena selects a function that matches the relationship de-
scribed in the hypothesis. We maintain a set of pre-defined func-
tions in a dictionary along with its description to find a match with
the relation. For example, if the relationship is
LINEAR (‘queries_per_sec’, ‘io_per_sec’) then we match
it with a function Linear(u,v) := {u = av + (3} and instanti-
ate the expectation. We use simple string matching to find a func-
tion that matches the relationship. We leave the study of other ap-
proaches as future work.

Then, Dena takes each expectation and fits the function to the
monitoring data. The curve is fit using an optimization algorithm,
i.e., gradient descent, by varying the free parameters in the func-
tion. In particular, for the linear correlation between the database
and storage system throughput, the curve fitting algorithm searches
for values of o and (3 that minimize the squared error from the
measured values. The curve fitting algorithm outputs a confidence
score, 7, between 0 < v < 1 representing a goodness of fit where
v = 1is good fit and v = 0 is a poor fit. Dena provides the ag-
gregate confidence score for the hypothesis and it allows the user
to zoom-in to get per-context confidence scores as well. An ex-
pectation with high confidence is called an assertion. We keep the
assertions in database for anomaly detection.

Handling Contexts: The relationship between metrics is influ-
enced by the workload and other system settings. Therefore, simply
fitting the expectations to all measured data would lead to false fits.
Consider the expectation EXPECT LINEAR (‘queries_per_sec’
, ‘io_per_sec’) and assume that we get a 50% hit ratio with
a 512MB cache and a 90% hit ratio with a 1GB cache. With
different cache sizes, the exact relationship between the metrics
(‘queries_per_sec’, ‘io_per_sec’) will be different. In fact,
the factor o would be 0.5 for a 512MB cache and 0.9 for a 1GB
cache. Specifically, the administrator must provide his/her belief
about the contexts that the hypothesis is sensitive to. A context is
simply a list of conditions on a set of performance metrics, work-
load metrics, or configuration parameters. In Listing 2, the context
is specified as cache_size<=512, which states that the admin-
istrator expects the hypothesis to hold true only when the cache
size is less than 512MB. We also support a wildcard operator, e.g.,
cache_size=x, that indicates that cache_size is a configuration
parameter that may affect the fit. In this case, Dena will evaluate
the expectation for each setting of the configuration separately. In
particular, each expectation is associated with a context. A hypoth-
esis and a context form an expectation, and an expectation with
high confidence score is an assertion. An assertion must hold as
long as its context is unchanged.

2.3 Runtime Monitoring with Alarms

In addition to evaluating an hypothesis, Dena can use the hy-
pothesis as a condition to check system health in the future. To
enable this, we save the assertions, the particular values of the free
parameters we determine during curve fitting, and the confidence in
an assertion database. Then, we periodically fetch assertions that
match the current context of the system and re-evaluate the quality
of the fit (confidence score) of each of them.

If the new monitoring data (for the current context) does not
match the trained assertion then Dena treats the situation as a poten-
tial anomaly in the system. Dena first tries to re-fit the hypothesis
for the current context. If the anomaly is minor, i.e., perturbations
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Figure 1: Testbed: We show our experimental platform. It con-
sists of a storage server (Akash) and a storage client (DBMS)
connected using NBD.

in the disk performance or a workload change, then the hypothesis
is determined to still be valid. In this case, no alarm is raised and
Dena simply continues running. However, if there is a misbehav-
ior, i.e., a true fault then the re-fit of the hypothesis would fail; the
re-trained assertion has a low confidence score. In this case, Dena
raises an alarm stating that the hypothesis failed to match system
behavior, indicating an anomaly.

3. EVALUATION

Our evaluation infrastructure consists of two machines: (1) a
database server running OLTP workloads and (2) a storage server
running Akash [15] to provide virtual disks. Akash is a virtual stor-
age system prototype designed to run on commodity hardware. It
uses the Network Block Device (NBD) driver packaged with Linux
to read and write logical blocks from the virtual storage system, as
shown in Figure 1. The storage server is built using different mod-
ules:

Disk module: The disk module sits at the lowest level of the mod-
ule hierarchy. It provides the interface with the underlying physical
disk by translating application I/O requests into pread () / pwrite ()
system calls, reading/writing the underlying physical data.
Quanta module: The quanta module partitions the disk bandwidth
using a quanta-based I/O scheduler [15]. The scheduler provides a
fraction of the disk time to each workload sharing the disk volume.
Cache module: The cache module allows data to be cached in
memory for faster access times.

NBD module: The NBD module processes 1/O requests, sent by
the client’s NBD kernel driver, to convert the NBD packets into
calls to other Akash server modules.

Due to space constraints, we only provide a brief description of
each module. Additional details can be found in [15]. We gener-
ate a transaction processing (OLTP-like) workload using Oracle’s
ORION tool and by running the TPC-W benchmark using MySQL.
We collect monitoring data from each module within Akash, which
we periodically output, every 10s, to a file. We run each experiment
for 1 hour, resulting in 360 samples for each configuration.

3.1 Preliminary Results

We present the correlations that Dena discovers for three simple
hypotheses: (1) LINEAR —expects that metrics of the same type are
linearly correlated, (2) LESS/EQ — states that round-trip latency
is additive across layers and (3) LITTLE — states that throughput
and latency adhere to Little’s law. Table 1 shows the number of
expectations generated for each hypothesis for all contexts. Dena



Hypothesis | Expectations | Avg. Confidence

LINEAR 3072 86%
LESS/EQ 3488 98%
LITTLE 3290 92%

Table 1: Expectations. We show the number of expectations
generated for each high-level hypothesis.

Throughput

nbd_latency

Latency

disk_latency
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disk_latency

cache_latency
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Figure 2: Correlations. We show the pairwise correlations we
discover for different administrator hypotheses in the above
graph. The nodes represent different metrics and the edges
show the correlation. The above results were gathered with a
1GB cache resulting in a miss-ratio of 50%, and the entire disk
bandwidth was allocated to the application.

generates the expectations automatically for a given hypothesis.
Figure 2 shows the correlations discovered by Dena in a graph
where the nodes represent metrics and the edges indicate a correla-
tion. To simplify the presentation, we only show metrics related to
the throughput and latency for each module. In addition, we only

show results where we configure the cache to 1 GB resulting in a
50% miss-ratio and allocate the entire disk bandwidth to the appli-
cation. We explain the correlations discovered for the LESS/EQ
and LITTLE in detail next.

We develop the LESS/EQ hypothesis by using the information
of the structure of Akash which allows us to hypothesize that la-
tencies (throughput) measured in some modules are less than the
latencies measured in other modules. Figure 2(a) shows our re-
sults using a directed graph where the arrowhead points from the
smaller metric to the larger metric. For example, the cache module
sits above the quanta module and forwards requests only on cache
misses. Therefore, with a 50% miss-ratio, the latency at the cache
module is less than the quanta module. This is shown as an ar-
row from cache_latency to quanta_latency. Conversely,
the number of requests entering the quanta module is less than the
number of requests entering the cache module, shown as an arrow
from quanta_enter to cache_enter.

As Akash is closed-loop storage system, we hypothesize that per-
formance adheres to Little’s law [8] — that is, the throughput and
latency metrics follow the interactive response time law and thus
are inversely proportional. Figure 2(b) shows that indeed the sys-
tem complies with Little’s law as the throughput and latency met-
rics are indeed correlated. disk_latency is not correlated with
Little’s law as the quanta module self-adjusts its scheduling policy
to varying disk service times [15]. leading to a weak correlation
with the disk_latency.

Detecting Misbehavior: We show results showing how Dena
can be used to detect a misbehavior in the system. First, we change
the workload from a cache unfriendly to a cache friendly access
pattern. This change is detected using our MRC hypothesis which
states that “I expect the cache misses to decrease monotonically
with increasing cache size”. Figure 3(a) shows that miss-ratio
curve changes dramatically due to the workload change; the new
data does not match the trained assertion. Rather than raise a false
alarm, Dena re-evaluates the MRC expectation and finds that the
cache model is still valid — that is, while the exact values of miss-
ratio are different the relationship between the miss-ratio and cache
size still follows a monotonically decreasing curve. Therefore, no
alarm is raised.

On the other hand, when we induce a fault in the cache replace-
ment algorithm that reduces caching benefit, i.e., has more cache
misses for some cache sizes, then our curve-fitting algorithm is not
able to fit to the monitoring data leading to a very low confidence
of v = 0.24, shown in Figure 3(b). In this case, Dena raises an
alarm signalling that the MRC hypothesis is violated.

4. RELATED WORK

Related work in the area of fault diagnosis has focused on three
approaches: (1) using statistical correlations, [1, 2, 4, 5, 9, 17], (2)
using models [14, 16], and (3) using specialized languages [11, 12,
13].

The statistics based approaches assume that the system is mostly
correct and detect anomalies as changes from the norm [1, 2]. An-
other approach is to use invariants — those metric correlations that
hold in a variety of conditions as the correctness measure [9]. Co-
hen et al. [4, 5] correlate system metrics to high-level states to find
the root cause of faults. PeerPressure [17] extends the analysis by
comparing configuration across machines. Unlike our work, these
only study simple correlations and statistical deviations, whereas
we begin with a high-level hypothesis and analyze how the sys-
tem’s behavior matches with this hypothesis.

Model-based approaches leverage analytical models provided by
the user to contrast system-behavior and localize mismatches [14,
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Figure 3: Detecting Misbehavior. Dena adapts to workload
changes and signals errors on misbehaviors.

16]. The benefit of this approach is the clear relationship between
the metrics and high-level system design. However, developing
detailed models is difficult. While our hypotheses require an un-
derstanding of the system, we do not require the relationships de-
scribed by the hypothesis to be always correct, and can inform the
user of its validity. Language based approaches include MACE [11],
TLA+ [12], and Pip [13]. They allow programmers to express their
expectations about the system’s communication structure, timing,
and resource consumption. In contrast, we target our work towards
system administrators who have a general insight into the system’s
behavior, but lack the knowledge of the details and have no access
to the system’s source code.

5. CONCLUSIONS

We introduce i) SelfTalk, a declarative high-level language, and
ii) Dena, a novel runtime tool, that work in concert to allow users
to interact with a running system, by hypothesizing about expected
system behavior, and posing queries about the system status. Us-
ing the given hypothesis and monitoring data, Dena applies sta-
tistical models to evaluate whether the system complies with the
user’s expectations. The degree of fit is reported to the user as

confidence scores. SelfTalk and Dena thus provide the basis for
evolving system self-expression in a self-managed system towards
the human-like ability to agree or disagree with the system admin-
istrator on facts and beliefs about the system in relation to given
environments/contexts. We evaluate our approach on a virtual stor-
age system called Akash and find that Dena can quickly validate
user’s hypotheses and accurately diagnose system misbehavior.
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