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ABSTRACT

We develop techniques that make authenticated directories efficient
and scalable toward the goal of managing tens of billions of objects
in a single directory. Internet storage services have already realized
this scale: Amazon’s S3 contained more than 52 billion objects
as of April 2009 [1]. Our contributions include defining on-disk,
block-oriented data structures and algorithms for authenticated di-
rectories that exceed memory capacity and optimizations that re-
duce the I/O required to insert and access entries in the directory.

1. INTRODUCTION

The cloud environment provides unprecedented access to shared
data storage, including key/value stores, distributed caches, and
content distribution networks. Cloud storage services provide great
benefits by abstracting away traditional considerations such as disk
capacity, backup management, and data recovery. However, the in-
ability of users to ensure the authenticity and integrity of shared
data limits the utility of this access [4]. Users lack the confidence
needed to overcome the “my sensitive corporate data will never
be in the cloud” mentality [3]. Consumers who retrieve data from
cloud resources must be able to verify that the data they retrieve are
from an authentic source and consistent with legitimate insert, up-
date, and delete operations. Thus, data producers require methods
to attest to the freshness, authenticity, and integrity of data.

One lesson learned from the body of research on the accountabil-
ity of Internet services is that authenticated directories are the pre-
ferred technique to manage data that change over time [2, 8, 12,
16]. Authenticated directories group a set of objects and their iden-
tifiers into a hierarchical structure that is uniquely defined by a
small cryptographic tag. The structure’s tag defines a “current ver-
sion” of the set of objects, capturing the dynamic nature of data.
Thus, when objects are modified or removed, their old versions
will no longer be authentic.

Existing implementations of authenticated directories employ data
structures that exhibit performance problems at scale. Merkle trees
[15] and skiplists with pairwise cryptographic message digests [12]
quickly grow beyond the bounds of memory, possibly incurring an

I/0 to navigate to each node along a search path. Furthermore, the
fine-grained nature of these data structures dictates that they map
poorly onto disk storage. Merkle trees are, in essence, binary trees
and it becomes non-trivial in the face of insertions, deletions and
updates to map the nodes of the binary tree to a balanced tree of
large blocks of storage [20].

Our system achieves performance and scale by (1) building authen-
ticated directories using a block-aligned deterministic skiplist [17]
rather than mapping a binary tree onto block-oriented data struc-
tures and (2) providing optimizations that reduce the I/O require-
ments of lookups in the data structure based on replicating a small
amount of metadata and by temporal organization.

Within each block of the skiplist, we employ an incremental hash
[6] to reduce the number of cryptographic operations and reduce
proof size. The digest values that we maintain for authentication
resemble previously used digests [12, 20] in that the hashes accu-
mulate to the root element. Our implementation combines an entire
disk block worth of hash values into a single digest, rather than as-
sembling hash values pairwise. This reduces the size of the proof—
the path from root to leaf in the authenticated directory—because
the higher fan out results in shallower data structures. When up-
dating or inserting an element, we compute a block’s hash incre-
mentally based on the old value of the block’s digest and the new
or updated element. Incremental computation updates the digest
using a constant number of operations regardless of block size.

To reduce I/Os on lookup, we replicate the most recent version of an
object’s authenticity proof (a path from the leaf node to root node)
in object metadata. This serves as a hint and, upon performing a
lookup, the client provides this path to the server. While traversing
the path, if the search reaches any portion of the tree that has not
changed due to updates, the search terminates successfully, avoid-
ing the I/O associated with continued traversal. This short-circuit
strategy also increases the likelihood that more evaluations occur
in the higher levels of the skiplist that change most frequently and
are most often in cache. Finally, we perform all inserts at the tail of
the skiplist, which supports our hint optimization by making large
portions of the skiplist stable and reduces the cache footprint of the
insert workload.

An evaluation of our prototype system, FastAD, reveals that our
algorithms improve the performance of authenticated directories
asymptotically: inserts with increasing block size and verifications
with the number of objects in the directory. For practical parame-
ters, FastAD more than doubles the performance of all operations.



2. FASTAD
2.1 Model

FastAD is designed as an authenticity and integrity checking sys-
tem that provides public verifiability of data stored at and retrieved
from untrusted sites. When retrieving an object from an untrusted
store, FastAD allows a client to verify that the untrusted store re-
turns the correct data for the most current version of that object.
The usage model includes a trusted authenticated directory server,
an untrusted storage infrastructure, multiple data producers that au-
thenticate with the directory server and store data in the storage in-
frastructure, and any number of ad-hoc client data consumers. To
perform a write, a producer locally calculates a digest of the data
and registers that digest with FastAD. FastAD recalculates its hier-
archy of digests and returns to the producer a unique object iden-
tifier and metadata describing the path from root to leaf in the au-
thenticated directory. The producer then stores the object identifier,
path information, and data with an untrusted store. When reading
the data, the consumer fetches the file data and path information by
identifier from the untrusted store, generates a secure digest of the
data, and queries FastAD to verify the authenticity and integrity
of the data using the identifier, path, and hash. FastAD responds
with success or failure and an accompanying proof of inclusion or
exclusion [16] respectively.

In our model, the roles of producer and consumer can be assumed
by the same or different users. As an example, the roles overlap
for users that store their data with a storage service provider. The
user writes data to an untrusted server and registers the data with
FastAD. Upon retrieval, FastAD verifies that the data returned from
the store match the contents of the most recent version. In other sit-
uations in which the roles apply to different users, FastAD provides
public verifiability. For example, a Web or social networking appli-
cation can act as a producer by placing data on publicly accessible,
but untrusted storage, while maintaining a trusted authenticated di-
rectory. A large number of clients using that application can then
retrieve the data and guarantee its integrity, authenticity, and fresh-
ness by querying the directory maintained by the application.

Although we designed FastAD for cloud storage, the techniques
and optimizations apply to any system that uses authenticated di-
rectories, such as certificate revocation [16].

2.2 Block-oriented authenticated directories

The goals of constructing an authenticated directory using a block-
oriented data structure are to minimize I/O costs associated with
directory operations and avoid the complexity of mapping binary
trees or binary skiplists [12] onto block-aligned on-disk data struc-
tures. We achieve these goals by combining a skiplist data structure
with incremental hashing [6]. We use block-sized sets of elements
to build and maintain the skiplist and as the basis for the crypto-
graphic operations used to generate membership proofs. Inserts
and verifications access O(log »n) blocks and compute O(log »n)
incremental hashes for a directory of n elements in which each
block holds b elements. Two incremental hashes, the MuHASH
and the AHASH, combine many elements into a single digest of
128 bytes and 200 bytes respectively, which allows FastAD to build
a hierarchical data structure with arbitrary fan-out without increas-
ing the number of cryptographic operations or the size of member-
ship proofs. Cryptographic complexity and proof size were the key
obstacles that restricted previous work to binary-tree authenticated
directories [20].

Path for element 73

Location of match using path hint
(originating elem in short-circuit proof)

Neighbor elements in short-circuit proof

= Additional neighbor elements in full proof

* D

L3

000000

638-686
eee 0000000

12 [ 344-686

43-49 [ soss_ 1.
000000|--10000000

680-686
*** 6000000

Figure 1: FastAD’s skiplist associates an entire block’s worth of
elements using the MuHASH. The figure shows the association
of elements from leaf to root.
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Figure 2: A block-oriented binary-tree hashes elements pair-
wise. The figure shows the association of elements from leaf to
root.

2.3 Design of FastAD

FastAD builds an authenticated directory based on storing object
identifiers and hash values of the object data in a block-oriented
deterministic skiplist (Figure 1). Skiplists store n elements of a
set S in a series of lists organized into hierarchical levels. Similar
to search trees with a fanout of b, skiplists require O(logn) for
lookups, insertions, and deletions in which b is the promotion factor
or, in our case, the number of elements that fit into a block. For the
skiplist in Figure 1, b is equal to 7.

FastAD employs an incremental hash to accumulate all of the hashes
in the directory into one unique identifier. We describe and then an-
alyze two such hashes that present tradeoffs in security, size, and
performance. A multiplicative incremental hash (MuHASH) [6] is
provably secure but relatively inefficient, because the incremental
computation relies on multiplication and the multiplicative inverse.
The more efficient additive incremental hash (AdHASH) [6] relies
on addition and subtraction for incremental computation, but must
employ longer outputs (1600 bits versus 1024) to mitigate secu-
rity vulnerabilities [19]. Just as with the pairwise hash-generation
schemes used previously in authenticated directories, the incremen-



tal hashes stored at any node accumulates the hashes below it in a
hierarchy to provide proof of object inclusion in a set or exclusion
from a set [16].

MuHASH: All of the elements of each level-0 block in the skiplist
are accumulated using a MuHASH that contributes to a single ele-
ment in a level-1 block. For level-0 block containing objects with
identifiers in the range u, ..., v, the MuHASH Zj (, ) is com-
puted as

MuHASH{ Gy (Zo,(u.0)) = | [ [R(()]1D)]
J=u

in which the group G is used to build the MuHASH and A is an
ideal function that maps elements into G. Additionally, (j) is the
binary representation of the object identifier and D); is the digest of
the data object computed by the writer. FastAD does not need to see
the data; it only stores the integrity information. The higher levels
in the skiplist compute the MuHASH of the accumulated hashes of
its children blocks (Figure 1). In the figure, the hash of object 73 is
included in a level-0 MuHASH that contains the hashes of objects
71-77. This value is combined with the those of other level-0 blocks
in a level-1 MuHASH that accumulates objects 50-98. Higher lev-
els continue accumulating lower level values in a similar manner
until the root accumulates all objects in the directory.

The MuHASH construction employs a cryptographic hash func-
tion h and provides incrementality based on the commutative and
invertible properties of multiplication in a selected group G. The
resultant digest MuHASH'{G> has been proven to be collision-free
when the underlying hash function is ideal and the product is taken
in a group G in which the discrete logarithm problem is hard [6]. In
our case, we select G such that G = Z,, for some sufficiently large
prime p, the product taken in group G is multiplication modulo p,
and |p| > 1024'. For h, we use a construct first presented by Bel-
lare et al. [7] and recently analyzed by Leurent and Nguyen [13].
We let H = SHA-384 (that is, the truncated version of SHA-512
with strengthened Merkle-Damgard transform) and define h(x) as
the truncated first 1024 bits of:

H{(c[[{0)[=)[[H (e[ [(1)[) ][ H (c[[(2)||)

in which c is a public constant unique to h (i.e., another hash func-
tion A’ must use a different constant). Upon completion, we verify
that h(z) is in G.

FastAD benefits from the incremental computation of the MuHASH.

When updating the MuHASH of a set of b objects, we compute h
twice at each level of the data structure amounting to six invoca-
tions of SHA-384. A binary tree implementation requires only one
hash for each level, but has log, b times more levels. For example,
when modifying a leaf block changing the content of the object
with identifier u from o, to o, the new MuHASH (Z’) can be
computed with the original MuHASH (Z), the original digest, and
the modified digest

T = Z x inv(h({w)]|D;)) mod p
Z' =T x h({u)||D}) mod p

where inv() is defined as the multiplicative inverse modulo p and
D; is the new digest generated by the writer. The operation amounts
to dividing out the original element from the cumulative hash and

'Ideally, a prime-order group should be used here to achieve a
tighter security proof for MuHASH [6].

then multiplying in the new element. Deletions can be realized
without compromising security properties that rely on the index by
setting D to a unique reserved string and employing the update
algorithm [5].

AdHASH: AdHASH uses addition and subtraction, instead of mul-
tiplication, to provide incrementality. Similar to the description of
MuHASH, for level-0 block containing objects with identifiers in
the range u, .. ., v, the AdHASH Zj (,,,.) is computed as

AdHASH} (Zo,(u,0)) = D, [A((j)]| D;) mod M]

j=u

in which h is a hash function that maps elements into Z»; and M
is a publicly-disclosed random integer. The value (5) is the binary
representation of the object identifier and D; is the digest of the
original data object computed by the writer. We implement h sim-
ilarly to the construction used in MuHASH except we concatenate
5 outputs of SHA-384, truncate the first 1600 bits, and verify that
h(z) isin Zps. If b is a random oracle, AAHASH is collision-free
assuming that the weighted knapsack problem is hard [6]. This as-
sumption might be significantly stronger than the one underlying
the security of MuHASH and is not considered standard. In addi-
tion, to account for Wagner’s analysis [19], the modulus M must
be large — at least 215°° to provide 80-bit security. The choice of
M must also meet additional constraints in order for AAHASH to
be collision-free [6], but selecting M is a one-time cost incurred
during the initialization of FastAD.

Incrementality is achieved in AJHASH using subtraction. Using
the same definitions for variables and functions as in the MuHASH,
the AJHASH supports selective replacement of D; with D/,

T = Z — (h({u)||D;)) mod M
Z' =T + h({(uw)||D})) mod M

AdHASH provides superior performance than MuHASH owing to
the performance cost of addition and subtraction operations when
compared with multiplication and computation of the multiplica-
tive inverse. We demonstrate the relative performance in our eval-
uation (Section 4).

We have described FastAD for deterministic skip lists, but the
MuHASH construction can be used with B+-trees to provide the
same performance benefits. For this paper, we consider workloads
without deletions: insert, modify, and read only. This may be ap-
propriate for versioning or archival systems. In the future, we will
address deletion either by reorganization and compaction of the
skiplist or by moving to a B+-tree.

3. PATH HINTS

Path hints allow FastAD to short-circuit an object’s authenticity
verification, eliminating unnecessary I/0. FastAD replicates an ob-
ject’s path through the directory from root-to-leaf on the storage
server, which incurs a storage overhead of log y,n (key, digest) pairs.
During verification, FastAD compares elements from the path with
those at each level of the skiplist, stopping at the first level where
the hint matches the directory entry. The hint avoids I/O to blocks
containing elements from the lower levels of the skiplist. Figure
1 shows the path hint optimization were object 73 to be queried.
The top three levels of the skiplist have been modified by updates
to other objects after the path was replicated at the storage server.
However, the digest of the LO leaf node has not changed, which can



be determined at L1, and FastAD does not perform /O to retrieve
the LO leaf block.

FastAD achieves these optimizations without jeopardizing the va-
lidity of the inclusion proof. As Merkle identified [15], a node in
a cryptographic hash tree summarizes the contents of the node’s
entire sub-tree; MuHASHes and AdHASHes in a skiplist exhibit
the same property. When successfully using a path hint, FastAD
returns a short-circuit proof that contains only the neighbor ele-
ments from the root to the matching hint. The client completes the
proof by constructing a verifying digest from leaf to root using the
path hint to provide the lower level neighbor elements that are not
in the short-circuit proof. Several optimizations exploit the tem-
poral properties of workloads to improve cache performance and
increase the effectiveness of path hints. Our design avoids I/O to
a block when either (1) hints have not been invalidated by updates
to objects associated with the path from leaf to the block, or (2)
FastAD caches the block.

To keep hints valid, we update path hints opportunistically and
insert new objects so that they minimally interfere with existing
paths. The client updates the path hint on the storage server on
every read query. FastAD returns the path information as part of
the proof of membership in the directory. We also insert new ob-
jects into the directory sequentially (append only) by creating ob-
ject identifiers in monotonically increasing order. Thus, subsequent
inserts go into the same blocks and repeatedly modify the same
path from leaf to root, which invalidates a minimum number of
replicated path hints.

This design enhances cache effectiveness. Typically, the cache con-
tains the top levels of the directory, which are used in most queries,
and the hot portion of the skiplist where inserts occur. These are ex-
actly the regions of the data structure that change most frequently
and for which the path hints are least effective.

4. EVALUATION

We implemented a FastAD prototype to demonstrate the relative
benefits of our optimizations. All experiments were performed on a
Dell Precision T7400 workstation with a 2Ghz processor and 8GB
of RAM. To implement the MuHASH and AdHASH algorithms,
we use Libgcrypt’s multi-precision integer library along with
OpenSSL’s implementation of SHA-384.

Block orientation: Our evaluation reveals that the use of the
AdHASH reduces the performance cost of cryptographic opera-
tions by a factor of five and the total time (including I/O) by a
factor of two when compared with pairwise hashing (Figure 3).
The MuHASH is considerably slower due to the number of multi-
plication operations required to calculate the multiplicative inverse
(Figure 4). We use a write microbenchmark that inserts 100,000
elements asynchronously (no forced I/O) using three systems: (1)
FastAD with AJHASH (2) FastAD using MuHASH and (3) block-
aligned pairwise hashing as described by Yumurefendi et al. [20].
We measure the time to perform cryptographic operations and the
total runtime. In both implementations of FastAD, the cryptographic
costs remain in constant proportion to the number of levels in the
skiplist. FastAD with AdHASH requires ten hash operations, one
addition, and one subtraction per level, whereas FastAD with
MuHASH requires six hash operations, the calculation of the mul-
tiplicative inverse, and two multiplications to recalculate the digest
for a block. A larger block size corresponds to fewer levels in the
skiplist, explaining the significant initial decline and subsequent
leveling of time to perform the inserts. The MuHASH is two or-

ders of magnitude slower than the AJHASH (Figure 4), making
the AJHASH our preferred cryptographic construct.
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Figure 4: Insert performance (MuHash and AdHASH)

In contrast to the incremental cryptographic algorithms, the block
size has no impact on the number of levels in the pairwise scheme;
there are always log, n levels in the binary tree regardless of its
organization on blocks. Pairwise cryptographic operations gain
no benefit from larger block sizes. In fact, performing crypto-
graphic operations that require accessing multiple, non-contiguous
elements within a single large block results in many L1 and L2
cache misses explaining the linear increase in time for the pairwise
scheme (Figure 3).

Path hinting: We compare the object verification time of lookups
with and without path hints for a mixed read-write workload. With-
out path hints, the system must traverse the path from root to leaf
for each lookup, whereas hints permit verification at higher levels
of the data structure. We based our experiment on a portion of the
Lair NFES trace [10]: a balanced read/write workload of 400,000
operations. In order to vary the depth of the data structure and to
prevent it from fitting entirely in cache, we pre-populate a FastAD
directory with a variable number of random objects before execut-
ing the operations from the trace. We distribute the objects first
referenced as reads in the Lair trace randomly throughout the pre-
populated directory. Prior to executing the trace, we force all blocks
to disk and flush the entire directory from memory. As we execute
the trace, we insert objects first referenced as writes into the direc-
tory on their first reference. For each read in the trace, we request
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Figure 5: Impact of path hinting on lookups.

object verification and then measure the verification time. We use
a 16KB block size such that 68, 230-byte objects fit in each block.
We use a cache size of 10MB such that 640 blocks can reside in
cache. The cache size is a thousand times smaller than a realistic
server system, but our directory contains a thousand times fewer
objects than our design target (millions rather than billions).

Our path hinting optimization reduced the lookup time by a factor
of six (Figure 5). The initial steep increase in times corresponds to
the increase in the number of levels in the skiplist. The path-hinting
optimization becomes more significant as the size of the directory
increases since writes to a deeper skiplist invalidate a smaller per-
centage of paths to blocks in the lower levels.

S. RELATED WORK

Previous skiplist implementations of authenticated directories were
designed as in-memory systems using pairwise hashing [2, 8, 11,
12, 14, 18], making the cost of digest regeneration and the proof
size prohibitively large as the number of elements that contribute
to the hash increases. Recognizing the need for scalability, Yu-
murefendi et al. [20] implemented an authenticated directory that
builds binary Merkle-trees within each node of a B+-tree. How-
ever, the cryptographic operations in this system are still performed
pairwise and maintaining the B+-tree may incur tree rotations that
recalculate hashes over substantial portions of the tree.

Zhu et al. [21] provide optimizations that minimize I/O associated
with accessing an index that scales beyond memory capacity in a
data deduplication system. This includes inserting data into a hot-
portion of the tree to reduce the memory footprint and improve
cache utilization. FastAD’s append-only temporal organization was
inspired by this work. They also use a Bloom filter to avoid lookup
requests to objects not in the index. This technique does not ap-
ply to FastAD, because query responses from FastAD must carry a
compact proof that cannot be derived from the Bloom filter.

6. CONCLUSIONS

As cloud storage becomes more popular, we anticipate that authen-
ticated directories will emerge as the data structure of choice for
tracking dynamic data. Systems will need to manage integrity, au-
thenticity, versioning, and provenance for billions of objects. To-
ward these requirements, we have developed a prototype authen-
ticated directory that maintains performance at scale by efficiently
mapping the data structure to disk and by reducing I/O costs through
path hinting and temporal organization. Our current prototype more

than doubles overall system performance for inserts and verifica-
tion performance for lookups for practical parameters when com-
pared with existing techniques for block-aligned, out-of-core au-
thenticated directories.
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