Tolerating Hardware Device Failures in Software

Asim Kadav, Matthew J. Renzelmann and Michael M. Swift
Computer Sciences Department, University of Wisconsin-Madison
{kadav,mjr,swift}@cs.wisc.edu

Abstract are transient: hardware vendors repeatedly report that the

Hardware devices can fail, but many drivers assume they dénajority of returned devices operate correctly and retry-
not. When confronted with real devices that misbehave, theséd an operation often succeeds B, 31]. In total, 9%
assumptions can lead to driver or system failures. While majoiof all unplanned reboots of servers at Microsoft during a
operating system and device vendors recommend that driverseparate study were caused by adapter or hardware fail-
detect and recover from hardware failures, we find that there arerres. Most importantly, when running platforms with
many drivers that will crash or hang when a device fails. Suchthe same adapterand software that tolerates hardware
bugs cannot ea_sily be detected by_regular stress testing becauggyits, reported device failures rates drop from 8 percent
the faﬂures are |ndut;ed by the dgwce and not the spftwgre loady, 3 percentZ]. This evidence suggests that @dgvice
5 20t descrbes Carbrzer 2 code Maniputon Ui i a major cause of system crashé) ransien
) : . device failures are commoand (3)drivers that tolerate

presence of faulty devices. Carburizer analyzes driver sourcé ~ . . . TN
code to find locations where the driver incorrectly trusts the?'eV'C‘? failures can |mprqve_r.ellabllll)Wlthput address--
hardware to behave. Carburizer identified almost 1000 sucfd this problem, the reliability of operating systems is
bugs in Linux drivers with a false positive rate of less than g limited by the reliability of devices.
percent. With the aid of shadow drivers for recovery, Carbur- Device hardware failures cause system hangs or
izer can automatically repair 840 of these bugs with no pro-crashes when drivers cannot detect or tolerate the failure.
grammer involvement. The Linux kernel mailing list contains numerous reports

To facilitate proactive management of device failures, Car-of drivers waiting forever and reminders from kernel ex-
burizer can also locate existing driver code that detects deperts to avoid infinite waitsZ6]. Nevertheless, this code
vice failures and inserts missing failure-reporting code. Finally,persists. For example, the code below from the 3c59x.c
the Carburizer runtime can detect and tolerate interrupt-relateshetwork driver in the Linux 2.6.18.8 kernel will loop for-

bugs, such as stuck or missing interrupts. ever if the device never returns the right value:
1 Introduction while (ioreadl6(ioaddr + Wn7_MasterStatus))
& 0x8000)

Reliability remains a paramount problem for operating
systems. As computers are further embedded within
our lives, we demand higher reliability because there are To address this problem, major OS vendors have is-
fewer opportunities to compensate for their failure. Atsued recommendations on how to harden drivers to de-
the same time, computers are increasingly dependent drice failures [L6, 41, 20]. These recommendations in-
attached devices for the services they provide. clude validating all inputs from a device, ensuring that all

Applications invoke devices through device drivers. code waiting for a device will terminate, and reporting all
The device and driver interact through a protocol spechardware failures. Despite these recommendations, we
ified by the hardware. When the device obeys the spedound that a large number of Linux drivers do not prop-
ification, a driver may trust any inputs it receives. Un- erly tolerate hardware failures. We see two reasons for
fortunately, devices do not always behave according tdhis: (1) testing drivers against hardware failures is dif-
their specification. Some failures are caused by wear-odicult, and (2) hardening drivers by hand is challenging.
or electrical interference2p). In addition, internal soft- Common testing procedures, such as stress testing, will
ware failures can occur in devices that execute embeddept detect failures related to hardware. Instead, fault-
firmware, sometimes up to millions of lines of cod®] ~ injection testing is required2[17, 52]. Unlike other

Studies of Windows servers at Microsoft demonstratesoftware testing, device drivers require that an instance
the scope of the problen?]} In one study of Windows Of the device be present, which limits the number of ma-
servers, eight percent of systemsfsted from a storage ~ chines that can run tests.

or network adapter failure2]. Many of these failures Previous work on driver fault tolerance has concen-
trated on two major approaches: static bug findihgs|

12, 32] and run-time fault tolerancep, 46, 18,51, 44. 2 Device Hardware Failures
Static approaches check for bugs in the interface betweep, this section, we describe the problem of hardware de-

the d_rlver and the kerel to ensure that the driver _d_oe%ice failures and vendor recommendations on how to tol-
not violate kernel-programming rules, such as by failing 4t and manage device failures

to release a lock. But, these tools do not verify that the)
driver validates inputs received from the device. 2.1 Failures Types

Systems that tolerate faults at run time, such as SafeModern CMOS devices are prone to internal failures and
Drive [51] and Nooks #4], either instrument driver code without significant design changes, this problem is ex-
or execute it in an isolated environment. These systempected to worsen as transistors shrink. Prior studies indi-
detect faults, including hardware-induced faults, dynam-cate that these devices experience trangiisftip faults,
ically and trigger a recovery mechanism. However, thesavhere a single bit changes value; permanstoick-at
systems have had limited deployment, perhaps due to thiawlts, when a bit assumes a fixed value for an extended
heavyweight nature of the solution. period; andoridging faultswhen an adjacent pair of bits

This paper presents CarburiZes, code-manipulation are electrically mated, causing a logical-and or logical-or
tool and associated runtime that automatictltydens gate between the bit47, 25]. Environmental conditions
drivers. A hardened driver is one that can survive the fail-such as electromagnetic interference and radiation can
ure of its device and if possible, return the device to full cause transient faults. Wear-out and ifisient burn-in
function. Carburizer implements three major hardeningmay result in stuck-at and bridging faults.
recommendations: (1) validate inputs from the device, In addition, when a device contains embedded
(2) verify device responsiveness, and (3) report hardwaréirmware, or even an embedded operating syst&éh [
failures so an administrator can proactively manage fail-any software-related failure is possible, such as out-of-
ing hardware2, 16, 20, 41]. resource errors from memory leaks or concurrency bugs.

Carburizer analyzes driver code to find where it 8C ailure manifestations Device drivers observe fail-

cepts input from the device. If the driver uses device dat%res when they access data generated by the device. For

without checking its correctness, Carburizer modifies thqDCI drivers, which perform/© through memory or/O

d_nve(rjt? u}sert vahd;mon c%de.b If_the (_jrlvert chegkstde— ports, the driver reads incorrect values from the device.
vice data Tor correciness, L-arbunizer INSerts code 10 1€, s grivers, which use a requgssponse protocol,
port a failure if the data is incorrect. Finally, the Carbur-

: .) . a device failure may cause a response packet to contain
izer runtime detects stuck interrupts and non-responsiv

fhcorrect dataZ5]. Sources at Microsoft report that de-

devices and causes the driver to poll the device. To autoy; . hangs and interrupt storms are common manifesta-

matically repair bugs, Carburizer invokes a generic r€ions of faulty hardwarel4].

covery service that can reset .the dgwce. We rely on Many hardware failures are likely to manifest as cor-

shadow_dnvers43] to provide th|s service. ._rupt values in device registers. A single bit-flip inter-
Despite the common appl|cat!on of static anaIyS|sna| to a device controller may propagate to other internal

tools to the Linux kemeld], Carburizer uncovers a large registers before the device driver reads a garbled value

.”“mk_’etf oprrobIe()jms. Cahrbunzerr] |ddent|f|e<? _?92 bLJgsexpo:sed through a device register. Similarly, an internal
N exISting LInux arivers where a hardware failureé may g, o fajlure may result in a transient corruption in a

cause the driver to crash or hang. W.'th manual NSPECHavice register, a stuck value in a register, a stuck inter-
tion of a random subset, we determined that the fals

%upt request line, or unpredictable DMA accesses. Bugs
positive rate is 7.4%, for approximately 919 true bugs; b req ' P ¢

. . " : 2~in device firmware may manifest as incorrect output val-
found. Discounting for false positives, Carburizer repairs

. . . ues or timing failures, when a device does not respond
approximately 845 real bugs by inserting code to detect .., . . :

i . - “within the specified time period.
hardware failures and recover at runtime. When run with

common JO workloads, drivers modified by Carburizer 2.2 Vendor Recommendations

perform similarly to native drivers. Major OS vendors provide recommendations to driver

In the remainder of this paper, we first discuss hard-writers on how to tolerate device failure [L6, 20, 41].
ware failures and OS vendor guidelines for hardeningTable1 summarizes the recommendations of Microsoft,
drivers. We then present the three major functions ofiBM, Intel, and Sun on how to prevent faulty hardware
Carburizer in Section3, 4 and5. Section6 presents the from causing system failures. The advice can be con-
overhead of our code changes, and we finish with relatedensed to four major actions:

work in Section7 and conclusions. 1. Validate. All input from a device should be treated

1 as suspicious and validated to make sure that values
Carburizing is a process of hardening steel through heat treatment. lie within range.

Validation

Input validation. Check pointers, array indexes, pack
lengths, and status data received from hardwéigl6, 20].
*

Unrepeatable readRead data from hardware once. Do n
reread as it may be corrupt later]]

DMA protection.Ensure that the device only writes to val
DMA memory [41, 20]

Data corruption. Use CRCs to detect data corruption|i

higher layers will not also checKk, 20]
Timing

Infinite polling. Ensure that spinning while waiting on th
hardware can time out, and bound all loog§,[20, 16]. %
Stuck interrupts. Handle interrupts that cannot be di
missed 17, 41] %

Lost request.Use a watchdog to verify hardware respg
sivenessy, 16] %

Excessive delayAvoid delaying the OS, busy waiting, an
holding locks for extended periodg, [16]

Unexpected eventblandle out-of-sequence eveng9[16]
Reporting

Report hardware failuresNotify the operating system o
errors, log all useful informatior?[16, 20, 41] %

Recovery

Handle all failures. Handle error conditions, includin
generic and hardware-specific errazs16, 41] %

Cleanup properly. Ensure the driver cleans up resourg
after a fault g1, 20] %

et

f

)

Conceal failure. Hide recoverable faults from applica

tions [16] %

Do not crash.Avoid halting the system?], 16, 20, 34] %

Test driversTest driver using fault injectiorb, 17, 20|

Wrap JO memory accessUse only wrapper functions to

perform programmeemory-mappedO [41, 20, 34]

Table 1: Vendor recommendations for hardening drivers

against hardware failures. Recommendations addressed by

Carburizer are marked with a ¥%.

2. Timeout. All interaction with a device should be
subject to timeouts to prevent waiting forever when tifies hugs for a programmer to fix.

the device is not responsive.

Compile-time Components i

o Execution Components ,
i i
! OS Kernel

i

i Static Analysis and Carburizer
| H
|

i

|

|

i

i

|

|

i

i

|

|

|

i

Code Generation Runtime

|
i
i
i
|
i
!
|
—>< Carburizer)—v—>| Hardened Driver I4 !
i
|
i
|
i
|
i
|
|

Original
Driver
Source

Runtime Failure
Detection and
Recovery

Fay
Device

Figure 1: The Carburizer architecture. Existing kernel
drivers are converted to hardened drivers and execute with
runtime support for failure detection and recovery.

Carburizer addressed four aspects of vendor recom-
mendations. SectioB addresses bugs that can be found
through static analysis, including infinite polling and in-
put validation. Sectiod addresses reporting hardware
failures to a centralized service. Sect®addresses run-
time support for tolerating device failures, including re-
covery, stuck interrupts, and lost requests. The recom-
mendations that Carburizer can apply automatically are
marked in Tablel. The remaining recommendations can
be addressed with other techniques, such as an IOMMU
for DMA memory protection, or cannot be applied with-
out semantic information about the device.

3 Hardening Drivers

This section describes how Carburizer finds and fixes
infinite polling and input validation bugs from Table
These ardnardware dependendmigs that arise because
the software depends on the hardware’s correctness for
its own correctness. The goal of our work is to (1) find
places where driver code uses data originating from a de-
vice, (2) verify that the driver checks the data for validity
before performing actions that could lead to a crash or
hang, and if not, (3) automatically insert validity or tim-
ing checks into the code. These checks invoke a generic
recovery mechanism, which we describe in Secton
When used without a recovery service, Carburizer iden-

Figurel shows the overall architecture of our system.

- Report. All suspect behavior should be reported to carpurizer takes unmodified drivers as input and with a

an OS service, allowing centralized detection andset of static analyses produces (1) a list of possible bugs

management of hardware failures.
4.
failure, if necessary by restarting the device.

and (2) a driver with these bugs repaired, i.e. drivers that

RecoverThe driver should recover from any device gjigate all input coming from hardware before using it

in critical control or data flow paths. The Carburizer run-

The goal of our work is tautomatically implement time detects additional hardware failures at runtime and
these recommendations. First, we seek to make driversan restore functionality after a hardware failure.

tolerate and recover from device failures, so device fail-

We implement Carburizer with CIL30]. CIL reads in

ures do not lead to system failures. For this aspect of oupre-processed C code and produces an internal represen-
work, we focus on transient failures that do not recur af-tation of the code suitable for static analysis. Tools built
ter the device is reset. Second, we seek to make drivefgith CIL can then modify the code and produce a new
report device failures so that administrators learn of tranpre-processed source file as output.

sient failures and can proactively replace faulty devices.

We next describe the analyses for hardening drivers in
Carburizer and our strategies for automatically repairing

1static int amd8111e_read_phy(.......) 1static void __init attach_pas_card(...) {

2{ .

3 . if ((pas_model = pas_read(0OxFF88)))

4 reg_val = readl(mmio + PHY_ACCESS);

5 while (reg_val & PHY_CMD_ACTIVE) char temp[100];

6 reg_val = readl(mmio + PHY_ACCESS);

7 . sprintf(temp,

8 "%s rev %d",
pas_model_names[(int) pas_model],

pas_read(0x2789));

}

© © N o O~ W N

i
o

Figure 2: The AMD 8111e network driver (amd8111e.c)
can hang if the readl() call in line 6 always returns the same 1}
value.

i
ey

. . . . Figure 3: The Pro Audio Sound driver (pas2card.c) uses
these bugs. We experiment with device drivers from the(he pas_model variable as an array index in line 9 without

Linux 2.6.18.8 kernel. any checks.

3.1 Finding Sensitive Code these loops will timeout eventually. We find, though, that

Carburizer locates code that is dependent on inputs frorm many cases device drivers omit the timeout code and
the device. When a driver makes a control decision, suckoops terminate only if the device functions correctly.
as a branch or function call, based on data from the de- To identify these unbounded loops, we implement an
vice, the control code isensitivebecause it is dependent analysis to detect control paths that wait forever for a
on the correct functioning of the device. If code usesparticular input from the device. Carburizer locates all
a value originating from a device in an address calculaloops where the terminating conditions are taintieel, (
tion, for example as an array index, use of the addresdependent on the device). For each loop, Carburizer
is dependent on the device. Carburizer finds hardwareeomputes the set of conditions that cause the loop to
dependent code that is incorrect for some device inputsterminate throughvhile clauses as well as conditional
Carburizer's analyses are performed in two passeshreak, return andgoto statements. If all the terminating
The first pass is common to all analyses and identifiegonditions for a loop are hardware dependent, the loop
variables that artainted or dependent on input from the may iterate infinitely when the device misbehaves. Fig-
device. Carburizer consults a table of functions known toure 2 shows a bug detected by our analysis. The code in
perform JO, such aseadl for memory-mapped/© or lines 5-6 can loop infinitely ifreadl, a function to read
inb for port |/O. Initially, Carburizer marks all heap and a device register, never returns the correct value. While
stack variables that receive results from these functionshis is a simple example, our analysis can detect complex
as tainted. Carburizer then propagates taint to variablesases, such as loops that conteige statements or that
that are computed from or aliased to the tainted variablescall functions performing/D.
Carburizer con_siders the_ static v_isibility of variables butg 4 » Checking Array Accesses
does not consider possible calling contexts. For com-)))))
pound variables such as structures and arrays, the anallany drivers use inputs from a device to index into
sis is field insensitive and assumes that the entire struc@n array. When the range of the variabteg(65536
ture is tainted if any field contains a value read from thefor @ short) is larger than the array, an incorrect index
device. We find that in practice this occurs rarely, andc@n lead to reading an unmapped address (for large in-
therefore yields a simpler analysis that is almost as predic€s) or corrupting adjacent data structures. Fidire
cise as being sensitive to fields. shows a loop in the Pro Audio sound driver (pasd.c)
The output of the first pass is a table containing a"that_ does not check for bounds while accessing an array.
variables in all functions indicating whether the variable While many drivers always check array bounds, some
is tainted. Carburizer also stores a list of tainted func-drivers are not as conscientious. Furthermore, a single
tions that return values calculated from device inputsdriver may be inconsistent in its checks.

The table from the first pass is used by the second-pass W€ implement an analysis in Carburizer to determine
analyses described below. whether tainted variables are used as array indices in

L . static arrays. If the array is accessed using a tainted vari-
3.1.1 Infinite Polling able, Carburizer flags the access as a potential hardware
Drivers often wait for a device to enter a given state bydependence bug. The analysis can detect when values
polling a device register. Commonly, the driver sits in returned by one function are used as array indices in an-
a tight loop reading the device register until a bit is setother. In addition, when an array index is computed from
to the proper value, as shown in Figutelf the device multiple variables, Carburizer checks whether all the in-
never setshe proper value, this loop will cause the sys- put variables are untainted.
tem to hang. Driver developers are expected to ensure

Lstatic void orc_interrupi(...) ~ { While rare, drivers may also read a pointer directly

z bSchbldx = ORC_RD(hcsp->HCS_Base, from a device. Figur® shows an example from a SCSI

4 ORC_RQUEUE); driver where the driver reads a 64-bit pointer in lines 5

5 Scb = (ORC_SCB ») (ULONG) and 6 and dereferences it in line 9. Carburizer also flags
6 pScbh = = * . .

) hesp->HCS, virSchArray this use of pointers as a bug.

8 + (ULONG) 3.1.3 Removing False Positives

9 (sizeof(ORC_SCB) * bScbldx));

10 False positives may arise when the driver has a time-
1 pScb->SCB_Status = 0x0; out in a loop or validates input that our analysis does
12 4

1 inial00SCBPOS(BYTE) no_t detect. From the suspect loops, Carb_urlzer deter-
14 hcsp, (BYTE) pSch); mines whether the programmer has already implemented
5. a timeout mechanism by looking for the use dfmaeout

16} counter A timeout counter is a variable that is (1) either

_ _ _ o _ incremented or decremented in the loop, (2) not used as
Figure 4: The pScbIdx variable is used in pointer arith- an array index or in pointer arithmetic, and (3) used in a
metic in line 11 without any check in the a100 SCSI driver terminating condition for the loop, such astd le clause
(aloouiw.hc)t._ _ + callback or in anif before abreak, goto, Of return statement. If

+void hptiop_iop_request_callback(" ...) { a loop contains a counter, Carburizer determines that it

2

3 'p = (struct hpt_iop_cmd __iomem)req; will not loop infinitely. We also detect the use of the ker-
4 arg = (struct hi_k *) nel jiffies clock as a counter.
X (readi(&req->context) | False positives for unsafe pointer dereferencing and ar-
6 ((u64) readl(®->context_hi32)<<32));
S ray indexing may occur if the driver already validates the
s if (readl(®->result)y == IOP_SUCCESS) { pointer or index with a comparison to NULL or a shift
9 arg->result = HPT_IOCTL_OK; mask operation on the incoming pointer data from the
w0} device. Carburizer does not flag a bug when these op-
E} ' erations occur between thil operation and the pointer
arithmetic or pointer dereference.
Figure 5: The HighPoint RR3xxx SCSI driver (hptiop.c) Carburizer removes false positives that occur when a
readsarg from the controller in line 5 and dereferences it ~ tainted variable is used multiple times without an inter-
as a pointer in line 9. vening JO operation and when a tainted variable is re-

assigned with an untainted value. We keep track of where
Carburizer also detects dynamic (variable-sized) arrayn the code a variable becomes tainted, and only detect a
dereferencing with tainted variables. CIL converts all dy-bug if the pointer dereference or array index occurs after
namic array accesses into pointer arithmetic and memthe taint.
ory dereferencing, so it requires a separate analysis from We find that the false positive techniques have been
static arrays (those declared as arrays with a fixed sizefielpful. Identifying validity checks and repeated use of a
In the second analysis pass, Carburizer detects wheth&@riable reduced the number of detected dynamic-array
a tainted variable is used for pointer arithmetic or as theaccess bugs from 650 to 150, and the other techniques
address of a memory dereference. In both cases, Carbuiirther reduced it by almost half. For infinite polling,
izer detects a potentially unsafe memory reference. Wéhese techniques identified half the results as false posi-
report a bug where the pointer arithmetic is performedtives where the driver correctly broke out of the loop.
rather than where a dereference occurs; this is the locaz 2 Repairing Sensitive Code
tion where a bounds check is required, as tliset may . . . -
not be available when memory is actually dereferenced'.:'nd_Ing driver b‘%gs alone 1S vgluable, but re“‘?‘b'“ty does
not improve until the bug is fixed. After finding a bug,

If the pointer is never used, this may result in a false pos- X i ! .
itive. Carburizer in many cases can generate a fix. Repair-

Figure 4 shows driver code where unsafe data froming sensitive code consists of inserting a test to detect
device is used for pointer arithmetic. At lineBcbTdx whether a failure occurred and code to handle the fail-
is assigned value from therc RD ma.cro which reads Ure- To recover, Carburizer inserts code that invokes a

a 32-bit value from the device. At line 9, this value is generic recovery function capable of resetting the hard-

used as anfset for pointemsch. If a single bit of the ware. While repeating a device read operation may fix

incoming data is flipped, the pointer dereference in Iinethe bug, this is not safe in general because device-register

11 could cause memory corruption or, if the address isreads can have s@éfepts. As r_ecoveryfﬁects perfor-
unmapped, a system crash. mance, we ensure it will not be invoked unless an unhan-

1static int amd8111e_read_phy(.......) 1static void __init attach_pas_card(...)

2{ 2{

3 . 3

unsigned long long delta = (cpu/khz/HZ) *2; if ((pas_model = pas_read(0xFF88)))

unsigned long long _start = 0;
unsigned long long _cur = O;
timeout = rdstcli(start) + delta ;

char temp[100];

~ o o b

if ((int)pas_model < 0 ||

. (int)pas_model >= 5) {
s reg_val = readl(mmio + PHY_ACCESS); 10 shadow_recover();

9 while (reg_val & PHY_CMD_ACTIVE) { ul) - -

10 reg_val = readl(mmio + PHY_ACCESS);

© o~ o G &

12 sprintf(temp,
" 13 "%s rev %d",
12 if (cur < timeout) { 14 pas_model_names|[(int) pas_model],
13 rdstell(_cur); 15 pas_read(0x2789));
14 } else { 16 .
15 __shadow_recover(); 17}
16 }
g} : Figure 7:The code from Figure3 fixed by Carburizer with
a bounds check.
Figure 6:The code from Figure2 fixed by Carburizer with 1void hptiop_iop_request_callback(...) {
a timeout counter. 2 .
3 p = (struct hpt_iop_cmd __iomem *)req;

arg = (struct hi_k *)
(readl(®->context) |
((u64) readl(&req->context_hi32)<<32));

dled failure occurs and the driver could otherwise cras;h

or hang.
Carburizer relies on a generic recovery function conv-

mon to all drivers. However, some drivers already im?

plement recovery functionality. For example, the E1006) if (arg == NULL)

gigabit Ethernet driver provides a function to shutdowfi —shadow_recover(), :

and resume the driver when it detects an error. For sti¢h arg->result = HPT_IOCTL_OK;

drivers, it may be helpful to modify Carburizer to generg,

ate code invoking a driver-specific function instead. 14}

)

if (readl(®->result) == IOP_SUCCESS) {

Fixing infinite polling When Carburizer identifies a Fi 8 The code from Fi 5 aft i Carburi
loop where a driver may wait infinitely, it generates code. 'gure ©. Ihe code from Figure > alter repair. Carburizer

. t Il-pointer check in line 9.
to break out of the loop after a fixed delay. We se-M>eMts @ nui-pointer checkintine

lected maximum delays based on the delays used in other

drivers. For loops that do not sleep, we found that mostoMes from the qu'Ce' When an array index is used_re-
drivers wait for two timer ticks before timing out; we peatedly, Carburizer only inserts a check before the first

chose five ticks, a slightly longer delay, to avoid incor- use.

rectly breaking out of loops. For loops that invoke a sleepabllzeOr gﬁ?gg:gi%: |zoer?S iLr: ybsu tht?u? 3?)22 Ir?or':meivear!te
function such assleep, we insert code that breaks out of) P 9 9

loops after five seconds, because the delay does not ings repalr- With programmer annotations indicating where

pact the rest of the system. This is far longer than mosf &Y bounds are stored, 51, Carburizer could also

devices require and ensures that if our analysis does raisaeenerate code for dynamic bounds checking.
9 Y Figure7 shows the code from Figuiafter repair. In

false positives, the repair will not break the driver. As this code, the array size is declared statically and Carbur-
shown in Figures, for tight loops Carburizer generates . - y -atly
izer automatically generates the appropriate range check.

code to read the processor timestamp counter before thg . . : X) .
P b hFh|s check will only trigger a recovery if the index is out-

loop and breaks out of the loop after the specified dE|ay'side the array bounds, so it never falsely detects a failure.

When the loop times out, the driver invokes a generic re- .. ; .

X . o . When repairing code that reads a pointer directly from
covery function. This repair will only be invoked after a device. Carburizer does not know legal values for
a previously infinite loop times out, ensuring that there S) 9

. : the pointer. As result, Carburizer only ensures that the
will be no falsely detected failures. i : : . .

o _ o pointer is non-NULL. Unlike other fixes, this only pre-
Fixing invalid array indices When array bounds are vents a subset of crashes, because legal values of the
known, Carburizer can insert code to detect invalid arra)pointer are not known. Figure shows repaired code
indices with a simple bounds check before the array is acywhere data from device is dereferenced.
cessed. Carburizer computes the size of static arrays and
inserts bounds checks on array indices when the index

Fixing driver panics Carburizer can also fix driver bugs. Only the 89 dynamic-array dereferences require
code that intentionally crashes the system when hardprogrammer involvement.
ware fails. Many drivers invokeanic when they en- We estimate the false positive rate by randomly sam-
counter abnormal hardware situations. While OS ven+pling bugs and inspecting the code. With weighted sam-
dors discourage this practice, it is used when driver depling across all classes of bugs, we compute that Carbur-
velopers do not know how to recover and ensures thaizer is able to detect bugs at a false positive rate of #44%
errors do not propagate and corrupt the system. If a re4.3% with 95% confidence.For the infinite loop bugs, we
covery facility is available then crashing the system isinspected 140 cases and found only 5 false positives. In
not necessary. Carburizer incorporates a simple analysthese cases, the timeout mechanism was implemented in
to identify calls topanic, BUG, ASSERT and other system a function separate from the loop, which Carburizer does
halting functions and replace them with calls to the re-not detect. However, Carburizer’s timeout wasere re-
covery function. laxed than the driver’s, and as a result did not harm the
driver. This low false positive rate demonstrates that a
_))) fairly simple and fast analysis can detect infinite loops
The static analysis performed by Carburizer finds manyyitn high accuracy.
bugs but is neither sound nor complete: it may produce Eqr the static arrays, we randomly sampled 15 identi-
false positives, and identify code as needing a fix wheniaq pugs and found 6 true bugs that could cause a sys-
itis in fact correct, and false negatives by missing SomM&em crash if the hardware experienced a transient failure,
bugs. Nonetheless, we find that it identifies many truegch as a single bit flip in a device register. Most of the
bugs. N _ remaining false positives occurred because the array was
False positives may occur when the driver already CONgxactly the size of the index’s range, for example 256 en-
tains a validity check that Carburizer does not recognizeyies for an unsigned byte index. However, even in the
For example, if the timeout mechanism for a loop is im- c45e of false positives, the code added by Carburizer cor-
plemented in a separate function, Carburizer will not ﬁ”drectly checked array bounds and does not falsely detect
itand will falsely mark the loop as a bug. Carburizeronly g tilure. The only harm done to the driver is the slight
detects counters implemented as standard integer typegyerhead of an unnecessary bounds check. More sophis-
When drivers use custom data-types, Carburizer does ng{ated analysis could remove these false positives.
detect the counter and again falsely marks the loop as an g, dynamic arrays and memory dereferencing, we
error. For array indexing, Carburizer does not considersamp|ed 35 bugs and found 25 real bugs for a program-
shift operations as a validity check because, if the arrayner to fix. Most false positives manifested in drivers that
is not a power of two in size, some index values will ;se mechanisms other than a mask or comparison for ver-
cause accesses past the end of the array. ifying an index. For example, the Intel i8Xudio driver
False negatives can occur because our interprocedurgkes the modulo operation on a dynamic arrised. The
analysis only passes taint through return values. Whews graphic driver calls a function to validate all inputs,
a tainted variable is passed as an argument, Carburizef,q Carburizer's analysis cannot detect validation done
does not detect its use as sensitive code. Carburizer al§g 5 separate function. Better interprocedural analysis is
cannot detect silent failures that occur when the hardwargeeged to prevent these false positives.
produces a legal but wrong value, such as in incorrect gyerall, we found that 498 driver modules out of the
index that lies within the bounds of the array. 1950 analyzed contained bugs. The bugs followed two
3.4 Analysis Results distributions. Many drivers had only one or two hard-

We ran our code across all drivers in the Linux 2.6.18.8V2'¢ dependence bugs. The developers of these drivers

kernel distribution. In total, we analyzed 6359 source /€€ typically vigilant about validating device _input but
files across thérivers andsound directories. For major forgot in a few places. A small number of drivers per-

driver classes, Tabl2 shows the number of bugs found Lorme?:very Ilttlelvalgjatkljon. anddhf\d tacljagie_ r;WTt‘b?r of
of each type. Despite analyzing over 2.8 million lines of ugs. For example, Larburizer detecte infinite 'oops

code, on a 2.4 GHz Core 2 processor the analysis onli the telespci ISDN driver and 80 in the ATP 870 SCSI
' ' iver.

takes 37 minutes to run, output repaired source files an r .
. . ' These bugs demonstrate that language or library con-
compile the driver files. . : .
The results show that hardware dependence bugs ais%ructs can improve the quality of driver code. For exam-
e, constructs to wait for a device condition safely, with

widespread, with 992 bugs found across a wide variet)P

of driver classes. Of these, Carburizer can automaﬂ!nternally|mplemented timeouts, can reduce the problem

cally repair the 903 infinite loop and static array index of hung systems due to qlewc_es. Past yvork on language
support for concurrency in drivers has investigated pro-

3.3 Summary

Driver | Infinite Polling | Static Array | Dynamic Array | Panic
Class Found Found Found | Fixed
net 117 2 21 2
scsi 298 31 22 121
sound 64 1 0 2
video 174 0 22 22
other 381 9 57 32
[Total | 860 | 43] 89 [179

Table 2:Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel)

viding similar language features to avoid correctness vi-covery mechanism. After a short delay while the driver
olations B] . recovered, it returned to normal function without inter-
3.5 Experimental Results fering with applications. _We stopped injecting faults in

.)) ~ the de4x5 and 3c59x drivers after they each recovered
We verify that the Carburizer's repair transformation o times. The forcedeth driver successfully recovered
works by testing it on three Ethernet drivers. Testingfrom more than ten of these transient faults. These tests

every driver repair is not practical because it would re-gemponstrate that automatic recovery can restart drivers
quire obtaining hundreds of devices. We focus on netufier hardware failures.

work drivers because we have only implemented the re-])
covery mechanism for this driver class. We test whethedt Reporting Hardware Failures

carburized drivers, those modified by Carburizer, can dea transient hardware failure, even while recoverable, re-
tect and recovery from hardware faults. duces performance and may portend future failugd [

Of the devices at our disposal, through physicalAs a result, OS and hardware vendors recommend mon-
hardware or emulation in a virtual machine, only two jtoring hardware failures to allow proactive device repair
100MbpS network interface cards use drivers that ha(br rep|acement_ For examp|e, the Solaris Fault Manage-
bugs according to our analysis: a DEC DC21x4x cardment Architecture 40] feeds errors reported by device
using the de4x5 driver, and a 3Com 3C905 card Usdrivers and other system components into a diagnosis en-
ing the 3c59x driver. We also tested the forcedethgine. The engine correlates failures fronffelient com-
driver for NVIDIA MCP55 Pro gigabit devices because ponents and can recommend a high-level action, such as
it places high performance demands on the system (sefisabling or replacing a device. In reading driver code,
Section6). In the case of forcedeth, since there are nowe found Linux drivers only report a subset of errors and
bugs in the driver, we emulate problematic code by manypften omit the failure details.
ually inserting bugs, running Carburizer on the driver, When Carburizer repairs a hardware dependence bug,
and testing the resulting code. it also inserts error-reporting code. Thus, a centralized

We inject hardware faults with a simple fault injection fault management system can track hardware errors and
tool that modifies the return values of thead(b,w,1) correlate hardware failures to other system reliability or
andin(b,w,1) I/O functions. We modified the forcedeth performance problems. Currently, we useintk to
driver by inserting code that returns incorrect output forwrite to the system log, as Linux does not have a fail-
a specific device read operation on a device register. W@re monitoring service.

then simulated a series of transient faults in the register To support administrative management of hardware
of interest. We injected hardware read faults at three lofajlures, Carburizer will also insert monitoring code into
cations in the de4x5 driver to induce an infinite-loop in existing drivers where the driver itself detects a failure.
interrupt context. The loop continued even if the hard-Carburizer in this case relies on the driver to detect hard-
ware returned OX(fifff, a code used to indicate that the ware failures, through the timeouts and sanity checks.
hardware is no longer present in the system. We injectegtigure 9 shows code where the driver detects a failure
a similar set of faults into the 3c59x driver to create anwith a timeout and returns an error, but does not report
infinite loop in the interrupt handler and trigger recov- any failure. In this case, Carburizer will insert logging
ery. We did not test all the bugs in each driver, because gode where the error is returned and include standard in-
single driver may support many devices, and some bugformation, such as the driver name, location in the code,
only occur for a specific device. As a result, we couldand error type (timeout or corruption). If the driver al-
not force the driver through all buggy code paths with aready reports an error, then we assume its report is suf-

single device. ficient and Carburizer does not introduce additional re-
In each test, we found that the driver quickly detectedporting.

the failure with the generated code and triggered the re-

1static int phy_reset(...) { 1static int phy_reset(...) {

2 . 2 .

3 while (miicontrol & BMCR_RESET) { 3 while (miicontrol & BMCR_RESET) {
4 msleep(10); 4 msleep(10);

5 miicontrol = mii_rw(...); 5 miicontrol = mii_rw(...);

6 if (tries++ > 100) 6 if (tries++ > 100) {

7 rewrn -1, 7] printk("..);

Z } 8 return -1;

10} o}

Figure 9: The forcedeth network driver polls the
BMCR _RESET device register until it changes state or un-
tila timeout occurs. The driver reports only a generic error Figure 10:Carburizer inserts a reporting statement auto-
message at a higher level and not the specific failure where matically in the case of a timeout, which indicates the device
it occurred. is not operating according to specification.

We implement analyses in Carburizer to detect when
the driver either detects a failure of the hardware or re4.2 Reporting Incorrect Device Outputs

turns an error specifically because of a value read frong 4 rizer analyzes driver code to find driver functions
the hardware. These analyses depend on the bug-findingt return errors due to hardware failures. This covers

capabilities from the preceding section to find sensitivergnge tests on array indices and explicit comparisons of
code. In this case, what would have been a false positiveya,s or state values. Carburizer identifies that a hard-
because the failuns handled by the driver, becomes the \\ e fajlure has occurred when the driver returns an error
condition for which to search. as a result of reading data from a device. Specifically, it
4.1 Reporting Device Timeouts identifies code where three conditions hold: (a) a driver

Carburizer detects locations where a driver correctlyfuncuon retur ns a negative integer constant, (b) the error
times out of a polling loop. This code indicates that areturn value is only returned based on the evaluation of a

device failure has occurred because the device did noqor!ditional expression, and (c), the expression references
output the correct value within the specified time. Thisva‘”abl‘:“S that were read from_ the device. We further_ ex

analysis is the same as the false-positive analysis useRfind the analysis to detect sites where an error variable
for pruning results for infinite loops, except that the false'S S€b such as when the driver sets the return value and

positives are now the code we seek. Fig@rehows jumps to common cleanup code. If these conditions hold,
an example of code that loops until either a timeout is

Carburizer inserts a call to the reporting function just be-

reached or the device produces the necessary value. C4P"€ the return statement to signify a hardware failure.
burizer detects whether a logging statement, which wet.3 Results

consider a function taking a string as a parameter, 0Cyapje 3 shows the result of our analysis. In total, Car-
curs either before breaking out of the loop or just aftery, ;e identified 1555 locations where drivers detect a
breaking out. If so, Carburizer determines that the d”Vertimeout. Of these, drivers reported errors only 420 times,

already reports the failure. ~_ and Carburizer inserted error-reporting code 1135 times.
~ Once loops that timeout are detected, Carburizer idenc,hrizer detected 828 locations where the driver de-
tifies the predicate that holds when the loop breaks beggcteq a failure with comparisons or range tests. Of these,

cause of a timeout. Carburizer identifies any return stateg,q griver reported a failure 361 times and Carburizer in-
ments based on such predicates and places a reportin@ted an error report 467 times.

statement just before the return. The resulting code is \we evaluate the fectiveness of Carburizer at in-

shown in FigurelO. If the test is incorporated intthile {oqycing error-reporting code by performing the same
or for loop predicate then Carburizer inserts code intoynysis by hand to see whether it finds all the locations
the loop to report a failure if the expression holds. CIL \here drivers detect a hardware failure. For the drivers
convertsfor 00ps intowhile(1) 100ps withbreak state- |isted in Tabled, we identified every location where the

ments so that code can be inserted between the variablgjgina) driver detects a failure and whether it reports the
update and the condition evaluation. Thus, the driver willg;) e through logging.

test the expression, report a failure, test the expression e manually examined the three drivers, one from
again, and break out of the loop. each major class, and counted as an error any code that

clearly indicated the hardware was operating outside of
specification. This code performs any of the following

Driver | Device Timeout | Incorrect Output fault injection to ensure they reported failures. We in-
Class found/fixed found/fixed jected synthetic faults into the ens1371 sound driver and
net 483321 24997 the de4x5, 8139cp, and 8139too network drivers using
scsi 3021249 137110 the tool from Sectior8. We verified that targeted fault
sound 359297 81/53 injection triggered every reporting statement that applies
other 411268 364207 to the hardware devices we had.

| Total | 15551135 | 828467 | The only false positive we found occurred in the

8139too network driver during during device initializa-
tion. This driver executes a loop that is expected to
time out, and Carburizer falsely considers this a hard-
ware fault. The other carburized drivers do not report
any false positives. We injected faults with a fixed prob-
ability every time the driver invoked a port g0 mem-

Table 3: Instances of device-reporting code inserted by
Carburizer. Each entry shows the number of device fail-
ures detected by the driver, followed by the number where
the driver did not report failures and Carburizer inserted
reporting code.

l Driver ‘ Class ‘ Actual errors ‘ Reported Errors ‘ ory read operation, both during driver initialization and
bnxi net ;g 17 while running a workload. The drivers did not report
mptbase| scsl a any additional errors compared to unmodified drivers un-
ens1371| sound 10 9

der these conditions, largely because none of the injected
faults would lead to a system crash. As future work, we
plan to examine the problem of reporting whether a de-
vice is malfunctioning even if the malfunction does not
lead to a crash.

Overall, we found that Carburizer waffective at in-
troducing additional error logging to drivers where log-
actions on the basis of a value read from the device: (1ying did not previously exist. While it does not detect
returning a negative value, (2) printing an error messagevery hardware failure, Carburizer increases the number
indicating a hardware failure, or (3) detecting a failed of failures logged and can therefore improve an admin-
self-test. We did not count errors found in any code re-strator’s ability to detect when hardware is failing, as
moved during preprocessing, SUChASSERT statements. compared to driver failures caused by software.

Table4 shows the number of failures the driver detects .

(according to our manual analysis), whether reported 05 Runtime Fault Tolerance

not, compared with the number of errors reported by CarThe Carburizer runtime provides two key services. First,
burizer. In these three drivers, Carburizer did not producét provides an automatic recovery service to restore
any false positives: all of the errors reported did indicatedrivers and devices to a functioning state when a failure
a device malfunction. However, Carburizer missed sev-occurs. Second, it detects classes of failures that cannot
eral places where the driver detected a failure. Out of 6De addressed by static analysis and modification of driver
locations where the driver detected a failure, Carburizecode, such as tolerating stuck interrupts.

identified 43.

Table 4:Instances of fault-reporting code inserted by Car-
burizer compared against all errors detected in the driver.

Each entry shows the actual number of errors detected in
the driver followed by the number of errors reported using

Carburizer.

) . 5.1 Automatic Recovery
We found three reasons for these false negatives. First

some drivers, such as the bnx2 network driver, wrap sevotaic analysis tools have proved useful as bug finding
eral low-level read operations in a single function, and0!s- But, programmers must still write code to repair
return the tainted data via an out parameter. Carburizein® bugs thatare found. Carburizer circumvents this limi-
does not propagate taint through out parameters. Sed@tion by relying orautomatic recoveryo restore drivers
ond, Carburizer's analysis is not sophisticated enough tG"d devices to a functioning state when a failure is de-
track tainted structure members across procedure bound€Cted. The driver may invoke a recovery function at any
aries. The mptbase SCSI driver reads data into a memb&me, Which will reset the driver to a known-good state.
variable in one procedure and returns an error based ofor stuck-at hardware failures, resetting the device can
its value in another, and we do not detect the membepften correct the problem. We rely on the same mech-
as tainted where the failure is returned. Finally, some?NiSm to recover from transient failures, although a full

drivers detect a hardware failure and print a message bJESet may notbe required in every case. _
do not subsequently return an error. Thus, Carburizer Ve leverage shadow driveréd to provide automatic

does not identify that a hardware failure was detected. "€COVery because they conceal failures from applications

To verify the operation of the reporting statements, we@Nd the OS. A shadow driver is a kernel agent that mon-
injected targeted faults designed to cause the carburizefPrs and stores the state of a driver by intercepting func-
driver to report a failure. We tested four drivers with 0N calls between the driver and the kernel. During

10

normal operation, the shadow driveaps all function ning, while the second case can result in an inoperable
calls between the driver and the kernel. In thissive device.
mode the shadow driver records operations that change To address the scenario in which the device stops gen-
the state of the driver, such as configuration operationgrating interrupts, Carburizer monitors the driver and in-
and requests currently being processed by the driver. vokes the interrupt handler automatically if necessary.
Shadow drivers are class drivers, in that they are cusWith monitoring, an otherwise operative device need not
tomized to the driver interface but not to its implemen- generate interrupts to provide service. Unlike other hard-
tation. Thus, a separate shadow driver is needed to reware errors, we do not force the driver to recover in this
cover from failures in each unique class, such as network;ase because we cannot detect precisely whether an in-
sound, or SCSI. We have only implemented recovery fotterrupt is missing. Instead, the Carburizer runtime pro-
network drivers so far, although other work shows thatactively calls the driver’s interrupt handler to process any
they work dfectively for sound, storaget] and video pending requests
drivers R3] . The Carburizer runtime increments a counter each
When the driver invokes the recovery function, thetime a driver's interrupt handler is called. Periodically,
shadow driver transitions intactive modewhere it per- a low priority kernel thread checks this counter. |If
forms two functions. First, it proxies for the device the counter value has changed, Carburizer does nothing
driver, fielding requests from the kernel until the driver since the device appears to be working normally. If, how-
recovers. This process ensures that the kernel and appkver, the interrupt handler has not been executed, the de-
cation software is unaware that the device failed. Secondiice may not be delivering interrupts.
shadow drivers unload and release the state of the driver The Carburizer runtime detects whether there has been
and then restart the driver, causing it to reinitialize therecent driver activity that should have caused an interrupt
device. When starting this driver, the shadow driver use$y testing whether driver code has been executed. Rather
its log to configure the driver to its state prior to recov- than recording every driver invocation, Carburizer polls
ery, including resubmitting pending requests. Once thighe reference bits on the driver's code pages. If any of
is complete, the shadow driver transitions back to passivéhe code pages have been referenced, Carburizer assumes
mode, and the driver is available for use. that a request may have been made and that the interrupt
The shadow driver recovery model works when reset-handler should be called soon.
ting the device clears a device failure. For devices that Because every driver is fiiérent, Carburizer imple-
fail permanently or require a full power cycle to recover, ments a dynamic approach to increase or decrease the
shadow drivers will detect that the failure is not transientpolling interval exponentially, depending on whether
when recovery fails and can notify a management agentprevious calls were productive or not. By default, Car-
We obtained the shadow driver implementation usedourizer checks the referenced bits every 16ms. We chose
for virtual machine migration42] and ported the recov- this value because it provides a relatively good response
ery functions for network device drivers to the 2.6.18.8time in the event of a single missing interrupt. If Carbur-
kernel. However, we did not port the entire Nooks izer's call to the interrupt handler returmgQ_NONE, in-
driver isolation subsysterdfl]. Nooks prevents memory dicating the interrupt was spurious, then Carburizer dou-
corruption and detects failures through hardware trapshles the polling interval, up to a maximum of one second.
which are unnecessary for tolerating hardware failuresConversely, if the interrupt handler returre)_HANDLED,
Nooks’ isolation also causes a performance drop fronindicating that there was work for the driver, then Car-
switching protection domains, which Carburizer avoids.burizer decreases the polling interval to a minimum of
The remaining code consists of wrappers around the kedms. Thus, Carburizer calls the interrupt handler repeat-
neldriver interface, code to log driver requests, and codeedly only if it detects that the driver is doing useful work
to restart and restore driver state after a failure. In addiduring the handler.

tion, we export the_shadow_recover function from the Relying on the handler return value to detect whether
kernel, which a driver may call to initiate recovery after the handler was productive works for devices that sup-
a hardware failure. port shared interrupts. Spurious interrupt handler invo-

cations can occur with shared interrupts because the ker-
B o) nel cannot detect which of the devices sharing the inter-
In addition to providing a recovery service, the Carbur-rnt jine needs service. However, some drivers report
izer runtime also detects failures that cannot be detectegk yanprEp even if the device does not require service
through static modifications of driver code. Devices May|eading Carburizer to falsely detect that it has missed an
fail by generating too many interrupts or by not generat-interrupt. We are examining alternate mechanisms to dis-
ing any. The first case causes a system hang, because fiqyuish productive and unproductive calls to interrupt
useful work can occur while the interrupt handler is run-pandiers to improve performance and reduce unneces-

5.2 Tolerating Missing Interrupts

11

sary polling, such as timing the duration of the handleritoring for stuckdisabled interrupts, and a driver whose
or detecting which code pages are accessed during thaterrupt line has been disabled.
handler. In the case of E1000, we found that the Carburizer
Carburizer’s polling mechanism adds some overheaduntime was able to detect both failures promptly, and
when the kernel invokes a driver but does not cause théhat the driver continued running in polling mode. Be-
device to generate an interrupt. For network drivers, thiscause interrupts occur only once every 4ms in the steady
occurs when the kernel invokes an ethtool managemertdtate, receive throughput drops from 750 /sitbo 130
function. The Carburizer runtime will call the interrupt Mby/s. With more frequent polling, the throughput would
handler even though it is not necessary for correct operabe higher. Similarly, Carburizer detected both failures
tion. The driver treats this call to its interrupt handler asfor the IDE driver. The IDE disk operated correctly in
spurious. Because Carburizer decreases the polling irpolling mode but throughput decreased by 50%. The
terval in these cases, there is little unnecessary pollingns1371 driver in polling mode played back sound with a
even when many requests are made of a driver that dtittle distortion, but otherwise operated normally. These
not generate interrupts. tests demonstrate that Carburizer’s stuck and missing in-
Some Linux network drivers, through tlapi inter- terrupt detection mechanism works and can keep devices
face, already support polling. In addition, many networkfunctioning in the presence of a failure.
drivers !mplement a vv_atchdog function _to detgct when6 Overhead Evaluation
the device stops working. For these drivers, it may be
suficient to direct the kernel to poll rather than relying The primary cost of using Carburizer is the time spent
on a separate mechanism. However, this approach onlgnning the tool and fixing bugs that cannot be automati-
works for network drivers, while the Carburizer runtime cally repaired. However, the code transformations intro-
approach works across all driver classes. duced by Carburizer, shadow driver recovery, and inter-
rupt monitoring introduce a small runtime cost. In this
section we measure the overhead of running carburized
The Carburizer runtime detects stuck interrupts and regrivers.
covers by Converting the device from interrupts to polllng We measure the performance overhead on g|gab|t Eth-
by periodically calling the driver's exported interrupt ernet drivers, as they are the most performance-intensive
function. A stuck interrupt occurs when the device doesof our devices: a driver may receive more than 75,000
not lower the interrupt request line even when directed tqyackets to deliver per second. Thus, any overhead of
do so by the driver. The Carburizer runtime detects thiscarburizer's mechanisms will show up more clearly than
failure when a driver’s interrupt handler has been Ca”edon lower-bandwidth devices. Past work on Nooks and
many times without intervening progress of other systemshadow storage drivers showed a greatéieténce in
functions, such as the regular timer interrupt. The Linuxperformance than for the network, but the CPU utiliza-
kernel can detect unhandled interru®g][but it recov- tjon differences were far greater for network drivet3][
ers by dlsabllng the device rather than enabling it to make We measure performance with netp@ﬂ_][between
progress. two Sun Ultra 20 workstation with 2.2Ghz AMD
Similar to missing interrupts, the Carburizer runtime Opteron processors and 1GB of RAM connected via a
does not trigger full recovery in this case (although thatcrossover cable. We configure netperf to run enough ex-
is possible), but instead disables the interrupt request lingeriments to report results accurate to 2.5% with 99%
with disable IRQ. It then relies on the polling mecha- confidence.
nism previously described to periodically call the driver's Table5 shows the throughput and CPU utilization for
interrupt handler. sending TCP data with a native Linux kernel and one
54 Results with the Carburizer runtime with shadow driver recovery
enabled and a carburized network driver. The network

]\cNeItexperlt_ment Wt';h séliglggnd mk')stsgﬁ mterrgp_ts usj['r?gthroughput with Carburizer is within one-half percent of
autt injection on the giganl ernet driver, e, tive performance, and CPU utilization increases only

ens1371 sound driver, and a collection of interdepender\g percentage points for forcedeth and not at all for the

storage drlve_rs: |de-cqre, |de-ge.ne.r|c, _and ide-disk. O 1000 driver. These results demonstrate that supporting
all three devices, we simulate missing interrupts by dis-

. ; ; . : eneric recovery, even for high-throughput devices, has
abling the device’s interrupt request line. We smulate\%ery little runtim)(; cost 9 ghp
stuck interrupts with the E1000 by inserting a command Table6 shows performance overhead of interrupt mon-
to generate an interrupt from inside the interrupt handlerltoring but with no shadow driver recovery. The table

For E1000, we compare throughput and CPU UtIIIZat'onshows the TCP receive throughput and CPU utilization

between an unmodified driver, a driver undergoing MON%4r the E1000 driver on the native Linux kernel, and on

5.3 Tolerating Stuck Interrupts

12

NVIDIA MCP55 Pro gigabit NIC (forcedeth)

System Throughput | CPU Utilization
Linux 2.6.18.8 Kernel| 940 Mlys 31%
Carburizer Kernel 935 Mb's 36%
(with shadow driver)

Intel Pro/1000 gigabit NIC (E1000)

System Throughput | CPU Utilization
Native Kernel 721 Mby's 16%
Carburizer Kernel 720 Mby's 16%
(with shadow driver)

Table 5: TCP streaming send performance with netperf
for regular and carburized drivers with automatic recovery
mechanism for the E1000 and forcedeth drivers.

Intel Pro/1000 gigabit NIC (E1000)

System Throughput | CPU %
Native Kernel - TCP 750 Mbys 19%
Carburizer Monitored - TCP 751 Mly's 19%
Native Kernel - UDP-RR 7328 TXs 6%
Carburizer Monitored - UDP-RR 7310 TXs 6%

Table 6:TCP streaming and UDP request-response receive
performance comparison of the E1000 between the native
Linux kernel and a kernel with the Carburizer runtime
monitoring the driver’s interrupts.

a kernel with Carburizer interrupt monitoring enabled.
The TCP receive and transmit socketteus were left

Linux user-mode drivers2d]), runtime instrumentation

of large amounts of code (XF#p] and SafeDrive $1]),
adoption of a hypervisor (XenlB] and iKernel B5)),

or a new subsystem in the kernel (Nools]]). Car-
burizer instead fixes specific bugs, which reduces the
code needed in the kernel to just recovery and not fault
detection or isolation. Thus, Carburizer may be easier
to integrate into existing kernel development processes.
Furthermore, Carburizer detects hardware failures before
they cause corruption, while driver reliability systems us-
ing memory detection may not detect it until much later,
after corruption propagates.

Bug finding Tools for finding bugs in OS code through
static analysis §, 6, 12] have focused on enforcing
kernel-programming rules, such as proper memory al-
location, locking and error handling. However, these
tools enforce kernel API protocols, but do not address
the hardware protocol. Furthermore, these tools only find
bugs but do not automatically repair them.

Hardware dependence errors are commonly found
through synthetic fault injection2[17, 41, 52]. This
approach requires a machine with the device installed,
while Carburizer operates only on source code. Further-
more, fault injection is time consuming, as it requires
injection of many possible faults into eag®loperation
made by a driver.

at their default sizes of 87,380 and 655,360 bytes, rexa iomatic patch generation Carburizer is comple-

spectively. The table also shows UDP request-responsgentary to prior work on repairing broken error handling
performance with 1-byte packets, a test designed to highzode found through fault injectiomt®]. Error handling
light driver latency. While these results are fqr receivingepair is an alternate means of recovering when a hard-
packets, we also compared performance with TCP angare failure occurs by re-using existing error handling
UDP-RR transmit benchmarks and found similar results;;o4e instead of invoking a generic recovery function.

the performance of the native kernel and the kernel withyther work on automatically patching bugs has focused

monitoring are identical.

on security exploits]0, 35, 36]. These systems also ad-

These two sets of experiments demonstrate that thgress how to generate repair code automatically, but fo-

cost of toIerat_in_g hard_/vare failures _in software, eitherCus on bugs used for attacks, such agdsoverruns, and
through explicit invocation of a generic recovery service ot the infinite loop problems caused by devices.

or through run-time interrupt monitoring, is low. Given
this low overhead, Carburizer is a practical approach t
tolerate even infrequent hardware failures.

7 Related work

d—|ardware Interface specification Several projects,

such as Devil 28], Dingo [33], HAIL [39], Nexus R§],
Laddie 9] and others, have focused on reducing faults
on the drivefdevice interface by specifying the hardware

Carburizer draws inspiration from past projects on driverinterface through a domain specific language. These lan-

reliability, bug finding, automatic patch generation, de-

vice interface specification, and recovery.

guages improve driver reliability by ensuring that the
driver follows the correct protocol for the device. How-
ever, these systems all assume that the hardware is per-

Driver reliability ~ Past work on driver reliability has fect and never misbehaves. Without runtime checking

focused on preventing driver bugs from crashing the Sys;

tem. Much of this work can apply to hardware failures,
as they manifest as a bug causing the driver to access i

hey cannot verify that the device produces correct out-

Iﬁ)_ut.

valid memory or consume too much CPU. In contrast toRécovery Carburizer relies on shadow driverd3
Carburizer, these tools are all heavyweight: they requirdor recovery. However, since our implementation of

new operating systems (Singularit@7], Minix [18§],
Nexus B8]), new driver models (Windows UMDF2[],

13

shadow drivers does not integrate any isolation mech-
anism, the overhead of recovery support is very low.
Other systems that recover from driver failure, including

SafeDrive p1], and Minix [18], rely on similar mecha-

discussions during the initial stages of the project and our

nisms to restore the kernel to a consistent state and reshepherd Miguel Castro for his useful advice. Swift has
lease resources acquired by the driver could be used asfinancial interest in Microsoft Corp.

well. CuriOS provides transparent recovery and furtherR
ensures that client session state can be recovdrd [

eferences

However, CuriOS is a new operating system and requires[1] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-

specially written code to take advantage of its recovery
system, while Carburizer works with existing driver code

in existing operating systems.

To achieve high reliability in the presence of hard-
ware failures, fault tolerant systems often use multiple
instances of a hardware device and switch to a new de{3]
vice when one fails{, 19, 38]. These systems provide an
alternate recovery mechanism to shadow drivers. How-
ever, this approach still relies on drivers to detect failures, [4]

and Carburizer improves that ability.

8 Conclusions

System reliability is limited by the reliability of devices.
Evidence suggests that device failures cause a measur-
able fraction of system failures, and that most hardware
failures are transient and can be tolerated in software.

Carburizer improves reliability bgutomatically harden-

ing drivers against device failures without new program-
ming languages, programming models, operating sys-
tems, or execution environments. Carburizer finds and 7
repairs hardware dependence bugs in drivers, where the
driver will hang or crash if the hardware fails. In addi-
tion, Carburizer inserts logging code so that system ad-
ministrators can proactively repair or replace hardware

that fails.

In an analysis of the Linux kernel, Carburizer iden-
tified over 992 hardware dependence bugs with fewer
than 8% false postives. Discounting for false positives,
Carburizer could automatically repair approximately g45!10]
real bugs by inserting code to detect when a failure oc-
curs and invoke a recovery service. Repairs made to
false positives have no correctness impact. In perfor-
mance tests, hardening drivers had almost no visible pelLll]

formance overhead.

There are still more opportunities to improve device
drivers. Carburizer assumes that if a driver detects
hardware failure, it correctly responds to that failure. In
practice, we find this is often not the case. In addition,
Carburizer does not assist drivers in handling unexpected
events; we have seen code that crashes when the device
returns a flag before the driver is prepared. Thus, theré!

are yet more opportunities to improve driver quality.

Acknowledgements

This work is supported in part by the National Sci-
ence Foundation (NSF) grants CCF 0621487 and CN$L5]
0745517, and by the Wisconsin Alumni Research Foun-
dation. We would also like to thank Ben Liblit for helpful

14

stutter fault tolerance. IRroc. of the Eighth IEEE HO-
TOS May 2001.

S. Arthur. Fault resilient drivers for Longhorn server, May
2004. Microsoft Corporation, WinHec 2004 Presentation
DWO04012.

L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk
Drives. InProc. of the 7th SIGMETRICSune 2007.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Us-
tuner. Thorough static analysis of device driversPtoc.

of the 2006 EuroSys Conferen@906.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Us-
tuner. Thorough static analysis of device driversPioc.

of the 2006 EuroSys Conferendgr. 2006.

T. Ball and S. K. Rajamani. The SLAM project: Debug-
ging system software via static analysis. Rroc. of the
29th POPL, 2002.

] J. F. Bartlett. A NonStop kernel. IAroc. of the 8th ACM

SOSRDec. 1981.

P. Chandrashekaran, C. Conway, J. M. Joy, and S. K. Ra-
jamani. Programming asynchronous layers with CLAR-
ITY. In Proc. of the 15th Annual Symposium on Founda-
tions of Software Engineerin@ept. 2007.

Coverity. Anaylsis of the Linux kernel, 2004. Available
athttp://www.coverity.com.

0] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto.

Shieldgen: Automatic data patch generation for unknown
vulnerabilities with informed probing. IfProc. of the
IEEE Symposium on Security and Priva2g07.

F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Camp-
bell. CuriOS: Improving reliability through operating sys-
tem structure. IfProc. of the 8th USENIX OSDDecem-
ber 2008.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. IRroc. of the 4th USENIX OSDI
Oct. 2000.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. IOASIS Workho@004.

N. Ganapathy, 2009. Architect, Microsoft Windows
Driver Experience team, personal communication.

V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of mi-
crodrivers. InProc. of the 13th ACM ASPLQBIar. 2008.

http://www.coverity.com

[16] S. Graham. Writing drivers for reliability, robustness and [32] H. Post and W. Kuchlin. Integrated static analysis for

fault tolerant systemshttp://www.microsoft.com/
whdc/archive/FTdrv.mspx, Apr. 2004.

[17] S.R.Hansonand E. J. Radley. Testing device driver hard-

ening, May 2005. US Patent 6,971,048.

[18] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.

Tanenbaum. Failure resilience for device driversitoc.
of the 2007 IEEE DSNJune 2007.

[19] Hewlett Packard Corp. Parallel processing of

TCPIP with ethernet adapter failover. http:
//h20223.www2.hp.com/NonStopComputing/
downloads/EAFailoverTCP-IP-PL.pdf, 2002.

[20] Intel Corporation and IBM Corporation. Device
driver hardening design specification draft release[36]

0.5h.http://hardeneddrivers.sourceforge.net/
downloads/DDH-Spec-0.5h.pdf, Aug. 2002.

[21] R. Jones.Netperf: A network performance benchmark, [37]

version 2.11995. Available ahttp://www.netperf.
org.

[22] A. Kadav and M. M. Swift. Live migration of direct-

access devices. IRirst Workshop on/D Virtualization
(WIOV '08), Dec. 2008.

[23] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara. VMM-independent graphics acceleration. In[39]

Proc. of the 3rd VEEJune 2007.

[24] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved per- [40]
formance. Journal Computer Science and Technology

20(5), Sept. 2005.

[25] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, [41]
and Y. Zhou. Understanding the propagation of hard er-
rors to software and implications for resilient system de-

sign. InProc. of the 13th ACM ASPLQSlar. 2008.

[26] Linux Kernel Mailing List. Fixes for uli5261
(tulip driver). http://lkml.org/lkml/2006/8/19/
59, Aug. 2006.

[27] Linux Kernel Mailing List. Improve behaviour of spu-

rious irq detect.http://1lkml.org/lkml/2007/6/7/
211, June 2007.

[28] F. Mérillon, L. Réveillere, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming.

In Proc. of the 4th USENIX OSDOct. 2000.

[29] Microsoft Corporation. Introduction to the WDF user-

mode driver framework. http://www.microsoft.
com/whdc/driver/wdf/umdf_intro.mspx, May
2006.

[
[30] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and

transformation of C programs. IRroc. of the 11th In-
ternational Conference on Compiler Constructi@®02.

[31] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure

trends in a large disk drive population. Rroc. of the 5th
FAST, 2007.

15

Linux device driver verification. Ifroc. of the 6th Inter-
national Conference on Integrated Formal Methpdisly
2007.

L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Tam-
ing device drivers. IrProc. of the 200 EuroSys Confer-
ence Apr. 2009.

T. Shureih. HOWTO: Linux device driver dos
and don'ts. http://janitor.kernelnewbies.org/
docs/driver-howto.html, Mar. 2004.

S. Sidiroglou and A. D. Keromytis. Countering network
worms through automatic patch generatidBEE Secu-
rity and Privacy 3(6):41-49, 2005.

A. Smirnov and Tzi-ckerChiueh. Automatic patch gener-
ation for bufer overflow attacks. I®roc. of the 3rd Sym-
posium on Information Assurance and Secuy2§07.

M. Spear, T. Roeder, O. Hodson, G. Hunt, and S. Levi.
Solving the starting problem: Device drivers as self-
describing artifacts. IProc. of the 2006 EuroSys Con-
ference Apr. 2006.

S. Y. H. Su and R. J. Spillman. An overview of fault-
tolerant digital system architecture. Rroc. of the Na-
tional Computer Conference (AFIRS)977.

J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL:
A language for easy and correct device accessPrat.

of the 5th ACM International Conference on Embedded
Software Sept. 2005.

Sun Microsystems. Opensolaris community: Fault man-
agementhttp://opensolaris.org/os/community/
fm/.

Sun MicrosystemsSolaris Express Software Developer
Collection: Writing Device Driverschapter 13: Harden-
ing Solaris Drivers. Sun Microsystems, 2007.

M. SuRRkraut and C. Fetzer. Automatically finding and
patching bad error handling. Iroc. of the 6th EDCC
Oct. 2006.

M. Swift, M. Annamalau, B. N. Bershad, and H. M. Levy.
Recovering device driversACM Transactions on Com-
puter System=4(4), Nov. 2006.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the reliability of commodity operating systenACM
Transactions on Computer Systerd3(1), Feb. 2005.

L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Car-
lyle, F. M. David, and R. H. Campbell. iKernel: Isolating
buggy and malicious device drivers using hardware virtu-
alization support. IfProc. of the 3rd DAS2007.

] Ulfar Erlingsson, M. Abadi, M. Vrable, M. Budiu, and

G. C. Necula. Xfi: software guards for system address
spaces. IrProc. of the 7th USENIX OSD2006.

D. Walker, L. Mackey, J. Ligatti, G. A. Reis, and D. I.
August. Static typing for a faulty lambda calculus. In
Proc. of the ICFP Conferenc&ept. 2006.

http://www.microsoft.com/whdc/archive/FTdrv.mspx
http://www.microsoft.com/whdc/archive/FTdrv.mspx
http://h20223.www2.hp.com/NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf
http://h20223.www2.hp.com/NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf
http://h20223.www2.hp.com/NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf
http://hardeneddrivers.sourceforge.net/downloads/DDH-Spec-0.5h.pdf
http://hardeneddrivers.sourceforge.net/downloads/DDH-Spec-0.5h.pdf
http://www.netperf.org
http://www.netperf.org
http://www.netperf.org
http://www.netperf.org
http://lkml.org/lkml/2006/8/19/59
http://lkml.org/lkml/2006/8/19/59
http://lkml.org/lkml/2007/6/7/211
http://lkml.org/lkml/2007/6/7/211
http://www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx
http://www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx
http://janitor.kernelnewbies.org/docs/driver-howto.html
http://janitor.kernelnewbies.org/docs/driver-howto.html
http://opensolaris.org/os/community/fm/
http://opensolaris.org/os/community/fm/

[48]

[49]

[50]

[51]

[52]

D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference val-
idation mechanism. IfProc. of the 8th USENIX OSDI
2008.

L. Wittie, C. Hawblitzel, and D. Pierret. Generating a
statically-checkable device driveid interface. InWork-
shop on Automatic Program Generation for Embedded
SystemsOct. 2007.

J. Yang. Zero-penalty RAID controller memory leak
detection and isolation method and system utilizing se-
quence numbers, 2007. Patent application 11715680.

F. Zhou, J. Condit, Z. Anderson, |. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
nigues. InProc. of the 7th USENIX OSDNov. 2006.

L. Zhuang, S. Wang, and K. Gao. Fault injection test
harness. IrProc. of the Ottawa Linux Symposiudune
2003.

16

	Introduction
	Device Hardware Failures
	Failures Types
	Vendor Recommendations

	Hardening Drivers
	Finding Sensitive Code
	Infinite Polling
	Checking Array Accesses
	Removing False Positives

	Repairing Sensitive Code
	Summary
	Analysis Results
	Experimental Results

	Reporting Hardware Failures
	Reporting Device Timeouts
	Reporting Incorrect Device Outputs
	Results

	Runtime Fault Tolerance
	Automatic Recovery
	Tolerating Missing Interrupts
	Tolerating Stuck Interrupts
	Results

	Overhead Evaluation
	Related work
	Conclusions

