
Modular Data Storage with Anvil
Mike Mammarella Shant Hovsepian Eddie Kohler

UCLA UCLA UCLA/Meraki
mikem@cs.ucla.edu shant@cs.ucla.edu kohler@cs.ucla.edu

http://www.read.cs.ucla.edu/anvil/

ABSTRACT

Databases have achieved orders-of-magnitude performance
improvements by changing the layout of stored data – for
instance, by arranging data in columns or compressing it be-
fore storage. These improvements have been implemented
in monolithic new engines, however, making it difficult to
experiment with feature combinations or extensions. We
present Anvil, a modular and extensible toolkit for build-
ing database back ends. Anvil’s storage modules, called dTa-
bles, have much finer granularity than prior work. For ex-
ample, some dTables specialize in writing data, while oth-
ers provide optimized read-only formats. This specialization
makes both kinds of dTable simple to write and understand.
Unifying dTables implement more comprehensive function-
ality by layering over other dTables – for instance, building a
read/write store from read-only tables and a writable journal,
or building a general-purpose store from optimized special-
purpose stores. The dTable design leads to a flexible system
powerful enough to implement many database storage lay-
outs. Our prototype implementation of Anvil performs up
to 5.5 times faster than an existing B-tree-based database
back end on conventional workloads, and can easily be cus-
tomized for further gains on specific data and workloads.

1 INTRODUCTION

Database management systems offer control over how data
is physically stored, but in many implementations, ranging
from embeddable systems like SQLite [23] to enterprise soft-
ware like Oracle [19], that control is limited. Users can tweak
settings, select indices, or choose from a short menu of table
storage formats, but further extensibility is limited to coarse-
grained, less-flexible interfaces like MySQL’s custom stor-
age engines [16]. Even recent specialized engines [7, 26]
– which have shown significant benefits from data format
changes, such as arranging data in columns instead of the
traditional rows [11, 24] or compressing sparse or repetitive
data [1, 31] – seem to be implemented monolithically. A user
whose application combines characteristics of online trans-
action processing and data warehousing may want a database
that combines storage techniques from several engines, but
database systems rarely support such fundamental low-level
customization.

We present Anvil, a modular, extensible toolkit for build-
ing database back ends. Anvil comprises flexible storage
modules that can be configured to provide many stor-

age strategies and behaviors. We intend Anvil configura-
tions to serve as single-machine back-end storage layers for
databases and other structured data management systems.

The basic Anvil abstraction is the dTable, an abstract key-
value store. Some dTables communicate directly with sta-
ble storage, while others layer above storage dTables, trans-
forming their contents. dTables can represent row stores
and column stores, but their fine-grained modularity of-
fers database designers more possibilities. For example, a
typical Anvil configuration splits a single “table” into sev-
eral distinct dTables, including a log to absorb writes and
read-optimized structures to satisfy uncached queries. This
split introduces opportunities for clean extensibility – for
example, we present a Bloom filter dTable that can slot
above read-optimized stores and improve the performance
of nonexistent key lookup. It also makes it much easier
to construct data stores for unusual or specialized types of
data; we present several such specialized stores. Conven-
tional read/write functionality is implemented by dTables
that overlay these bases and harness them into a seamless
whole.

Results from our prototype implementation of Anvil are
promising. Anvil can act as back end for a conventional,
row-based query processing layer – here, SQLite – and for
hand-built data processing systems. Though Anvil does not
yet support some important features, including full concur-
rency and aborting transactions, our evaluation demonstrates
that Anvil’s modularity does not significantly degrade per-
formance. Anvil generally performs about as well as or bet-
ter than existing back end storage systems based on B-trees
on “conventional” workloads while providing similar consis-
tency and durability guarantees, and can perform better still
when customized for specific data and workloads.

The contributions of this work are the fine-grained, modu-
lar dTable design, including an iterator facility whose rejec-
tion feature simplifies the construction of specialized tables;
several core dTables that overlay and manage other dTables;
and the Anvil implementation, which demonstrates that fine-
grained database back end modularity need not carry a severe
performance cost.

The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 describes Anvil’s general de-
sign. Section 4 describes the Anvil transaction library, which
provides the rest of the system with transactional primitives.
Section 5 describes many of Anvil’s individual dTables. Fi-

1

http://www.read.cs.ucla.edu/anvil/

nally, we evaluate the system in Section 6, discuss future
work in Section 7, and conclude in Section 8.

2 RELATED WORK

In the late 1980s, extensible database systems like Gene-
sis [2] and Starburst [13] explored new types of data lay-
outs, indices, and query optimizers. Starburst in particular
defines a “storage method” interface for storage extensibility.
This interface features functions for, for example, inserting
and deleting a table’s rows. Each database table has exactly
one storage method and zero or more “attachments,” which
are used for indexes and table constraints. Anvil’s modular-
ity is finer-grained than Starburst’s. Anvil implements the
functionality of a Starburst storage method through a lay-
ered collection of specialized dTables. This increased modu-
larity, and in particular the split between read-only and write-
mostly structures, simplifies the construction of new storage
methods and method combinations.

Like Starburst, recent versions of MySQL [15] allow users
to specify a different storage engine to use for each table.
These engines can be loaded dynamically, but again, are
not composable. They are also not as easily implemented as
Anvil dTables, since they must be read-write while provid-
ing the correct transactional semantics. Postgres [25] sup-
ported (and now PostgreSQL supports) user-defined index
types, but these cannot control the physical layout of the data
itself.

Monet [5] splits a database into a front end and a back
end, where the back end has its own query language. While
it does not aim to provide the database designer with any
modular way of configuring or extending the back end, it
does envision that many different front ends should be able
to use the same back end.

Stasis [21] is a storage framework providing applications
with transactional primitives for an interface very close to
that of a disk. Stasis aims for a much lower-level abstraction
than Anvil, and expects each application to provide a large
part of the eventual storage implementation. Anvil could be
built on top of a system like Stasis. This is not necessary,
however: Anvil specifically tries to avoid needing strong
transactional semantics for most of its data, both for sim-
plicity and to allow asynchronous writes and group commit.

Anvil’s split between read-only and write-mostly struc-
tures relates to read-optimized stores [11, 22] and log-
structured file systems [20]. In some sense Anvil carries the
idea of a read-optimized store to its limit. Several systems
have also investigated batching changes in memory or sepa-
rate logs, and periodically merging the changes into a larger
corpus of data [6, 18, 22]. The functional split between read
and write is partially motivated by the increasing discrepan-
cies between CPU speeds, storage bandwidth, and seek times
since databases were first developed [10, 26].

We intend Anvil to serve as an experimental platform for
specialized stores. Some such stores have reported orders-of-
magnitude gains on some benchmarks compared to conven-

tional systems [24]. These gains are obtained using combi-
nations of techniques, including relaxing durability require-
ments and improving query processing layers as well as
changing data stores. We focus only on data stores; the other
improvements are complementary to our work. Specifically,
Anvil’s cTable interface uses ideas and techniques from work
on column stores [11, 24],

Bigtable [7], the structured data store for many Google
products, influenced Anvil’s design. Each Bigtable “tablet”
is structured like an Anvil managed dTable configuration:
a persistent commit log (like the Anvil transaction library’s
system journal), an in-memory buffer (like that in the jour-
nal dTable), and an overlay of several sorted read-only
“SSTables” (like a specific kind of linear dTable). Anvil ta-
ble creation methods and iterators generalize Bigtable com-
pactions to arbitrary data formats. Anvil’s fine-grained mod-
ularity helps it support configurations Bigtable does not,
such as transparent data transformations and various indices.
Bigtable’s extensive support for scalability and distribution
across large-scale clusters is orthogonal to Anvil, as is its au-
tomated replication via the Google File System.

Many of these systems support features that Anvil cur-
rently lacks, such as aborting transactions, overlapping trans-
actions, and fine-grained locking to support high concur-
rency. However, we believe their techniques for implement-
ing these features are complementary to Anvil’s modularity.

Anvil aims to broaden and distill ideas from these previ-
ous systems, and new ideas, into a toolkit for building data
storage layers.

3 DESIGN

Two basic goals guided the design of Anvil. First, we want
Anvil modules to be fine-grained and easy to write. Imple-
menting behaviors optimized for specific workloads should
be a matter of rearranging existing modules (or possibly
writing new ones). Second, we want to use storage media
effectively by minimizing seeks, instead aiming for large
contiguous accesses. Anvil achieves these goals by explic-
itly separating read-only and write-mostly components, us-
ing stacked data storage modules to combine them into
read/write stores. Although the Anvil design accommo-
dates monolithic read/write stores, separating these functions
makes the individual parts easier to write and easier to extend
through module layering. In this section, we describe the de-
sign of our data storage modules, which are called dTables.

3.1 dTables

dTables implement the key-value store interface summarized
in Figure 1. For reading, the interface provides both random
access by key and seekable, bidirectional iterators that yield
elements in sorted order. Some dTables implement this inter-
face directly, storing data in files, while others perform addi-
tional bookkeeping or transformations on the data and leave
storage up to one or more other dTables stacked underneath.

2

class dtable {

bool contains(key_t key) const;

value_t find(key_t key) const;

iter iterator() const;

class iter {

bool valid() const;

key_t key() const;

value_t value() const;

bool first(); // return true if new position is valid
bool next();

bool prev();

bool seek(key_t key);

bool reject(value_t *placeholder); // create time
};

static int create(string file, iter src);

static dtable open(string file);

int insert(key_t key, value_t value);

int remove(key_t key);

};

Figure 1: Simplified pseudocode for the dTable interface.

To implement a new dTable, the user writes a new dTable
class and, usually, a new iterator class that understands the
dTable’s storage format. However, iterators and dTable ob-
jects need not be paired: some layered dTables pass through
iterator requests to their underlying tables, and some iterators
are not associated with any single table.

Many dTables are read-only. This lets stored data be op-
timized in ways that would be impractical for a writable
dTable – for instance, in a tightly packed array with no space
for new records, or compressed using context-sensitive algo-
rithms [34]. The creation procedure for a read-only dTable
takes an iterator for the table’s intended data. The iterator
yields the relevant data in key-sorted order; the creation pro-
cedure stores those key-value pairs as appropriate. A read-
only dTable implements creation and reading code, leaving
the insert and remove methods unimplemented. In our
current dTables, the code split between creation and reading
is often about even. Specific examples of read-only dTables
are presented in more detail in Section 5.

Specialized dTables can refuse to store some kinds of data.
For example, the array dTable stores fixed-size values in a
file as a packed array; this gives fast indexed access, but val-
ues with unexpected sizes cannot be stored. Specialized dTa-
bles must detect and report attempts to store illegal values. In
particular, when a creation procedure’s input iterator yields
an illegal value, the creation procedure must reject the key-
value pair by calling the iterator’s reject method. This ex-
plicit rejection gives other Anvil modules an opportunity to
handle the unexpected pair, and allows the use of specialized
dTables for values that often, but not always, fit some special-
ized constraints. The rejection notification travels back to the
data source along the chain of layered iterators. If a partic-
ular layer’s iterator knows how to handle a rejected pair, for
instance by storing the true pair in a more forgiving dTable,
its reject function will store the pair, replace the offending
value with a placeholder, and return true. (This placeholder
can indicate at lookup time when to check the more forgiving
dTable for overrides.) If the rejected pair is not handled any-

int arraydt::create(string file, iter src)

wrfile output(file);

output.append(src.key()); // min key
while (iter.valid())

value_t value = iter.value();

if (value.size() != configured_size

&& !iter.reject(&value))

return false;

output.append(value);

iter.next();

return true;

Figure 2: Simplified pseudocode for the array dTable’s create method.
(This minimal version does not, among other things, check that the keys are
actually contiguous.)

where, reject will return false and the creation operation
will fail. We describe the exception dTable, which handles
rejection notifications by storing the rejected values in a sep-
arate (more generic) dTable, in Section 5.5. Figure 2 shows
pseudocode for the array dTable’s create method, including
its use of reject.

Anvil iterators are used mostly at table creation time,
which stresses their scanning methods (key, value, valid,
and next, as well as reject). However, external code, such
as our SQLite query processing interface, can use iterators as
database cursors. The seeking methods (seek, prev) primar-
ily support this use.

Other dTables are designed mostly to support writing.
Writable dTables are usually created empty and populated
by writes.

Although arbitrarily complex mechanisms can be built
into a single dTable, complex storage systems are better built
in Anvil by composing simpler pieces. For instance, rather
than building a dTable to directly store U.S. state names and
postal abbreviations efficiently (via dictionary lookup) in a
file, a dTable can translate state names to dictionary indices
and then use a more generic dTable to store the translated
data. Likewise, instead of designing an on-disk dTable which
keeps a B-tree index of the keys to improve lookup locality,
a passthrough B-tree dTable can store, in a separate file, a B-
tree index of the keys in another dTable. Further, these two
dTables can be composed, to get a B-tree indexed dTable that
stores U.S. states efficiently. Similar examples are discussed
further in Sections 5.2 and 5.4.

3.2 Data Unification

An Anvil table representation will usually consist of sev-
eral read-only dTables, created at different times, and one
writable dTable. Using this representation directly from
client code would inconveniently require consultation of all
the dTables. In addition, the periodic conversion of write-
optimized dTables to read-only dTables requires careful use
of transactions, something that applications should be able
to avoid. Anvil includes two key dTables which deal with
these chores, combining the operations of arbitrary readable
and writable dTables into a single read/write store. We intro-

3

Managed dTable

Overlay dTable

reads

Writable dTable

writes,
digests

Read−only dTable(s)

combines

reads reads

Figure 3: The relationships between a managed dTable and the dTables it
uses.

duce these dTables here; they are discussed in greater detail
in Section 5.3.

The overlay dTable builds the illusion of a single log-
ical dTable from two or more other dTables. It checks a
list of subordinate dTable elements, in order, for requested
keys, allowing dTables earlier in the list to override values
in later ones. This is, in principle, somewhat like the way
Unionfs [32] merges multiple file systems, but simpler in
an important way: like most dTables, the overlay dTable is
read-only. The overlay dTable also merges its subordinates’
iterators, exporting a single iterator that traverses the unified
data. Significantly, this means that an overlay dTable itera-
tor can be used to create a single new read-only dTable that
combines the data of its subordinates.

The managed dTable automates the use of these overlay
dTables to provide the interface of a read/write store. This
dTable is an essential part of the typical Anvil configuration
(although, for example, a truly read-only data store wouldn’t
need one). It is often a root module in a dTable module sub-
graph. Its direct subordinates are one writable dTable, which
satisfies write requests, and zero or more read-only dTables,
which contain older written data; it also maintains an overlay
dTable containing its subordinates. Figure 3 shows a man-
aged dTable configuration.

Each managed dTable periodically empties its writable
dTable into a new read-only dTable, presumably improv-
ing access times. We call this operation digesting, or, as
the writable dTable we currently use is log-based, digesting
the log. The managed dTable also can merge multiple read-
only dTables together, an operation called combining. With-
out combining, small digest dTables would accumulate over
time, slowing the system down and preventing reclamation
of the space storing obsoleted data. Combining is similar in
principle to the “tuple mover” of C-Store [24], though im-
plemented quite differently. In C-Store, the tuple mover per-
forms bulk loads of new data into read-optimized (yet still
writable) data stores, amortizing the cost of writing to read-
optimized data structures. In Anvil, however, the managed
dTable writes new read-only dTables containing the merged
data, afterwards deleting the original source dTables, a pro-
cess corresponding more closely to Bigtable’s merging and
major compactions.

The managed dTable also maintains metadata describing
which other dTables it is currently using and in what ca-

class ctable {

bool contains(key_t key) const;

value_t find(key_t key, int col) const;

iter iterator(int cols[], int ncols) const;

int index_of(string name) const;

string name_of(int index) const;

int column_count() const;

class iter {

bool valid() const;

key_t key() const;

value_t value(int col) const;

bool first();

bool next();

bool prev();

bool seek(key_t key);

};

static int create(string file);

static ctable open(string file);

int insert(key_t key, int col, value_t value);

int remove(key_t key);

};

Figure 4: A simplified, pseudocode version of the cTable interface.

pacity. Metadata updates are included in atomic transac-
tions when necessary (using the transaction library described
later), largely freeing other dTables from this concern.

3.3 Columns

Another Anvil interface, cTable, represents columnated data.
It differs from the dTable interface in that it deals with named
columns as well as row keys. cTables use dTables as their
underlying storage mechanism. Like writable dTables, they
are created empty and populated by writes. Figure 4 shows a
simplified version of the cTable interface.

Anvil contains two primitive cTable types (though like the
dTable interface, it is extensible and would support other fea-
ture combinations). The first primitive, the row cTable, packs
the values for each column together into a single blob, which
is stored in a single underlying dTable. This results in a tra-
ditional row-based store where all the columns of a row are
stored together on disk. The second, the column cTable, uses
one underlying dTable per column; these dTables can have
independent configurations. A row cTable’s iterator is a sim-
ple wrapper around its underlying dTable’s iterator, while a
column cTable’s iterator wraps around n underlying iterators,
one per column.

In a column-based arrangement, it is possible to scan a
subset of the columns without reading the others from disk.
To support this, cTable iterators provide a projection feature,
where a subset of the columns may be selected and iterated.
A list of relevant column indices is passed to the iterator cre-
ation routine; the returned iterator only provides access to
those columns. A column cTable’s iterator does not iterate
over unprojected columns, while a row cTable’s iterator ig-
nores the unwanted column data when it is unpacking the
blob for each row. We compare the merits of these two cTa-
bles in Section 6.3.

4

3.4 Discussion
Anvil is implemented in C++, but also provides an API for
access from C. All dTable implementations are C++ classes.
There is also a dTable iterator base class from which each of
the dTables’ iterator classes inherit.1

An Anvil instance is provided at startup with a configura-
tion string describing the layout pattern for its dTables and
cTables. The initialization process creates objects according
to this configuration, which also specifies dTable parameters,
such as the value size appropriate for an array dTable. The
dTable graph in a running Anvil data store will not exactly
equal the static configuration, since dTables like the managed
dTable can create and destroy subordinates at runtime. How-
ever, the configuration does specify what kinds of dTables
are created.

dTables that store data on disk do so using files on the
underlying file system; each such dTable owns one or more
files.

Although our current dTables ensure that iteration in key-
sorted order is efficient, this requirement is not entirely fun-
damental. Iteration over keys is performed only by dTable
create methods, whereas most other database operations
use lookup and similar methods. In particular, the dTable
abstraction could support a hash table implementation that
could not yield values in key-sorted order, as long as that
dTable’s iterators never made their way to a conventional
dTable’s create method.

Anvil was designed to make disk accesses largely sequen-
tial, avoiding seeks and enabling I/O request consolidation.
Its performance benefits relative to B-tree-based storage en-
gines come largely from sequential accesses. Although up-
coming storage technologies, such as solid-state disks, will
eventually reduce the relative performance advantage of se-
quential requests, Anvil shows that good performance on
spinning disks need not harm programmability, and we do
not believe a new storage technology would require a full
redesign.

Our evaluation shows that the Anvil design performs well
on several realistic benchmarks, but in some situations its
logging, digesting, and combining mechanisms might not be
appropriate no matter how it is configured. For instance, in a
very large database which is queried infrequently and regu-
larly overwritten, the work to digest log entries would largely
be wasted due to infrequent queries. Further, obsolete data
would build up quickly as most records in the database are
regularly updated. Although combine operations would re-
move the obsolete data, scheduling them as frequently as
would be necessary would cause even more overhead.

4 TRANSACTION LIBRARY

Anvil modules use a common transaction library to ac-
cess persistent storage. This library abstracts the file-system-

1This is a departure from the STL iterator style: iterators for different
types of dTables need different runtime implementations, but must share a
common supertype.

specific mechanisms that keep persistent data both consistent
and durable. Anvil state is always kept consistent: if an Anvil
database crashes in a fail-stop manner, a restart will recover
state representing some prefix of committed transactions,
rather than a smorgasbord of committed transactions, un-
committed changes, and corruption. In contrast, users choose
when transactions should become durable (committed to sta-
ble storage).

The transaction library’s design was constrained by
Anvil’s modularity on the one hand, and by performance re-
quirements on the other. dTables can store persistent data in
arbitrary formats, and many dTables with different require-
ments cooperate to form a configuration. For good perfor-
mance on spinning disks, however, these dTables must co-
operate to group-commit transactions in small numbers of
sequential writes. Our solution is to separate consistency
and durability concerns through careful use of file-system-
specific ordering constraints, and to group-commit changes
in a shared log called the system journal. Separating con-
sistency and durability gives users control over performance
without compromising safety, since the file system mech-
anisms used for consistency are much faster than the syn-
chronous disk writes required for durability.

4.1 Consistency

The transaction library provides consistency and durability
for a set of small files explicitly placed in its care. Each
transaction uses a file-system-like API to assign new con-
tents to some files. (The old file contents are replaced, mak-
ing transactions idempotent.) The library ensures that these
small files always have consistent contents: after a fail-stop
crash and subsequent recovery, the small files’ contents will
equal those created by some prefix of committed transac-
tions. More is required for full data store consistency, how-
ever, since the small library-managed files generally refer
to larger files managed elsewhere. For example, a small file
might record the commit point in a larger log, or might name
the current version of a read-only dTable. The library thus
lets users define consistency relationships between other data
files and a library-managed transaction. Specifically, users
can declare that a transaction must not commit until changes
to some data file become persistent. This greatly eases the
burden of dealing with transactions for most dTables, since
they can enforce consistency relationships for their own ar-
bitrary files.

The library maintains an on-disk log of updates to the
small files it manages. API requests to change a file are
cached in memory; read requests are answered from this
cache. When a transaction commits, the library serializes the
transaction’s contents to its log, mdtx.log. (This is essen-
tially a group commit, since the transaction might contain
updates to several small files. The library currently supports
at most one uncommitted transaction at a time, although this
is not a fundamental limitation.) It then updates a commit
record file, mdtx.cmt, to indicate the section of mdtx.log

5

that just committed. Finally, the library plays out the actual
changes to the application’s small files. On replay, the library
runs through mdtx.log up to the point indicated by mdtx.cmt

and makes the changes indicated.
To achieve consistency, the library must enforce a depen-

dency ordering among its writes: mdtx.log happens before
(or at the same time as) mdtx.cmt, which happens before (or
at the same time as) playback to the application’s small files.

This ordering could be achieved by calls like fsync, but
such calls achieve durability as well as ordering and are ex-
tremely expensive on many stable storage technologies [14].
Anvil instead relies on file-system-specific mechanisms for
enforcing orderings. By far the simpler of the mechanisms
we’ve implemented is the explicit specification of ordering
requirements using the Featherstitch storage system’s patch-
group abstraction [9]. The transaction library’s patchgroups
define ordering constraints that the file system implemen-
tation must obey. Explicit dependency specification is very
clean, and simple inspection of the generated dependencies
can help verify correctness. However, Featherstitch is not
widely deployed, and its implementation has several limi-
tations we wished to avoid.

Anvil can therefore also use the accidental [30] write or-
dering guarantees provided by Linux’s ext3 file system in
ordered data mode. This mode makes two guarantees to ap-
plications. First, metadata operations (operations other than
writes to a regular file’s data blocks) are made in atomic
epochs, 5 seconds in length by default. Second, writes to the
data blocks of files, including data blocks allocated to extend
a file, will be written before the current metadata epoch. In
particular, if an application writes to a file and then renames
that file (a metadata operation), and the rename is later ob-
served after a crash, then the writes to the file’s data blocks
are definitely intact.

Anvil’s transaction library, like the Subversion [27] work-
ing copy library, uses this technique to ensure consistency.
Concretely, the mdtx.cmt file, which contains the commit
record, is written elsewhere and renamed. This rename is
the atomic commit point. For example, something like the
following system calls would commit a new version of a 16-
byte sysjnl.md file:
pwrite("mdtx.log", [sysjnl.md => new contents], ...)

pwrite("mdtx.cmt.tmp", [commit record], ...)

rename("mdtx.cmt.tmp", "mdtx.cmt") <- COMMIT

pwrite("sysjnl.md.tmp", [new contents], ...)

rename("sysjnl.md.tmp", "sysjnl.md")

The last two system calls play out the changes to sysjnl.md

itself. Writing to sysjnl.md directly would not be safe: ext3
might commit those data writes before the rename meta-
data write that commits the transaction. Thus, playback also
uses the rename technique to ensure ordering. (This property
is what makes the transaction library most appropriate for
small files.)

The library maintains consistency between other data files
and the current transaction using similar techniques. For ex-
ample, in ext3 ordered data mode, the library ensures that

specified data file changes are written before the rename

commits the transaction.
As an optimization, the transaction library actually main-

tains only one commit record file, mdtx.cmt.N. Fixed-size
commit records are appended to it, and it is renamed so that
N is the number of committed records. Since the transac-
tion library’s transactions are small, this allows it to amortize
the work of allocating and freeing the inode for the commit
record file over many transactions. After many transactions,
the file is deleted and recreated.

Much of the implementation of the transaction library
is shared between the Featherstitch and ext3 versions, as
most of the library’s code builds transactions from a generic
“write-before” dependency primitive. When running Anvil
on Featherstitch, we used dependency inspection tools to
verify that the correct dependencies were generated. Al-
though dependencies remain implicit on ext3, the experi-
ments in Section 6.5 add confidence that our ext3-based con-
sistency mechanisms are correct in the face of failures.

4.2 Durability
As described so far, the transaction library ensures consis-
tency, but not durability: updates to data are not necessarily
stored on the disk when a success code is returned to the
caller, or even when the Anvil transaction is ended. Updates
will eventually be made durable, and many updates made in a
transaction will still be made atomic, but it is up to the caller
to explicitly flush the Anvil transaction (forcing synchronous
disk access) when strong durability is required. For instance,
the caller might force durability for network-requested trans-
actions only just before reporting success, as is done auto-
matically in the xsyncfs file system [17].

When requested, Anvil makes the most recent transaction
durable in one of two ways, depending on whether it is using
Featherstitch or ext3. With Featherstitch, it uses the pg sync

API to explicitly request that the storage system flush the
change corresponding to that transaction to disk. With ext3,
Anvil instead calls futimes to set the timestamp on an empty
file in the same file system as the data, and then fsync to
force ext3 to end its transaction to commit that change. (Us-
ing fsync without the timestamp change is not sufficient; the
kernel realizes that no metadata has changed and flushes only
the data blocks without ending the ext3 transaction.) Even
without an explicit request, updates are made durable within
about 5 seconds (the default duration of ext3 transactions),
as each ext3 transaction will make all completed Anvil trans-
actions durable. This makes Anvil transactions lightweight,
since they can be batched and committed as a group.

4.3 System Journal
Rather than using the transaction library directly, writable
dTables use logging primitives provided by a shared log-
ging facility, the system journal. The main purpose of this
shared, append-only log is to group writes for speed. Any
system component can acquire a unique identifier, called a
tag, which allows it to write entries to the system journal.

6

Class dTable Writable? Description Section
Storage Linear No Stores arbitrary keys and values in sorted order 5.1

Fixed-size No Stores arbitrary keys and fixed-size values in sorted order 5.4
Array No Stores consecutive integer keys and fixed-size values in an array 5.4
Unique-string No Compresses common strings in values 5.1
Empty No Read-only empty dTable 5.1
Memory Yes Non-persistent dTable 5.1
Journal Yes Collects writes in the system journal 5.1

Performance B-tree No Speeds up lookups with a B-tree index 5.2
Bloom filter No Speeds up nonexistent key lookups with a Bloom filter 5.2
Cache Yes Speeds up lookups with an LRU cache 5.2

Unifying Overlay No Combines several read-only dTables into a single view 5.3
Managed Yes Combines read-only and journal dTables into a read/write store 5.3
Exception No Reroutes rejected values from a specialized store to a general one 5.5

Transforming Small integer No Trims integer values to smaller byte counts 5.4
Delta integer No Stores the difference between integer values 5.4
State dictionary No Maps state abbreviations to small integers 5.4

Figure 5: Summary of dTables. Storage dTables write data on disk; all other classes layer over other dTables.

Such entries are not erased until their owner explicitly re-
leases the corresponding tag, presumably after the data has
been stored elsewhere. Until then, whenever Anvil is started
(or on demand), the system journal will replay the log en-
tries to their owners, allowing them to reconstruct their in-
ternal state. Appends to the system journal are grouped into
transactions using the transaction library, allowing many log
entries to be stored quickly and atomically.

To reclaim the space used by released records, Anvil pe-
riodically cleans the system journal by copying all the live
records into a new journal and atomically switching to that
version using the transaction library. As an optimization,
cleaning is automatically performed whenever the system
journal detects that the number of live records reaches zero,
since then the file can be deleted without searching it for
live records. In our experiments, this actually happens fairly
frequently, since entire batches of records are relinquished
together during digest operations.

Writing records from many sources to the same system
journal is similar to the way log data for many tablets is
stored in a single physical log in Bigtable [7]; both systems
employ this idea in order to better take advantage of group
commit and avoid seeks. Cleaning the system journal is sim-
ilar to compaction in a log-structured file system, and is also
reminiscent of the way block allocation logs (“space maps”)
are condensed in ZFS [33].

5 DTABLES

We now describe the currently implemented dTable types
and their uses in more detail. The sixteen types are summa-
rized in Figure 5. We close with an example Anvil configu-
ration using many of these dTables together, demonstrating
how simple, reusable modules can combine to implement an
efficient, specialized data store.

5.1 Storage dTables
The dTables described in this section store data directly on
disk, rather than layering over other dTables.

Journal dTable The journal dTable is Anvil’s fundamen-
tal writable store. The goal of the journal dTable is thus to
make writes fast without slowing down reads. Scaling to
large stores is explicitly not a goal: large journals should be
digested into faster, more compressed, and easier-to-recover
forms, namely read-only dTables. Managed dTables in our
configurations collect writes in journal dTables, then digest
that data into other, read-optimized dTables.

The journal dTable stores its persistent data in the system
journal. Creating a new journal dTable is simple: a system
journal tag is acquired and stored in a small file managed by
the transaction library (probably one belonging to a managed
dTable). Erasing a journal dTable requires relinquishing the
tag and removing it from the small file. These actions are
generally performed at a managed dTable’s request.

Writing data to a journal dTable is accomplished by ap-
pending a system journal record with the key and value.
However, the system journal stores records in chronological
order, whereas a journal dTable must iterate through its en-
tries in sorted key order. This mismatch is handled by keep-
ing an in-memory balanced tree of the entries. When a jour-
nal dTable is initialized during Anvil startup, it requests its
records from the system journal and replays the previous se-
quence of inserts, updates, and deletes in order to reconstruct
this in-memory state. The memory this tree requires is one
reason large journal dTables should be digested into other
forms.

Linear dTable The linear dTable is Anvil’s most basic
read-only store. It accepts any types of keys and values with-
out restriction, and stores its data as a simple file containing
first a 〈key, offset〉 array in key-sorted order, followed by the

7

values in the same order. (Keys are stored separately from
values since most of Anvil’s key types are fixed-size, and
thus can be easily binary searched to allow random access.
The offsets point into the value area.) As with other read-
only dTables, a linear dTable is created by passing an iterator
for some other dTable to a create method, which creates a
new linear dTable on disk containing the data from the itera-
tor. The linear dTable’s create method never calls reject.

Others The memory dTable keeps its data exclusively in
memory. When a memory dTable is freed or Anvil is termi-
nated, the data is lost. Like the journal dTable, it is writable
and has a maximum size limited by available memory. Our
test frameworks frequently use the memory dTable for their
iterators: a memory dTable is built up to contain the de-
sired key-value pairs, then its iterator is passed to a read-only
dTable’s create method.

The empty dTable is a read-only table that is always empty.
It is used whenever a dTable or iterator is required by some
API, but the caller does not have any data to provide.

The unique-string dTable detects duplicate strings in its
data and replaces them with references to a shared table of
strings. This approach is similar to many common forms of
data compression, though it is somewhat restricted in that it
“compresses” each blob individually using a shared dictio-
nary.

5.2 Performance dTables
These dTables aim to improve the performance of a single
underlying dTable stack by adding indexes or caching re-
sults, and begin to demonstrate benefits from layering.

B-tree dTable The B-tree dTable creates a B-tree [3] index
of the keys stored in an underlying dTable, allowing those
keys to be found more quickly than by, for example, a linear
dTable’s binary search.2 It stores this index in another file
alongside the underlying dTable’s data. The B-tree dTable
is read-only (and, thus, its underlying dTable must also be
read-only). Its create method constructs the index; since it
is given all the data up front, it can calculate the optimal con-
stant depth for the tree structure and bulk load the resulting
tree with keys. This bulk-loading is similar to that used in
Rose [22] for a similar purpose, and avoids the update-time
complexity usually associated with B-trees (such as rebal-
ancing, splitting, and combining pages).

Bloom Filter dTable The Bloom filter dTable’s create
method creates a Bloom filter [4] of the keys stored in an
underlying read-only dTable. It responds to a lookup re-
quest by taking a 128-bit hash of the key, and splitting it
into a configurable number of indices into a bitmap. If any
of the corresponding bits in the bitmap are not set, the key
is guaranteed not to exist in the underlying dTable; this re-
sult can be returned without invoking the underlying table’s
lookup algorithm. This is particularly useful for optimizing

2The asymptotic runtime is the same, but the constant is different: logn x
instead of log2 x.

lookups against small dTables, such as those containing re-
cent changes, that overlay much larger data stores, a situation
that often arises in Anvil. The Bloom filter dTable keeps the
bitmap cached in memory, as the random accesses to it would
not be efficient to read from disk.

Cache dTable The cache dTable wraps another dTable,
caching looked up keys and values so that frequently- and
recently-used keys need not be looked up again. If the under-
lying dTables perform computationally expensive operations
to return requested data, such as some kinds of decompres-
sion, and some keys are looked up repeatedly, a cache dTable
may be able to improve performance. When the underlying
dTable supports writing, the cache dTable does as well: it
passes the writes through and updates its cache if they suc-
ceed. Each cache dTable can be configured with how many
keys to store; other policies, such as total size of cached val-
ues, would be easy to add.

5.3 Unifying dTables
This section describes the overlay and managed dTables in
more detail, explaining how they efficiently unify multiple
underlying dTables into a seamless-appearing whole.

Overlay dTable The overlay dTable combines the data in
several underlying dTables into a single logical dTable. It
does not store any data of its own. An overlay dTable is not
itself writable, although writes to underlying dTables will be
reflected in the combined data. Thus, overlays must deal with
two main types of access: keyed lookup and iteration.

Keyed lookup is straightforward: the overlay dTable just
checks the underlying dTables in order until a matching key
is found, and returns the associated value. However, a dTable
early in the list should be able to “delete” an entry that might
be stored in a later dTable. To support this, the remove im-
plementation in a writable dTable normally stores an ex-
plicit “nonexistent” value for the key. These values resemble
Bigtable’s deletion entries and the whiteout directory entries
of Unionfs [32]. Storage dTables are responsible for trans-
lating nonexistent values into the appropriate persistent bit
patterns, or for rejecting nonexistent values if they cannot
be stored. A nonexistent value tells the overlay dTable to
skip later dTables and immediately report that the key’s value
does not exist. Creating a read-only dTable from the writable
dTable will copy the nonexistent value just like any other
value. When a key-value pair is ignored by an overlay dTable
because another value for the key exists earlier in the list, we
say that the original key-value pair has been shadowed.

Composing an overlay dTable iterator is more difficult to
do efficiently. Keys from different underlying iterators must
be interleaved together into sorted order, and keys which
have been shadowed must be skipped. However, we want
to minimize the overhead of doing key comparisons – espe-
cially duplicate key comparisons – since they end up being
the overlay’s primary use of CPU time. The overlay itera-
tor therefore maintains some additional state for each under-
lying iterator: primarily, whether that iterator points at the

8

current key, a shadowed key, an upcoming key, or a previ-
ous key. This information helps the overlay iterator to avoid
many duplicate comparisons by partially caching the results
of previous comparisons. (A more advanced version might
also keep the underlying iterators sorted by the next key each
will output.)

Managed dTable We now have most of the basic mech-
anisms required to build a writable store from read-only
and write-optimized pieces. The managed dTable handles the
combination of these pieces, automatically coordinating the
operation of subordinate dTables to hide the complexity of
their interactions. For instance, all all other dTables can ig-
nore transactions, leaving the managed dTable to take care
of any transaction concerns using the transaction library.

The managed dTable stores its metadata as well as the
files for its underlying dTables in a directory. It keeps a sin-
gle journal dTable to which it sends all writes, and zero or
more other dTables which, along with the journal dTable,
are composed using an overlay dTable. Periodically, a spe-
cial maintenance method digests the journal dTable to form
a new read-only dTable, or combines several dTables to form
a new single dTable. As in system journal cleaning, the ac-
tual data is written non-transactionally, but the transaction
library is used to atomically “swap in” the newly digested or
combined tables.

The current managed dTable schedules digest operations
at fixed, configurable intervals. A digest will occur soon af-
ter the interval has elapsed. Combines are more expensive
than digests, since they must scan possibly-uncached dTa-
bles and create single, larger versions; further, the overlay
dTable necessary to merge data from uncombined dTables
is costly as well. To amortize the cost of combining, com-
bines are scheduled using a “ruler function” somewhat rem-
iniscent of generational garbage collection. A combine op-
eration is performed every k digests (k = 4 in our current
implementation). The combine takes as input the most re-
cent k digests, plus a number of older dTables according to
the sequence xi = 0,1,0,2,0,1,0,3,0,1,0,2, . . . , where xi is
one less than the number of low-order zero bits in i. This
performs small combines much more frequently than large
combines, and the average number of dTables grows at most
logarithmically with time. The result is very similar to Lester
et al.’s “geometric partitioning” mechanism [12]. A more ad-
vanced version of the managed dTable would involve more
carefully tuned parameters and might instead decide when
to perform these tasks based on, for instance, the amount of
data involved.

When digesting, an iterator for the journal dTable is
passed to a suitable create method to create a new read-
only dTable. When combining, an overlay dTable is created
to merge the dTables to be combined, and an iterator for that
is passed to the create method instead. To allow the omis-
sion of unnecessary nonexistent values, an additional dTable
can be passed to create methods that contains all those keys
that might need to be shadowed by the nonexistent values.

C

B

A

1: NE 2: NE 3: NE 4: baz

2: NE 3: foo 4: foo

2: baz 3: baz

Figure 6: dTables C, B, and A in an overlay configuration; explicitly nonex-
istent values are shown as “NE.” Digesting C should keep the nonexistent
value for key 3, but not those for keys 1 and 2, since the combination of
the other dTables already hold no values for those keys (B takes precedence
over A). Combining C and B, on the other hand, must keep the nonexistent
values for both keys 2 and 3. The arrows point from required nonexistent
values to their shadowed versions.

The create method can look up a key with a nonexistent
value in this “shadow dTable” to see if the nonexistent value
is still required. The shadow dTable is simply an overlay
dTable that merges all the dTables which are not being com-
bined, but which the newly created dTable might shadow.
Figure 6 shows an example set of dTables to help illustrate
this algorithm.

Currently, client code is responsible for periodically call-
ing a maintenance method, which in turn will trigger di-
gesting and combining as the schedule requires. Most parts
of Anvil are currently single-threaded; however, a managed
dTable’s digesting and combining can be safely done in a
background thread, keeping these potentially lengthy tasks
from blocking other processing. As a combine operation
reads from read-only dTables and creates a new dTable that
is not yet referenced, the only synchronization required is
at the end of the combine when the newly-created dTable re-
places the source dTables. Digests read from writable journal
dTables, but can also be done in the background by creating
a new journal dTable and marking the original journal dTable
as “effectively” read-only before starting the background di-
gest. Such read-only journal dTables are treated by a man-
aged dTable as though they were not journal dTables at all,
but rather one of the other read-only dTables.

The current managed dTable implementation allows only
one digest or combine operation to be active at any time,
whether it is being done in the background or not. Back-
ground digests and combines could also be done in a separate
process, rather than a separate thread; doing this would avoid
the performance overhead incurred by thread safety in the C
library. Section 6.4 evaluates the costs associated with di-
gesting and combining, and quantifies the overhead imposed
by using threads.

5.4 Specialized dTables

Although a linear dTable can store any keys and values, keys
and values that obey some constraints can often be stored in
more efficient ways. For instance, if all the values are the
same size, then file offsets for values can be calculated based
on the indices of the keys. Alternately, if the keys are inte-
gers and are likely to be consecutive, the binary search can
be optimized to a constant time lookup by using the keys as

9

indices and leaving “holes” in the file where there is no data.
Or, if the values are likely to compress well with a specific
compression algorithm, that algorithm can be applied. Anvil
currently provides a number of specialized dTables that effi-
ciently store specific kinds of data.

Array dTable The array dTable is specialized for storing
fixed-size values associated with contiguous (or mostly con-
tiguous) integer keys. After a short header, which contains
the initial key and the value size, an array dTable file contains
a simple array of values. Each value is optionally preceded
by a tag byte to indicate whether the following bytes are actu-
ally a value or merely a hole to allow the later values to be in
the right place despite the missing key. Without the tag byte,
specific values must be designated as the ones to be used to
represent nonexistent values and holes, or they will not be
supported. (And, in their absence, the array dTable’s create
method will fail if a nonexistent value or non-contiguous key
is encountered, respectively.)

Fixed-size dTable The fixed-size dTable is like the array
dTable in that it can only store values of a fixed size. How-
ever, it accepts all Anvil-supported key types, and does not
require that they be contiguous. While the direct indexing of
the array dTable is lost, the size advantage of not saving the
value size with every entry is retained.

Small Integer dTable The small integer dTable is de-
signed for values which are small integers. It requires that
all its input values be 4 bytes (32 bits), and interprets each
as an integer in the native endianness. It trims each integer
to a configured number of bytes (one of 1, 2, or 3), reject-
ing values that do not fit in that size, and stores the resulting
converted values in another dTable.

Delta Integer dTable Like the small integer dTable, the
delta integer dTable works only with 4-byte values inter-
preted as integers. Instead of storing the actual values, it
computes the difference between each value and the next and
passes these differences to a dTable below. If the values do
not usually differ significantly from adjacent values, the dif-
ferences will generally be small integers – perfect for then
being stored using a small integer dTable.

Storing the differences, however, causes problems for
seeking to random keys. The entire table, from the begin-
ning, would have to be consulted in order to reconstruct the
appropriate value. To address this problem, the delta integer
dTable also keeps a separate “landmark” dTable which stores
the original values for a configurable fraction of the keys. To
seek to a random key, the landmark dTable is consulted, find-
ing the closest landmark value. The delta dTable is then used
to reconstruct the requested value starting from the landmark
key.

State Dictionary dTable Dictionary dTables compress
data by transforming user-friendly values into less-friendly
values that require fewer bits. As a toy example, Anvil’s state
dictionary dTable translates U.S. state postal codes (CA,
MA, etc.) to and from one-byte numbers. During creation,

Managed dTable

Overlay dTable

 overlay

Journal dTable

 journal

Bloom dTable

 read-only

B-tree dTable

Linear dTable

Figure 7: A simple dTable graph for the customer state example.

it translates input postal codes into bytes and passes them to
another dTable for storage; during reading, it translates val-
ues returned from that dTable into postal codes. The array
or fixed-size dTables are ideally suited as subordinates to the
state dictionary dTable, especially (in the case of the array
dTable) if we use some of the remaining, unused values for
the byte to represent holes and nonexistent values.

5.5 Exception dTable

The exception dTable takes advantage of Anvil’s modularity
and iterator rejection to efficiently store data in specialized
dTables without losing the ability to store any value. This can
improve the performance or storage space requirements for
tables whose common case values fit some constraint, such
as a fixed size.

Like an overlay dTable, an exception dTable does not store
any data of its own; it merely combines data from two subor-
dinate dTables into a single logical unit. These are a general-
purpose dTable, such as a linear dTable, which stores ex-
ceptional values, and a specialized dTable, such as an ar-
ray dTable, which is expected to hold the majority of the
dTable’s data. On lookup, the exception dTable checks the
special-purpose dTable first. If there is no value there, it as-
sumes that there is also no exception, and need not check.
(It ensures that this will be the case in its create method.)
If there is a value, and it matches a configurable “exception
value,” then it checks the general-purpose dTable. If a value
is found there, then it is used instead.

The exception dTable’s create method wraps the source
iterator in an iterator of its own, adding a reject method
that collects rejected values in a temporary memory dTable.
This wrapped iterator is passed to the specialized dTable’s
create method. When the specialized dTable rejects a value,
the wrapped iterator stores the exception and returns the con-
figurable exception value to the specialized dTable, which
stores that instead. The exception dTable is later created by
digesting the temporary memory dTable.

10

5.6 Example Configurations

To show how one might build an appropriate configuration
for a specific use case, we work through two simple exam-
ples that demonstrate Anvil’s modularity and configurability.
First, suppose we want to store the states of residence of cus-
tomers for a large company. The customers have mostly se-
quential numeric IDs, and occasionally move between states.

We start with a managed dTable, since nearly every Anvil
configuration needs one to handle writes. This automatically
brings along a journal dTable and overlay dTable, but we
must configure it with a read-only dTable. Since there are
many customers, but they only occasionally move, we are
likely to end up with a very large data set but several smaller
read-only “patches” to it (the results of digested journal dTa-
bles). Since most keys looked up will not be in the small
dTables, we add a Bloom filter dTable to optimize nonexis-
tent lookups. Underneath the Bloom filter dTable, we use a
B-tree dTable to speed up successful lookups, reducing the
number of pages read in from disk to find each record. To
finish our first attempt at a configuration for this scenario,
we use a linear dTable under the B-tree dTable. This config-
uration is shown in Figure 7.

While this arrangement will work, there are two proper-
ties of the data we haven’t yet used to our advantage. First,
the data is nearly all U.S. states, although some customers
might live in other countries. We should therefore use the
state dictionary dTable combined with an exception dTable
for international customers. We could place these dTables
under the B-tree dTable, but we instead insert the exception
dTable directly under the Bloom filter dTable and use the
B-tree dTable as its generic dTable. The reason is related to
the final property of the data we want to use: the customer
IDs are mostly sequential, so we can store the data in an ar-
ray dTable much more efficiently. We therefore use the state
dictionary dTable on top of the array dTable as the excep-
tion dTable’s special-purpose dTable, and configure the ar-
ray dTable with otherwise unused values to use to represent
holes and nonexistent values.

This configuration is shown in Figure 8, although at run-
time, the managed dTable might create several Bloom filter
dTable instances, each of which would then have a copy of
the subgraph below.

In a different scenario, this configuration might be just a
single column in a column-based store. To see how such a
configuration might look, we work through a second exam-
ple. Suppose that in addition to updating the “current state”
table above, we wish to store a log entry whenever a cus-
tomer moves. Each log entry will be identified by a monoton-
ically increasing log ID, and consist of the pair 〈timestamp,
customer ID〉. Additionally, customers do not move at a uni-
form rate throughout the year – moves are clustered at spe-
cific times of the year, with relatively few at other times.

We start with a column cTable, since we will want to use
different dTable configurations for the columns. For the sec-
ond column, we can use a simple configuration consisting of

Managed dTable

Overlay dTable

 overlay

Journal dTable

 journal

Bloom dTable

 read-only

Exception dTable

State Dict. dTable

special

B-tree dTable

 generic

Array dTable
hole=254, NE=255

Linear dTable

Figure 8: An example dTable graph for storing U.S. states efficiently, while
still allowing other locations to be stored.

a managed dTable and array dTables, since the customer IDs
are fixed-size and the log IDs are consecutive.

The first column is more interesting. A well-known tech-
nique for storing timestamps efficiently is to store the differ-
ences between consecutive timestamps, since they will often
be small. We therefore begin with a managed dTable using
delta integer dTables. The delta integer dTable needs a land-
mark dTable, as mentioned in Section 5.4l we use a fixed
dTable as the values will all be the same size. But merely
taking the difference in this case is not useful unless we also
store the differences with a smaller amount of space than the
full timestamps, so we connect the delta integer dTable to
a small integer dTable. Finally, we use an array dTable un-
der the small integer dTable to store the consecutively-keyed
small integers.

This initial configuration works well during the times of
year when many customers are moving, since the differences
in timestamps will be small. However, during the other times
of the year, when the differences are large, the delta integer
dTable will produce large deltas that the small integer dTable
will refuse to store. To fix this problem, we need an excep-
tion dTable between the delta integer dTable and the small
integer dTable. Finally, we can use a fixed dTable to store
the exceptional values – that is, the large deltas – as they are
all the same size. The revised configuration, complete with
the configuration for the second column and the containing
column cTable, is shown in Figure 9.

6 EVALUATION

Anvil decomposes a back-end storage layer for structured
data into many fine-grained modules which are easy to im-
plement and combine. Our performance hypothesis is that
this modularity comes at low cost for “conventional” work-
loads, and that simple configuration changes targeting spe-
cific types of data can provide significant performance im-

11

Column cTable

Managed dTable

column 1

Managed dTable

 column 2

Overlay dTable

 overlay

Journal dTable

 journal

Delta Int dTable

 read-only

Array dTable

 read-only

Overlay dTable

 overlay

Journal dTable

journal

Fixed dTable

landmark

Exception dTable

Small Int dTable
size:1

special

Fixed dTable

 generic

Array dTable
hole=254, NE=255

Figure 9: An example configuration for a cTable storing differentially
timestamped log entries consisting of fixed-size customer IDs.

provements. This section evaluates Anvil to test our hypoth-
esis and provides experimental evidence that Anvil provides
the consistency and durability guarantees we expect.

All tests were run on an HP Pavilion Elite D5000T with a
quad-core 2.66 GHz Core 2 CPU, 8 GiB of RAM, and a Sea-
gate ST3320620AS 320 GB 7200 RPM SATA2 disk attached
to a SiI 3132 PCI-E SATA controller. Tests use a 10 GB ext3
file system (and the ext3 version of the transaction library)
and the Linux 2.6.24 kernel with the Ubuntu v8.04 distribu-
tion. All timing results are the mean over five runs.

6.1 Conventional Workload
For our conventional workload, we use the DBT2 [8] test
suite, which is a “fair usage implementation”3 of the TPC-
C [28] benchmark. In all of our tests, DBT2 is configured to
run with one warehouse for 15 minutes; this is long enough
to allow Anvil to do many digests, combines, and system
journal cleanings so that their effect on performance will be
measured. We also disable the 1% random rollbacks that are
part of the standard benchmark as Anvil does not yet support
rolling back transactions. We modified SQLite, a widely-
used embedded SQL implementation known for its generally
good performance, to use Anvil instead of its original B-tree-
based storage layer. We use a simple dTable configuration: a

3This is a legal term. See the DBT2 and TPC websites for details.

TPM Disk util Reqsz W/s
Original, full 905 94.5% 8.52 437.2
Original, normal 920 93.2% 8.69 449.1
Original, async 3469 84.7% 8.73 332.4
Anvil, fsync 5066 31.4% 24.68 1077.5
Anvil, delay 8185 3.2% 439.60 9.7

Figure 10: Results from running the DBT2 test suite. TPM represents “new
order Transactions Per Minute”; larger numbers are better. Disk util is disk
utilization, Reqsz the average size in KiB of the issued requests, and W/s
the number of write requests issued per second. I/O statistics come from the
iostat utility and are averaged over samples taken every minute.

linear dTable, layered under a B-tree dTable (for combines
but not digests), layered under the typical managed and jour-
nal dTable combination.

We compare the results to unmodified SQLite, config-
ured to disable its rollback journal, increase its cache size
to 128 MiB, and use only a single lock during the lifetime
of the connection. We run unmodified SQLite in three dif-
ferent synchronicity modes: full, which is fully durable (the
default); normal, which has “a very small (though non-zero)
chance that a power failure at just the wrong time could
corrupt the database”; and async, which makes no durabil-
ity guarantees. We run SQLite with Anvil in two different
modes: fsync, which matches the durability guarantee of the
original full mode by calling fsync at the end of every trans-
action, and delay, which allows larger group commits as de-
scribed in Section 4.2. Both of these modes, as well as the
first two unmodified SQLite modes, provide consistency in
the event of a crash; SQLite’s async mode does not.

The DBT2 test suite issues a balance of read and write
queries typical to the “order-entry environment of a whole-
sale supplier,” and thus helps demonstrate the effectiveness
of using both read- and write-optimized structures in Anvil.
In particular, the system journal allows Anvil to write more
data per second than the original back end without saturat-
ing the disk, because its writes are more contiguous and do
not require as much seeking. (Anvil actually writes much
less in delay mode, however: the average request size in-
creases by more than an order of magnitude, but the num-
ber of writes per second decreases by two orders.) For this
test, Anvil handily outperforms SQLite’s default storage en-
gine while providing the same durability and consistency
semantics. The performance advantage of read- and write-
optimized structures far outweighs any cost of separating
these functions into separate modules.

6.2 Microbenchmarks
We further evaluate the performance consequences of
Anvil’s modularity by stress-testing Anvil’s most character-
istic modules, namely those dTables that layer above other
storage modules.

Exception and Specialized dTables To determine the cost
and benefit associated with the exception dTable, we run a
model workload with several different dTable configurations
and compare the results. For our workload, we first populate

12

Time (s)
Digest Lookup Size (MiB)

linear 2.03 63.37 49.6
btree 2.45 23.58 80.2
array 1.59 8.81 22.9
excep+array 1.71 9.15 23.0
excep+fixed 2.09 56.46 34.4
excep+btree+fixed 2.50 23.87 65.0

Figure 11: Exception dTable microbenchmark. A specialized array dTable
outperforms the general-purpose linear dTable, even if the latter is aug-
mented with a B-tree index. When most, but not all, data fits the special-
ized dTable’s constraints, the exception dTable achieves within 4% of the
specialized version while supporting any value type.

a managed dTable with 4 million values, a randomly selected
0.2% of which are 7 bytes in size and the rest 5 bytes. We
then digest the log, measuring the time it takes to generate
the read-only dTable. Next we time how long it takes to look
up 2 million random keys. Finally, we check the total size of
the resulting data files on disk.

We run this test with several read-only dTable configura-
tions. The linear configuration uses only a linear dTable. The
btree configuration adds a B-tree dTable to this. The array
configuration uses an array dTable instead, and, unlike the
other configurations, all values are 5 bytes. The remaining
configurations use an exception dTable configured to use a
linear dTable as the generic dTable. The excep+array config-
uration uses a 5-byte array dTable as the specialized dTable;
the excep+fixed configuration uses a 5-byte fixed dTable.
Finally, the excep+btree+fixed configuration uses a B-tree
dTable over a fixed dTable. The results are shown in Fig-
ure 11.

Comparing the linear and btree configurations shows that
a B-tree index dramatically improves random read perfor-
mance, at the cost of increased size on disk. For this example,
where the data is only slightly larger than the keys, the in-
crease is substantial; with larger data, it would be smaller in
comparison. The array configuration, in comparison, offers a
major improvement in both speed and disk usage, since it can
locate keys directly, without search. The excep+array con-
figuration degrades array’s lookup performance by only ap-
proximately 3.9% for these tests, while allowing the combi-
nation to store any data value indiscriminately. Thus, Anvil’s
modularity here offers substantial benefit at low cost. The
excep+fixed configurations are slower by comparison on this
benchmark – the fixed dTable must locate keys by binary
search – but could offer substantial disk space savings over
array dTables if the key space was more sparsely populated.

Overlay dTable All managed dTable reads and combines
go through an overlay dTable, making it performance sensi-
tive. To measure its overhead, we populate a managed dTable
with 4 million values using the excep+array configuration.
We digest the log, then insert one final key so that the jour-
nal dTable will not be empty. We time how long it takes to
look up 32 million random keys, as well as how long it takes

Lookup Scan
direct 140.2 s 13.95 s
overlay 147.9 s 15.34 s
overhead 5.49% 9.96%

Figure 12: Overlay dTable microbenchmark: looking up random keys and
scanning tables with and without an overlay. Linear scan overhead is larger
percentagewise; a linear scan’s sequential disk accesses are so much faster
that the benchmark is more sensitive to CPU usage.

to run an iterator back and forth over the whole dTable four
times. (Note that the same number of records will be read in
each case.) Finally, we open the digested exception dTable
within the managed dTable directly, thus bypassing the over-
lay dTable, and time the same actions. (As a result, the single
key we added to the managed dTable after digesting the log
will be missing for these runs.)

The results are shown in Figure 12. While the overhead
of the linear scans is less than that of the random keys, it is
actually a larger percentage: the disk accesses are largely se-
quential (and thus fast) so the CPU overhead is more signif-
icant in comparison. As in the last test, the data here is very
small; as the data per key becomes larger, the CPU time will
be a smaller percentage of total time. Nevertheless, this is an
important area where Anvil stands to improve. Since profil-
ing indicates key comparison remains expensive, the linear
access overhead, in particular, might be reduced by storing
precomputed key comparisons in the overlay dTable’s itera-
tor, rather than recalculating them each time next is called.

Bloom Filter dTable To evaluate the Bloom filter dTable’s
effectiveness and cost, we set up an integer-keyed linear
dTable with values for every even key in the range 0 to 8
million. (We configure the Bloom filter dTable’s hash to pro-
duce five 25-bit-long indices into a 4 MiB bitmap.) We then
look up 1 million random even keys, followed by 1 million
random odd keys, either using a Bloom filter dTable or by
accessing the linear dTable directly. The results are shown in
Figure 13. The Bloom filter dTable adds about 5.6% over-
head when looking up existing keys, but increases the speed
of looking up nonexistent keys by nearly a factor of 24. For
workloads consisting of many queries for nonexistent keys,
this is definitely a major benefit, and the modular dTable de-
sign allows it to be used nearly anywhere in an Anvil config-
uration.

To summarize the microbenchmarks, Anvil’s layered dTa-
bles add from 4% to 10% overhead for lookups. However,
their functionality can improve performance by up to 24
times for some workloads. The combination of small, but
significant, overhead and occasional dramatic benefit argues
well for a modular design.

6.3 Reconfiguring Anvil
Many of Anvil’s dTable modules do their work on single
columns at a time, so they can best be used when Anvil
is configured as a column-based store. Other recent work
proposing column stores has turned to TPC-H [29], or vari-

13

Time (s)
Even keys Odd keys Mixed keys

direct 30.36 24.95 27.70
bloom 32.08 1.05 16.63

Figure 13: Bloom filter dTable microbenchmark. A Bloom filter dTable
markedly improves lookup times for nonexistent (odd) keys while adding
only a small overhead for keys that do exist.

 0

 4

 8

 12

 16

 20

 24

R1 R16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
la

ps
ed

 ti
m

e
(s

ec
)

of attributes selected

Figure 14: Time to select different numbers of columns from a row store
(left bars; 1 and 16 columns) and a column store (right bars).

ants of it, to show the advantages of the approach. How-
ever, being a back end data store and not a DBMS in its
own right, Anvil provides no structured query language. Al-
though we have connected it to SQLite to run the TPC-C
benchmark, SQLite is a thoroughly row-based system. Thus,
in order to demonstrate how a column-based Anvil config-
uration can be optimized for working with particular data,
we must build our own TPC-H-like benchmark, as in previ-
ous work [11, 22]. We adapt the method of Harizopoulos et
al. [11], as it does not require building a query language or
relational algebra.

We create the lineitem table from TPC-H, arranged as
either a row store or a column store. This choice is com-
pletely controlled by the configuration blurb we use. We pop-
ulate the table with the data generated by the TPC dbgen

utility. In the column store version, we use an appropriate
dTable configuration for each column: a fixed-size dTable
for columns storing floating point values, for instance, or an
exception dTable above a small-integer dTable above a fixed-
size dTable for columns storing mostly small integers. (We
can actually use an array dTable as the fixed-size dTable,
since the keys are contiguous.) After populating the table,
the column store is 910 MiB while the row store is 1024 MiB
(without customizations, the column store is 1334 MiB). We
then iterate through all the rows in the table, performing the
Anvil equivalent of a simple SQL query of the form:

SELECT C1, ... FROM lineitem WHERE pred(C1);

We vary the number of selected columns, using a predicate
selecting 10% of the rows. We use the cTable iterator projec-
tion feature to efficiently select only the columns of interest
in either a row or column store. The results, shown in Fig-
ure 14, are very similar to previous work [11], demonstrating
that Anvil’s modular design provides effective access to the
same tradeoffs.

6.4 Digesting and Combining

Figure 15 shows the number of rows inserted per second
(in thousands) while creating the row-based database used
for the first two columns of Figure 14. Figure 16 shows
the same operation, but with digests and combines run in
the foreground, blocking other progress. (Note that the x
axes have different scales.) The periodic downward spikes
in Figure 16 are due to digests, which take a small amount
of time and therefore lower the instantaneous speed briefly.
The longer periods of inactivity correspond to combine op-
erations, which vary in length depending on how much data
is being combined. In Figure 15, since these operations are
done in the background, progress can still be made while
they run.

Insertions become slower after each digest, since the row-
based store must look up the previous row data in order to
merge the new column data into it. (It does not know that
the rows are new, although it finds out by doing the lookup.)
After the combines, the speed increases once again, as there
are fewer dTables to check for previous values. The effect
is clearer when digests and combines are done in the fore-
ground, as in Figure 16.

In this test, running digests and combines in the back-
ground takes about 40% less time than running them in
the foreground. Most of our other benchmarks do not show
such a significant improvement from background digests and
combines; while there is still generally an improvement, it is
much more modest (on the order or 5%). For this experi-
ment, we configured the digests to occur with a very high
frequency, to force them to occur enough times to have a
performance effect on such a short benchmark. When a back-
ground digest or combine is already in progress and the next
digest is requested, the new digest request is ignored and the
original background operation proceeds unchanged. As a re-
sult, fewer digests, and thus also fewer combines, occur over-
all. In more realistic configurations, background operations
would overlap much less frequently with digest requests, and
so the overall amount of work done would be closer to the
same.

The entire database creation takes Anvil about 50 seconds
with background digesting and combining and 82 seconds
without, both in delay mode. In comparison, loading the
same data into unmodified SQLite in async mode takes about
64 seconds, and about 100 seconds in full and normal modes.
Even though Anvil spends a large amount of time combin-
ing dTables, the managed dTable’s digesting and combining
schedule keeps this overhead in check. Further, the savings
gained by contiguous disk access are larger than these over-
heads, and Anvil creates the database slightly faster overall
for this test.

Finally, as a measurement of the overhead automatically
imposed by the C library to make itself thread-safe after the
first thread is created, we also run this experiment without
even creating the background thread. In this configuration,
the load takes about 77 seconds, indicating that the C library

14

 0

 50

 100

 150

 200

 0 10 20 30 40 50

R
ow

s/
se

c
(x

10
00

)

Time (sec)

Figure 15: Rows inserted per second over time while creating the row-based
TPC-H database, with digests and combines done in the background.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80

R
ow

s/
se

c
(x

10
00

)

Time (sec)

Figure 16: Rows inserted per second over time while creating the row-based
TPC-H database. The discontinuities correspond to digests and combines
done in the foreground.

thread-safety overhead is about 6% for this workload. Using
a separate process rather than a thread should eliminate this
overhead.

6.5 Consistency and Durability Tests
To test the correctness of Anvil’s consistency mechanisms,
we set up a column store of 500 rows and 50 columns. We
store an integer in each cell of the table and initialize all
25,000 cells to the value 4000. Thus, the table as a whole
sums to 100 million. We then pick a cell at random and sub-
tract 100 from it, and pick 100 other cells at random and add
1 to each. We repeat this operation 2000 times, and end the
Anvil transaction. We then run up to 500 such transactions,
which would take about 3 minutes if we allowed it to com-
plete.

Instead, after initializing the table, we schedule a kernel
module to load after a random delay of between 0 and 120
seconds. The module, when loaded, immediately reboots the
machine without flushing any caches or completing any in-
progress I/O requests. When the machine reboots, we allow
ext3 to recover its journal, and then start up Anvil so that
it can recover as well. We then scan the table, summing the
cells to verify that they are consistent. The consistency check
also produces a histogram of cell values so that we can sub-
jectively verify that progress consistent with the amount of
time the test ran before being interrupted was made. (The
longer the test runs, the more distributed the histogram will
tend to be, up to a point.)

During each transaction, the table is only consistent about
1% of the time: the rest of the time, the sum will fall short
of the correct total. As long as the transactions are working

correctly, these intermediate states should never occur after
recovery. Further, the histograms should approximately re-
flect the amount of time each test ran. The result of over 1000
trials matches these expectations.

Finally, as evidence that the test itself can detect incor-
rectly implemented transactions, we note that it did in fact
detect several small bugs in Anvil. One, for instance, occa-
sionally allowed transaction data to “leak” out before its con-
taining transaction committed. The test generally found these
low-frequency bugs after only a few dozen trials, suggesting
that it is quite sensitive to transaction failures.

As a durability test, we run a simpler test that inserts a ran-
dom number of keys into a managed dTable, each in its own
durable transaction. We also run digest and combine opera-
tions occasionally during the procedure. After the last key is
inserted, and its transaction reported as durable, we use the
reboot module mentioned above to reboot the machine. Upon
reboot, we verify that the contents of the dTable are correct.
As this experiment is able to specifically schedule the reboot
for what is presumably the worst possible time (immediately
after a report of durability), we only run 10 trials by hand and
find that durability is indeed provided. Running the same test
without requesting transaction durability reliably results in a
consistent but outdated dTable.

7 FUTURE WORK

There are several important features that we have not yet im-
plemented in Anvil, but we do have plans for how they could
be added. In this section, we briefly outline how two of these
features, abortable transactions and independent concurrent
access, could be implemented within the Anvil design.

Abortable transactions Anvil’s modular dTable design
may facilitate, rather than hinder, abortable transactions.
Each abortable transaction could create its own journal
dTable in which to store its changes, and use local overlay
dTables to layer them over the “official” stores. This should
be a small overhead, as creating a new journal dTable is a
fast operation: it has no files on disk, and merely involves in-
crementing an integer and allocating object memory. (A sim-
ple microbenchmark that creates journal and overlay dTables
and then destroys them can create about 1.24 million such
pairs per second on our benchmark machine.) To abort the
transaction, these temporary journals would be discarded and
removed from the corresponding managed dTables. To com-
mit, the journal data would instead be folded into the official
journal dTables by writing small records to that effect to the
system journal and merging the in-memory balanced trees.
The transaction’s data would later to be digested as usual.

Independent concurrent access The design for abortable
transactions already contains part of the mechanism required
for independent concurrent access. Different transactions
would need independent views of the dTables they are using,
with each transaction seeing only its changes. By creating a

15

separate journal dTable and overlay dTable for each transac-
tion, and having more than one such transaction at a time, the
different transactions would automatically be isolated from
each other’s changes. Independent transactions could be as-
signed IDs on request or automatically. Committing one of
the transactions could either roll its changes into the official
journal dTable immediately, making those changes visible to
other transactions, or append its journal dTable to the offi-
cial list and merge the changes once no other transactions
require a view of the data before the commit. The major
challenges in implementing this proposal would seem to be
shared with any system with concurrent transactions, namely
detecting conflicts and adding locks. Unfortunately, some
concurrency disciplines seem perhaps difficult to add as sep-
arate modules; for example, every storage dTable might re-
quire changes to support fine-grained record locking.

8 CONCLUSION

Anvil builds structured data stores by composing the de-
sired functionality from sets of simple dTable modules. Sim-
ple configuration changes can substantially alter how Anvil
stores data, and when unique storage strategies are needed,
it is easy to write new dTables. While Anvil still lacks some
important features, they do not appear to be fundamentally
precluded by our design.

The overhead incurred by Anvil’s modularity, while not
completely negligible, is small in comparison to the perfor-
mance benefits it can offer, both due to its use of separate
write-optimized and read-only dTables and to the ability to
use specialized dTables for efficient data storage. Our proto-
type implementation of Anvil is faster than SQLite’s original
back end based on B-trees when running the TPC-C bench-
mark with DBT2, showing that its performance is reasonable
for realistic workloads. Further, we can easily customize it
as a column store for a benchmark loosely based on TPC-
H, showing that optimizing it for specific data is both simple
and effective.

ACKNOWLEDGMENTS

We would like to thank the members of our lab, TERTL, for
sitting through several meetings at which ideas much less in-
teresting than those in this paper were discussed at length.
In particular, we would like to thank Petros Efstathopou-
los, whose comments on early versions of this paper inspired
several useful major changes, and Steve VanDeBogart, who
modified DBT2 to work with SQLite (allowing us to run
TPC-C). We would also like to thank the anonymous review-
ers and our shepherd, David Andersen, for the time they ded-
icated to providing valuable feedback on drafts of this paper.
Our work was supported by the National Science Foundation
under Grant Nos. 0546892 and 0427202; by a Microsoft Re-
search New Faculty Fellowship; by a Sloan Research Fellow-
ship; and by an equipment grant from Intel. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation. Finally,
we would like to thank our lab turtles, Vi and Emacs, for be-
ing turtles in a lab whose acronym is homophonic with the
name of their species, and for never having complained about
their names.Toilet

Paper

REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating com-

pression and execution in column-oriented database systems. In Proc.
SIGMOD ’06, pages 671–682, 2006.

[2] Don Steve Batory, J. R. Barnett, Jorge F. Garza, Kenneth Paul Smith,
K. Tsukuda, C. Twichell, and T. E. Wise. GENESIS: an extensible
database management system. IEEE Transactions on Software Engi-
neering, 14(11):1711–1730, 1988.

[3] Rudolf Bayer and Edward M. McCreight. Organization and mainte-
nance of large ordered indices. In SIGFIDET Workshop, pages 107–
141, July 1970.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[5] Peter Alexander Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. PhD thesis, Universiteit van Amster-
dam, Amsterdam, The Netherlands, May 2002.

[6] CDB Constant DataBase. http://cr.yp.to/cdb.html.
[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-

orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a distributed storage system for structured
data. In Proc. OSDI ’06, pages 205–218, November 2006.

[8] DBT2. http://sf.net/projects/osdldbt/.
[9] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los

Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei Zhang. Gener-
alized file system dependencies. In Proc. SOSP ’07, pages 307–320,
2007.

[10] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. OLTP through the looking glass, and what we found
there. In Proc. SIGMOD ’08, pages 981–992, 2008.

[11] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel Mad-
den. Performance tradeoffs in read-optimized databases. In Proc.
VLDB ’06, pages 487–498, 2006.

[12] Nicholas Lester, Alistair Moffat, and Justin Zobel. Efficient online
index construction for text databases. ACM Transactions on Database
Systems, 33(3):1–33, 2008.

[13] Bruce Lindsay, John McPherson, and Hamid Pirahesh. A data man-
agement extension architecture. SIGMOD Record, 16(3):220–226,
1987.

[14] David E. Lowell and Peter M. Chen. Free transactions with Rio Vista.
In Proc. SOSP ’97, pages 92–101, 1997.

[15] MySQL. http://www.mysql.com/.
[16] MySQL Internals Custom Engine. http://forge.mysql.com/

wiki/MySQL_Internals_Custom_Engine.
[17] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and

Jason Flinn. Rethink the sync. In Proc. OSDI ’06, pages 1–14,
November 2006.

[18] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. The log-structured merge-tree (LSM-tree). Acta Informat-
ica, 33(4):351–385, 1996.

[19] Oracle. http://www.oracle.com/.
[20] Mendel Rosenblum and John K. Ousterhout. The design and imple-

mentation of a log-structured file system. ACM Transactions on Com-
puter Systems, 10(1):1–15, 1992.

[21] Russell Sears and Eric Brewer. Stasis: flexible transactional storage.
In Proc. OSDI ’06, pages 29–44, November 2006.

[22] Russell Sears, Mark Callaghan, and Eric Brewer. Rose: Compressed,
log-structured replication. In Proc. VLDB ’08, August 2008.

[23] SQLite. http://www.sqlite.org/.
[24] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,

Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and

16

Stan Zdonik. C-store: a column-oriented DBMS. In Proc. VLDB ’05,
pages 553–564, 2005.

[25] Michael Stonebraker and Greg Kemnitz. The POSTGRES next gen-
eration database management system. Communications of the ACM,
34(10):78–92, 1991.

[26] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The end of an architectural
era (It’s time for a complete rewrite). In Proc. VLDB ’07, pages 1150–
1160, 2007.

[27] Subversion. http://subversion.tigris.org/.
[28] TPC-C. http://www.tpc.org/tpcc/.
[29] TPC-H. http://www.tpc.org/tpch/.
[30] Theodore Ts’o. Delayed allocation and the zero-length file problem.

Theodore Ts’o’s blog. http://tinyurl.com/dy7rgm (retrieved
March 2009).

[31] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Mo-
erkotte. The implementation and performance of compressed
databases. SIGMOD Record, 29(3):55–67, 2000.

[32] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan,
David P. Quigley, Erez Zadok, and Mohammad Nayyer Zubair. Versa-
tility and Unix semantics in namespace unification. ACM Transactions
on Storage, 2(1):74–105, February 2006.

[33] ZFS Space Maps. http://blogs.sun.com/bonwick/entry/

space_maps.
[34] Jacob Ziv and Abraham Lempel. A universal algorithm for sequen-

tial data compression. IEEE Transactions on Information Theory,
23(3):337–343, May 1977.

17

	Introduction
	Related Work
	Design
	dTables
	Data Unification
	Columns
	Discussion

	Transaction Library
	Consistency
	Durability
	System Journal

	dTables
	Storage dTables
	Performance dTables
	Unifying dTables
	Specialized dTables
	Exception dTable
	Example Configurations

	Evaluation
	Conventional Workload
	Microbenchmarks
	Reconfiguring Anvil
	Digesting and Combining
	Consistency and Durability Tests

	Future Work
	Conclusion

