Integrated Distributed Energy Awareness

Geoffrey Werner Challen
Jason Waterman
Matt Welsh

Harvard University
School of Engineering and Applied Sciences

A new GROUP DIET for Wireless Sensor Networks!!!

IDEA
Optima
Helps Control Hunger
Chocolate Drink Shake Mix

© Geoffrey Challen, SOSP'09 WIP
Overloading Nodes Leads To...

Reduced activity levels...
Overloading Nodes Leads To...

...premature node death!
Single Node Diets Exist...

Integrating Concurrency Control and Energy Management in Device Drivers
Klues et. al., SOSP 2007
Single Node Diets Exist...

Integrating Concurrency Control and Energy Management in Device Drivers
Klues et. al., SOSP 2007
Single Node Diets Exist...

Quanto: Tracking Energy in Networked Embedded Systems
Fonseca et al., OSDI 2009

© Geoffrey Challen, SOSP'09 WIP
Single Node Diets Exist...

Quanto: Tracking Energy in Networked Embedded Systems
Fonseca et. al., OSDI 2009

© Geoffrey Challen, SOSP'09 WIP
Single Node Diets Exist...
A large amount of load is produced by other nodes! Cannot shed this load without help...
...But Nodes Depend on Each Other!

A large amount of load is produced by other nodes! Cannot shed this load without help...
IDEA Is a Group Diet
IDEA: Improving Load Distribution

Goal: Improve application fidelity by matching system *load* to *availability*

:: Capture all incident energy
:: Shift load towards *underutilized* nodes
:: Shift load away from *threatened* nodes

First piece of a *distributed OS* for sensor networks!

May not perform all actions in the way that minimizes the total energy consumed by all involved nodes!
IDEA: Integration

App State

State 1
\((s_1^0, s_1^1, s_1^2, \ldots)\)

State 2
\((s_2^0, s_2^1, s_2^2, \ldots)\)

State 3
\((s_3^0, s_3^1, s_3^2, \ldots)\)

Example Applications:
- Routing Layers
- MAC Protocols
- Distributed Consensus Algorithms
- Distributed Computation
IDEA: Integration

Example Applications:
- Routing Layers
- MAC Protocols
- Distributed Consensus Algorithms
- Distributed Computation

App State

State 1
(s1_0, s1_1, s1_2, ...)

State 2
(s2_0, s2_1, s2_2, ...)

State 3
(s3_0, s3_1, s3_2, ...)

© Geoffrey Challen, SOSP'09 WIP
IDEA: Distribution

State Sharing

State Table

\((C_0, B_0, L_0)\)

\((C_n, B_n, L_n)\)

Charge Model

Battery Monitor

Load Model

Load Monitor

Distributed State:
- Load Model Parameters
- Charging Model Parameters
- Battery Levels

© Geoffrey Challen, SOSP'09 WIP
IDEA: Awareness

State Table
\[(C_0, B_0, L_0)\]
\[(C_n, B_n, L_n)\]

App State
State 1
\[(s1_0, s1_1, s1_2, ...)\]
State 2
\[(s2_0, s2_1, s2_2, ...)\]

Scoring

App

Maximize Time Until First Node Failure

Maximize Captured Charge

Time
Battery Level

© Geoffrey Challen, SOSP'09 WIP
Questions?

Project Status:
- Prototype Implementation Complete
- Several Example Applications Underway
 - Modified Routing Layer (CTP)
 - Energy-aware Low-Power Listening Interval Tuning

State Table
\[(C_0, B_0, L_0), (C_n, B_n, L_n)\]

State Sharing

App State
- State 1 \((s_1_0, s_1_1, s_1_2...\))
- State 2 \((s_2_0, s_2_1, s_2_2...\))

Scoring

App

Charge Monitor

Battery Monitor

Load Monitor

Load Model

Charge Model

Copyright © Geoffrey Challen, SOSP'09 WIP