
Posix-Free File Systems
in the Cloud

Jeff Chase
Duke University

Beyond Posix
•  “Filesystem”  Posix file system semantics?

–  open(2)
–  Hierarchical directories with aliasing
–  Human-readable symbolic names
–  Atomic ops on directory tree
–  Consistency, etc.….

•  It has served us for more than 25 years…

Continuum of File/Storage Systems

•  Personal devices
–  Small apps, common file system
–  Seltzer and Murphy, Hierarchical File Systems Are

Dead, HotOS 2009.
–  Do you know where your files are?

•  Server backbone
–  Your data lives here; devices are caches.
–  Storage sits behind client-facing apps
–  Big $$$ apps and infrastructure

•  Server storage is breaking out of the straitjacket.

NFS Clients

Client sends and
receives standard NFS.

Storage router module intercepts
and redirects requests to servers.

µ
server

server

server

[OSDI 2000, TOCS 2002, USITS 2003]

rename()!&*^%

Server “File Systems”
•  Trend: storage abstractions as foundational services.

–  Robust, scalable, etc., etc.
•  Google FS (GFS SOSP 2003)

–  “Co-designing applications and the file system”
•  FS tailored to workload (large files)
•  Apps program to “new” storage API
•  Apps compensate for quirks of FS

–  E.g., record repair at application level

“Have it your way”
•  Now evolving toward a rich menu of more specialized

storage APIs with features to fit.
•  Key-value stores

–  Amazon S3, FAWN, etc.
•  Multi-attribute indexing (tables or property lists)

–  Amazon SimpleDB, Google BigTable/Megastore
•  Content-addressable
•  Temporal/lifecycle management
•  Etc.

Into the Clouds
•  Cloud == “data center consolidation”

–  Pay as you go
•  Diverging views of storage in the cloud…

–  Cloud of public services
–  Cloud of public virtual infrastructure to host

private services
•  E.g., GENI

•  These choices lead storage system design in
different directions.

Some key differences
•  Accounting must be “designed in” to public services.

–  (unless they’re free)
•  Trusted platform vs. trustworthy services

–  Public services need data protection (whatever
that means to the customer).

–  E.g., strong accountability (FAST 2007)
•  Elasticity

–  Public services need some kind of isolation…
–  For private services, elasticity  churn
–  Controllable (re)scaling and data (re)placement

Other…
•  Data/vendor lock in with the public service model?

–  Unless we standardize storage APIs
•  How to expose/manage location?
•  How to expose/manage device properties?

–  Encapsulate at bottom layer?
•  Risk of feature-creep for public services

–  Snapshots, cloning, etc.
–  “Stackable” storage services?

•  How much customization do we need?
–  One size fits all vs. let a thousand flowers bloom

Storage Software as a Service

•  Cloud provider runs common storage services shared
by multiple customers.
–  Thin straw problem? Your application is in the

cloud too.
–  Beware: data lock-in, one-size-fits-all

•  The storage service must have designed in:
–  Elastic scaling with performance isolation
–  Data protection (whatever that means)
–  Accounting (unless it’s free)
–  Accountability

Infrastructure as a Service
•  “Infrastructure as a Service” model

–  Instantiate virtual machines and virtual devices
–  Let a thousand flowers bloom
–  Example: GENI

•  The storage service must have designed in:
–  Controllable (re)scaling and data (re)placement

•  Elastic  churn
–  How to expose location?

GENI Storage
•  Decouple services from infrastructure

–  Common “raw” sliverable storage infrastructure?
–  “Let a thousand flowers bloom.”

•  Consider separate services separately
•  Focus on key storage services for workflow

–  Repositories: Image/appliance, snapshots, source
(?)

–  Operational: auditing, instrumentation (write-once)
–  On-demand storage for experiment use

• Node sliver instantiation (roots)

