Abstractions for Scalable Operating Systems on Manycore Architectures

Kevin Klues, Barret Rhoden, David (Yu) Zhu, Paul Pearce, Eric Brewer, John Kubiatowicz
Asymmetrically Structured OS

- Management of the system limited to a small subset of cores
- Explicit separation of kernel services and user space applications onto different cores
- Communication done through dedicated channels
- Advantages:
 - Eliminates the need for per core run queues
 - Increases per core cache locality
 - Decreases cross core lock contention
 - Limits kernel interference with applications
 - Enables applications to perform remote asynchronous system calls
Resources partitioned based on explicit requests from an application or system service

Applications multiplexed in both time and space onto the hardware resources they have been granted

Scheduling in the OS is coarse grained: based on enforcing resource guarantees (QoS)

Scheduling in userspace is fine grained: based on mapping threads of control to the resources granted

Resource guarantees enforced either in hardware or software depending on the architecture in use
Private Memory Ranges

- Reserve range of addresses in an Address Space for processing per-context (or per-core) private data
- Most data is shared (e.g. file descriptors, security properties)
- But not everything (e.g. data to be processed in SIMD fashion)

Advantages:

- No locks needed to modify data in private memory ranges
- Can do page re-mappings in private regions without requiring cross core TLB shootdowns
- Eases development for data parallel applications
- Allows for fast page remapping for streaming data applications
Acknowledgments:

From the UC Berkeley Parallel Computing Lab:
Ben Hindman, Juan Colmenares, Sarah Bird, Heidi Pan, Zach Anderson, Andrew Waterman, Krste Asanovic

From Lawrence Berkeley National Labs:
Eric Roman, Steven Hofmeyr, John Shalf, Costin Iancu, Kathy Yelick

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227).