
Improving security using
data flow assertions

Alex Yip, Xi Wang, Nickolai Zeldovich, Frans Kaashoek
MIT CSAIL

Many security vulnerabilities
caused by programming errors

Top 6 classes of security vulnerabilities found in 2008 [CVE]

Attack vector Percentage

SQL injection 20.4%

Cross-site scripting 14.0%

Buffer overflow 9.5%

Directory traversal 6.6%

Script eval injection 5.0%

Missing access checks 4.6%

(… long tail of others …) 39.8%

Many security vulnerabilities
caused by programming errors

● SQL injection: attacker's input used in SQL query

● XSS: attacker's input used in HTML page

● Directory traversal: attacker-supplied path has “..”

● Script injection: attacker's input executed as code

● Missing ACL: sensitive data sent without check

Common programming error:
missing checks

Application

…

…

… …

…

……

…

Common programming error:
missing checks

Application

…

…

… …

…

……

…

SQL injection attack

Application
…

…

……

…Attacker's
browser

SQL
database

● Goal: quote user input before using in SQL

Stored
query

SQL injection attack

Application
…

…

…

…Attacker's
browser

SQL
database

● Goal: quote user input before using in SQL

Stored
query

…

Missing access control check

Application

…

…

…

……

…

Protected
file

Attacker's
browser

● Goal: check ACL when sending file to user

Missing access control check

Application

…

…

…

……

…

Protected
file

Attacker's
browser

● Goal: check ACL when sending file to user

Cross-site scripting attack

Application
…

… …

…

…Attacker's
browser

Victim's
browser

…

● Goal: remove Javascript from user input
before using in HTML

Cross-site scripting attack

Application
…

… …

…

…Attacker's
browser

Victim's
browser

…

● Goal: remove Javascript from user input
before using in HTML

Challenge: knowing where to check

Application
…

… …

…

…Attacker's
browser

Victim's
browser

…
● Today: invoke check on all paths from source to sink

● Easy to miss one (out of 572 in phpBB, a popular web app)

● Security check cannot be made based on data alone
● At the source, don't know where data is going yet
● At the sink, don't know where data came from

Approach:
Associate checks with data

● Assume trusted runtime & non-malicious app code

● Programmers tag data with assertions at source

● Track assertions when data is copied or moved

● Assertions checked at the sinks

Example bug:
HotCRP password disclosure

Example bug:
HotCRP password disclosure

Example bug:
HotCRP password disclosure

From: tom@cs.washington.edu
To: nickolai@csail.mit.edu

Dear Nickolai Zeldovich,

Here is your account information:

 Email: nickolai@csail.mit.edu
 Password: cluprerast

Example bug:
HotCRP password disclosure

● Helpful feature: email preview mode

● Display emails instead of sending them

● Useful to fine-tune messages sent to everyone

Programmer has a security plan

● Programmers often have a data flow plan in mind
● Sanitize HTML; only send password to user's email
● Hard: plan must be enforced everywhere

Programmer has a security plan

● Programmers often have a data flow plan in mind
● Sanitize HTML; only send password to user's email
● Hard: plan must be enforced everywhere

● Challenge: many flow paths, easy to miss one
● phpBB: 572 calls to check for cross-site scripting

Programmer has a security plan

● Programmers often have a data flow plan in mind
● Sanitize HTML; only send password to user's email
● Hard: plan must be enforced everywhere

● Challenge: many flow paths, easy to miss one
● phpBB: 572 calls to check for cross-site scripting

● Challenge: 3rd-party developers don't know plan
● phpBB: 879 plug-ins written by 505 programmers

Our approach: Allow programmers
to make security plan explicit

● Resin: modified language runtime (Python, PHP)
● Programmer specifies explicit data flow assertions
● Runtime checks assertion on every source→sink path
● Assertion prevents attacker from exploiting

missing check

● Not a bug-finding tool; prevents exploits at runtime

Challenges and ideas

● Plan: “only send this password to nickolai@mit.edu”

● How would we check if a program obeys this plan?

● How would the programmer express this assertion?

Challenges and ideas

● Plan: “only send this password to nickolai@mit.edu”

● How would we check if a program obeys this plan?
● Associate the assertions with data (e.g. password)
● Track assertions along with data in language runtime
● Check at programmer-defined boundaries

– E.g. external I/O (file, network), when data leaves our control

● How would the programmer express this assertion?

Challenges and ideas

● Plan: “only send this password to nickolai@mit.edu”

● How would we check if a program obeys this plan?
● Associate the assertions with data (e.g. password)
● Track assertions along with data in language runtime
● Check at programmer-defined boundaries

– E.g. external I/O (file, network), when data leaves our control

● How would the programmer express this assertion?
● Express using code – simple, general-purpose
● Programmers can reuse code, data structures

Resin Language Runtime

Example:
Preventing HotCRP's bug in Resin

“myPassw0rd”

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

Resin Language Runtime

Programmer attaches
a policy object to a string

“myPassw0rd”

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

Policy:
Only email to

nickolai@mit.edu

Resin Language Runtime

Programmer attaches
filter objects to security boundaries

Filter

Filter

Filter

Filter

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu

Resin Language Runtime

Runtime propagates
policies for strings

Dear Nickolai Zeldovich,

Here is your account info

 Email: nickolai@mit.edu
Password: myPassw0rd

Filter

Filter

Filter

Filter

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu

Resin Language Runtime

Runtime propagates
policies for strings

Filter

Filter

Filter

Filter

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu
Dear Nickolai Zeldovich,

Here is your account info

 Email: nickolai@mit.edu
Password: myPassw0rd

Policy:
Only email to

nickolai@mit.edu

Resin Language Runtime

Filters check assertions
by invoking policy objects

Filter

Filter

Filter

Filter

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

X

X

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu
Dear Nickolai Zeldovich,

Here is your account info

 Email: nickolai@mit.edu
Password: myPassw0rd

Policy:
Only email to

nickolai@mit.edu

X

Resin Language Runtime

Assertions avoid the need
to understand all code

Filter

Filter

Filter

Filter

Pipe to sendmail for
nickolai@mit.edu

HTTP conn
to browser

World-readable
log file

SQL database

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu

Third-party
email module

Dear Nickolai Zeldovich,

Here is your account info

 Email: nickolai@mit.edu
Password: myPassw0rd

Policy:
Only email to

nickolai@mit.edu

X

X

PHP code for HotCRP's policy

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” && $context[‘rcpt’] == $this-
>user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;
 throw new Exception (“unauthorized disclosure”);
 }
}

PHP code for HotCRP's policy

Stores owner's username
(email address in HotCRP)

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” && $context[‘rcpt’] == $this-
>user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;
 throw new Exception (“unauthorized disclosure”);
 }
}

PHP code for HotCRP's policy

Filter consults policy;
context provided by filter

at security boundary

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” && $context[‘rcpt’] == $this-
>user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;
 throw new Exception (“unauthorized disclosure”);
 }
}

PHP code for HotCRP's policy

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” &&
 $context[‘rcpt’] == $this->user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;
 throw new Exception (“unauthorized disclosure”);
 }
}

Allows password to
be emailed to owner;

only cares about mail filter

PHP code for HotCRP's policy

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” &&
 $context[‘rcpt’] == $this->user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;

 }
}

Reuse code and data to
allow PC chair override

PHP code for HotCRP's policy

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” &&
 $context[‘rcpt’] == $this->user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;
 throw new Exception (“unauthorized disclosure”);
 }
}

Otherwise, throw an
exception to deny

PHP code for HotCRP's policy

class PasswordPolicy extends Policy {
 private $user;

 function __construct($username) {
 $this->user = $username;
 }

 function export_check($context) {
 if ($context[‘type’] == “mail” &&
 $context[‘rcpt’] == $this->user)
 return;
 if ($Me->valid() && $Me->privChair)
 return;
 throw new Exception (“unauthorized disclosure”);
 }
}

policy_set($new_password, new PasswordPolicy($username));

Specify policy once,
when data enters system

Resin Language Runtime

Filters help track persistent data

File
Filter

/home/hotcrp/.htpasswd

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu

Resin Language Runtime

Filters help track persistent data

File
Filter

● File filter serializes/de-serializes policies to xattr

/home/hotcrp/.htpasswd

Ext. attribute Value

x-resin-policy

“myPassw0rd”

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu

Resin Language Runtime

Filters help track persistent data

File
Filter

● Other apps (e.g. Apache) can check data policies
to prevent attacker from obtaining sensitive data

/home/hotcrp/.htpasswd

Apache

“myPassw0rd”

“myPassw0rd”

Policy:
Only email to

nickolai@mit.edu

Ext. attribute Value

x-resin-policy

Tracking multiple policies
● Set of policies for every primitive data element

● Character in a string, integer, etc

● Policies propagated on explicit data flows

a = concat(b, c) propagates

a = array[b] does not propagate

● Runtime merges policies when data is combined
● Common: merge strings: automatic (byte-level tracking)
● Rare: merge integers: defined in policy object (e.g. union)

Two prototypes

● PHP: 5,944 lines of code added/changed
● Complex due to poorly-engineered PHP code base

● Python: 681 lines of code added/changed
● Python interpreter is better-engineered
● No byte-level tracking or persistent policies in SQL DB
● Mostly proof-of-concept: Resin isn't PHP-specific

Evaluation questions

● Resin's goal:
 programmers uphold security plan
 by writing explicit data flow assertions

● How hard is it to write an assertion?
● What attacks can assertions prevent?
● Do you need to know the attack to write asserts?

Experiment 1

● Took 5 applications with known security bugs
● Wrote assertions to prevent exploitation

Experiment 1 results
Application Application

LOC
Assert
LOC

Vulnerability addressed
(# found)

MoinMoin Wiki 89,600 8 Missing access check (2)

HotCRP 29,000 23 Password disclosure (1)

MyPhpScripts login 425 6 Password disclosure (1)

many PHP apps – 12 PHP script injection (5+)

phpBB 172,000 22 Cross-site scripting (4)

Assertions are easy to write
Application Application

LOC
Assert
LOC

Vulnerability addressed
(# found)

MoinMoin Wiki 89,600 8 Missing access check (2)

HotCRP 29,000 23 Password disclosure (1)

MyPhpScripts login 425 6 Password disclosure (1)

many PHP apps – 12 PHP script injection (5+)

phpBB 172,000 22 Cross-site scripting (4)

Assertions prevent a range of bugs
Application Application

LOC
Assert
LOC

Vulnerability addressed
(# found)

MoinMoin Wiki 89,600 8 Missing access check (2)

HotCRP 29,000 23 Password disclosure (1)

MyPhpScripts login 425 6 Password disclosure (1)

many PHP apps – 12 PHP script injection (5+)

phpBB 172,000 22 Cross-site scripting (4)

● HotCRP had a logic error (email preview mode)
● MyPhpScripts password file was web-accessible
● One assertion prevents many pwd disclosure flows

Assertions are not specific
to attack vectors

Application Application
LOC

Assert
LOC

Vulnerability addressed
(# found)

MoinMoin Wiki 89,600 8 Missing access check (2)

HotCRP 29,000 23 Password disclosure (1)

MyPhpScripts login 425 6 Password disclosure (1)

many PHP apps – 12 PHP script injection (5+)

phpBB 172,000 22 Cross-site scripting (4)

Experiment 2

● Experiment 1 focused on known bugs
● Resin used to avoid regressions

● More dangerous: attackers find, exploit new bugs

● Want to show Resin can prevent unknown bugs
● Wrote high-level asserts for 5 apps; not attack-specific
● Manually looked for unknown bugs to trigger assertion

Experiment 2 results:
Assertions prevent unknown bugs

Application Application
LOC

Assert
LOC

Vulnerability addressed
(# found)

HotCRP 29,000 30
32

Access check papers (0)
Access check authors (0)

phpBB 172,000 23 Missing read access check (4)

FileThingie 3,200 19 Directory traversal (1)

PHP Navigator 4,100 17 Directory traversal (1)

EECS Grad Admission 18,500 9 SQL injection (3)

● Without assertions, attacker could have
compromised at least 4 of the 5 apps

Performance evaluation

● Focus on application performance: HotCRP
● 3 assertions: passwords, papers, authors
● Workload: 30 min prior to SOSP '07 deadline

● Result: 30% CPU overhead
● Resin would increase CPU use from 14% to 19%

Future work

● Report errors earlier with static analysis

● Assertions across runtimes and machines

● Strong enforcement for untrusted code

Related work

● Perl taint & vuln-specific tools (XSS, SQL inj.)

● Information flow control (Jif, HiStar)

● Language security checks (AspectJ, Fable, PQL)

Summary

● Attackers exploit missing security checks

● Hard for programmers to check every flow

● Resin allows attaching security assertions to data
● Checked for any possible data flow at runtime

● Data flow assertions prevent wide range of bugs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

