
Efficient Deterministic Multithreading
through Schedule Relaxation

Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo,
Junfeng Yang

{heming, jingyue, jmg, huayang, junfeng}@cs.columbia.edu
Department of Computer Science

Columbia University

ABSTRACT
Deterministic multithreading (DMT) eliminates many pernicious software problems caused by non-
determinism. It works by constraining a program to repeat the same thread interleavings, or sched-
ules, when given same input. Despite much recent research, it remains an open challenge to build
both deterministic and efficient DMT systems for general programs on commodity hardware. To de-
terministically resolve a data race, a DMT system must enforce a deterministic schedule of shared
memory accesses, or mem-schedule, which can incur prohibitive overhead. By using schedules con-
sisting only of synchronization operations, or sync-schedule, this overhead can be avoided. However,
a sync-schedule is deterministic only for race-free programs, but most programs have races.

Our key insight is that races tend to occur only within minor portions of an execution, and a dom-
inant majority of the execution is still race-free. Thus, we can resort to a mem-schedule only for the
“racy” portions and enforce a sync-schedule otherwise, combining the efficiency of sync-schedules
and the determinism of mem-schedules. We call these combined schedules hybrid schedules.

Based on this insight, we have built PEREGRINE, an efficient deterministic multithreading sys-
tem. When a program first runs on an input, PEREGRINE records an execution trace. It then
relaxes this trace into a hybrid schedule and reuses the schedule on future compatible inputs ef-
ficiently and deterministically. PEREGRINE further improves efficiency with two new techniques:
determinism-preserving slicing to generalize a schedule to more inputs while preserving determinism,
and schedule-guided simplification to precisely analyze a program according to a specific schedule.
Our evaluation on a diverse set of programs shows that PEREGRINE is deterministic and efficient, and
can frequently reuse schedules for half of the evaluated programs.

Categories and Subject Descriptors:
D.4.5 [Operating Systems]: Threads, Reliability D.2.4 [Software Engineering]: Software/Program
Verification;

General Terms:
Algorithms, Design, Reliability, Performance

Keywords:
Deterministic Multithreading, Program Slicing, Program Simplification, Symbolic Execution

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

1 Introduction

Different runs of a multithreaded program may show different behaviors, depending on how the
threads interleave. This nondeterminism makes it difficult to write, test, and debug multithreaded
programs. For instance, testing becomes less assuring because the schedules tested may not be the
ones run in the field. Similarly, debugging can be a nightmare because developers may have to repro-
duce the exact buggy schedules. These difficulties have resulted in many “heisenbugs” in widespread
multithreaded programs [39].

Recently, researchers have pioneered a technique called deterministic multithreading (DMT) [9,
10, 12, 19, 20, 42]. DMT systems ensure that the same input is always processed with the same
deterministic schedule, thus eliminating heisenbugs and problems due to nondeterminism. Unfortu-
nately, despite these efforts, an open challenge [11] well recognized by the DMT community remains:
how to build both deterministic and efficient DMT systems for general multithreaded programs on
commodity multiprocessors. Existing DMT systems either incur prohibitive overhead, or are not
fully deterministic if there are data races.

Specifically, existing DMT systems enforce two forms of schedules: (1) a mem-schedule is a
deterministic schedule of shared memory accesses [9, 10, 20], such as load/store instructions,
and (2) a sync-schedule is a deterministic order of synchronization operations [19, 42], such as
lock()/unlock(). Enforcing a mem-schedule is truly deterministic even for programs with data
races, but may incur prohibitive overhead (e.g., roughly 1.2X-6X [9]). Enforcing a sync-schedule is
efficient (e.g., average 16% slowdown [42]) because most code does not control synchronization and
can still run in parallel, but a sync-schedule is only deterministic for race-free programs, when, in
fact, most real programs have races, harmful or benign [39, 54]. The dilemma is, then, to pick either
determinism or efficiency but not both.

Our key insight is that although most programs have races, these races tend to occur only within
minor portions of an execution, and the majority of the execution is still race-free. Thus, we can
resort to a mem-schedule only for the “racy” portions of an execution and enforce a sync-schedule
otherwise, combining both the efficiency of sync-schedules and the determinism of mem-schedules.
We call these combined schedules hybrid schedules.

Based on this insight, we have built PEREGRINE, an efficient deterministic multithreading system
to address the aforementioned open challenge. When a program first runs on an input, PEREGRINE

records a detailed execution trace including memory accesses in case the execution runs into races.
PEREGRINE then relaxes this detailed trace into a hybrid schedule, including (1) a total order of
synchronization operations and (2) a set of execution order constraints to deterministically resolve
each occurred race. When the same input is provided again, PEREGRINE can reuse this schedule
deterministically and efficiently.

Reusing a schedule only when the program input matches exactly is too limiting. Fortunately, the
schedules PEREGRINE computes are often “coarse-grained” and reusable on a broad range of inputs.
Indeed, our previous work has shown that a small number of sync-schedules can often cover over 90%
of the workloads for real programs such as Apache [19]. The higher the reuse rates, the more efficient
PEREGRINE is. Moreover, by reusing schedules, PEREGRINE makes program behaviors more stable
across different inputs, so that slight input changes do not lead to vastly different schedules [19] and
thus “input-heisenbugs” where slight input changes cause concurrency bugs to appear or disappear.

Before reusing a schedule on an input, PEREGRINE must check that the input satisfies the pre-
conditions of the schedule, so that (1) the schedule is feasible, i.e., the execution on the input will
reach all events in the same deterministic order as in the schedule and (2) the execution will not in-
troduce new races. (New races may occur if they are input-dependent; see §4.1.) A naïve approach
is to collect preconditions from all input-dependent branches in an execution trace. For instance, if
a branch instruction inspects input variable X and goes down the true branch, we collect a precon-
dition that X must be nonzero. Preconditions collected via this approach ensures that an execution
on an input satisfying the preconditions will always follow the path of the recorded execution in
all threads. However, many of these branches concern thread-local computations and do not affect
the program’s ability to follow the schedule. Including them in the preconditions thus unnecessarily
decreases schedule-reuse rates.

How can PEREGRINE compute sufficient preconditions to avoid new races and ensure that a sched-

ule is feasible? How can PEREGRINE filter out unnecessary branches to increase schedule-reuse
rates? Our previous work [19] requires developers to grovel through the code and mark the input
affecting schedules; even so, it does not guarantee full determinism if there are data races.

PEREGRINE addresses these challenges with two new program analysis techniques. First, given
an execution trace and a hybrid schedule, it computes sufficient preconditions using determinism-
preserving slicing, a new precondition slicing [18] technique designed for multithreaded programs.
Precondition slicing takes an execution trace and a target instruction in the trace, and computes a
trace slice that captures the instructions required for the execution to reach the target with equivalent
operand values. Intuitively, these instructions include “branches whose outcome matters” to reach
the target and “mutations that affect the outcome of those branches” [18]. This trace slice typically
has much fewer branches than the original execution trace, so that we can compute more relaxed
preconditions. However, previous work [18] does not compute correct trace slices for multithreaded
programs or handle multiple targets; our slicing technique correctly handles both cases.

Our slicing technique often needs to determine whether two pointer variables may point to the
same object. Alias analysis is the standard static technique to answer these queries. Unfortunately,
one of the best alias analyses [52] yields overly imprecise results for 30% of the evaluated programs,
forcing PEREGRINE to reuse schedules only when the input matches almost exactly. The reason is
that standard alias analysis has to be conservative and assume all possible executions, yet PEREGRINE

cares about alias results according only to the executions that reuse a specific schedule. To improve
precision, PEREGRINE uses schedule-guided simplification to first simplify a program according to a
schedule, then runs standard alias analysis on the simplified program to get more precise results. For
instance, if the schedule dictates eight threads, PEREGRINE can clone the corresponding thread func-
tion eight times, so that alias analysis can separate the results for each thread, instead of imprecisely
merging results for all threads.

We have built a prototype of PEREGRINE that runs in user-space. It automatically tracks main()
arguments, data read from files and sockets, and values returned by random()-variants as input. It
handles long-running servers by splitting their executions into windows and reusing schedules across
windows [19]. The hybrid schedules it computes are fully deterministic for programs that (1) have
no nondeterminism sources beyond thread scheduling, data races, and inputs tracked by PEREGRINE

and (2) adhere to the assumptions of the tools PEREGRINE uses.
We evaluated PEREGRINE on a diverse set of 18 programs, including the Apache web server [6];

three desktop programs, such as PBZip2 [3], a parallel compression utility; implementations of 12
computation-intensive algorithms in the popular SPLASH2 and PARSEC benchmark suites; and
racey [29], a benchmark with numerous intentional races for evaluating deterministic execution
and replay systems. Our results show that PEREGRINE is both deterministic and efficient (executions
reusing schedules range from 68.7% faster to 46.6% slower than nondeterministic executions); it can
frequently reuse schedules for half of the programs (e.g., two schedules cover all possible inputs to
PBZip2 compression as long as the number of threads is the same); both its slicing and simplification
techniques are crucial for increasing schedule-reuse rates, and have reasonable overhead when run of-
fline; its recording overhead is relatively high, but can be reduced using existing techniques [13]; and
it requires no manual efforts except a few annotations for handling server programs and for improving
precision.

Our main contributions are the schedule-relaxation approach and PEREGRINE, an efficient DMT
system. Additional contributions include the ideas of hybrid schedules, determinism-preserving slic-
ing, and schedule-guided simplification. To our knowledge, our slicing technique is the first to com-
pute correct (non-trivial) preconditions for multithreaded programs. We believe these ideas apply
beyond PEREGRINE (§2.2).

The remainder of this paper is organized as follows. We first present a detailed overview of PERE-
GRINE (§2). We then describe its core ideas: hybrid schedules (§3), determinism-preserving slicing
(§4), and schedule-guided simplification (§5). We then present implementation issues (§6) and eval-
uation (§7). We finally discuss related work (§8) and conclude (§9).

2 PEREGRINE Overview
Figure 1 shows the architecture of PEREGRINE. It has four main components: the instrumen-
tor, recorder, analyzer, and replayer. The instrumentor is an LLVM [2] compiler plugin that

Online

Recorder

Program

Replayer

Program

Schedule Cache

<C2, S2>

<Cn, Sn>
...

OS OS

AnalyzerExecution
Traces

OnlineOffline

<C1, S1>
Instrumentor

Program
Source

LLVM

Figure 1: PEREGRINE Architecture: components and data structures are shaded (and in green).

Extracting
Synch.
& Race

Detection

Determinism-
preserving

Slicing

Schedule-
guided

Simplification

Alias
Analysis

Symbolic
Execution

Trace
Slice

Hybrid
Schedule

Preconditions

Simplified
Program

Execution
Trace

Figure 2: Analyses performed by the analyzer.

prepares a program for use with PEREGRINE. It instruments synchronization operations such as
pthread_mutex_lock(), which the recorder and replayer control at runtime. It marks the main()
arguments, data read from read(), fscanf(), and recv(), and values returned by random()-
variants as inputs. We chose LLVM [2] as our instrumentation framework for its compatibility with
GCC and easy-to-analyze intermediate representation (IR). However, our approach is general and
should apply beyond LLVM. For clarity, we will present our examples and algorithms at the source
level, instead of the LLVM IR level.

The recorder is similar to existing systems that deterministically record executions [13, 22, 33].
Our current recorder is implemented as an LLVM interpreter. When a program runs, the recorder
saves the LLVM instructions interpreted for each thread into a central log file. The recorder does
not record external input data, such as data read from a file, because our analysis does not need this
information. To schedule synchronization operations issued by different threads, the recorder can use
a variety of DMT algorithms [19].

The analyzer is a stand-alone program that computes (1) a hybrid schedule S and (2) the precondi-
tions C required for reusing the schedule on future inputs. It does so using a series of analyses, shown
in Figure 2. To compute a hybrid schedule, the analyzer first extracts a total order of synchronization
operations from the execution trace. It then detects data races according to this synchronization order,
and computes additional execution order constraints to deterministically resolve the detected races.
To compute the preconditions of a schedule, the analyzer first simplifies the program according to the
schedule, so that alias analysis can compute more precise results. It then slices the execution trace
into a trace slice with instructions required to avoid new races and reach all events in the schedule.
It then uses symbolic execution [31] to collect preconditions from the input-dependent branches in
the slice. The trace slice is typically much smaller than the execution trace, so that the analyzer
can compute relaxed preconditions, allowing frequent reuses of the schedule. The analyzer finally
stores 〈C, S〉 into the schedule cache, which conceptually holds a set of such tuples. (The actual
representation is tree-based for fast lookup [19].)

The replayer is a lightweight user-space scheduler for reusing schedules. When an input arrives, it
searches the schedule cache for a 〈C, S〉 tuple such that the input satisfies the preconditions C. If it
finds such a tuple, it simply runs the program enforcing schedule S efficiently and deterministically.
Otherwise, it forwards the input to the recorder.

In the remainder of this section, we first use an example to illustrate how PEREGRINE works,

int size; // total size of data
int nthread; // total number of threads
unsigned long result = 0;

int main(int argc, char *argv[]) {
L1: nthread = atoi(argv[1]);
L2: size = atoi(argv[2]);
L3: assert(nthread>0 && size>=nthread);
L4: for(int i=1; i<nthread; ++i)
L5: pthread create(. . ., worker, NULL);
L6: worker(NULL);

// NOTE: missing pthread join()
L7: if(atoi(argv[3]) == 1)
L8: result += . . .; // race with line L15
L9: printf("result = %lu\n", result); // race with line L15

. . .
}
void *worker(void *arg) {

L10: char *data = malloc(size/nthread);
L11: read(. . ., data, size/nthread);
L12: for(int i=0; i<size/nthread; ++i)
L13: data[i] = . . .; // compute using data
L14: pthread mutex lock(&mutex);
L15: result += . . .; // race with lines L8 and L9
L16: pthread mutex unlock(&mutex);

. . .
}

Figure 3: Running example. It uses the common divide-and-conquer idiom to split work among multiple threads.
It contains write-write (lines L8 and L15) and read-write (lines L9 and L15) races on result because of missing
pthread_join().

highlighting the operation of the analyzer (§2.1). We then describe PEREGRINE’s deployment and
usage scenarios (§2.2) and assumptions (§2.3).

2.1 An Example

Figure 3 shows our running example, a simple multithreaded program based on the real ones used in
our evaluation. It first parses the command line arguments into nthread (line L1) and size (L2),
then spawns nthread threads including the main thread (L4–L5) and processes size/nthread bytes
of data in each thread. The thread function worker() allocates a local buffer (L10), reads data from a
file (L11), processes the data (L12–L13), and sums the results into the shared variable result (L14–
L16). The main() function may further update result depending on argv[3] (L7–L8), and finally
prints out result (L9). This example has read-write and write-write races on result due to missing
pthread_join(). This error pattern matches some of the real errors in the evaluated programs such
as PBZip2.

Instrumentor. To run this program with PEREGRINE, we first compile it into LLVM IR and
instrument it with the instrumentor. The instrumentor replaces the synchronization operations (lines
L5, L14, and L16) with PEREGRINE-provided wrappers controlled by the recorder and replayer at
runtime. It also inserts code to mark the contents of argv[i] and the data from read() (line L11)
as input.

Recorder: execution trace. When we run the instrumented program with arguments “2 2 0” to
spawn two threads and process two bytes of data, suppose that the recorder records the execution trace
in Figure 4. (This figure also shows the hybrid schedule and preconditions PEREGRINE computes,
explained later in this subsection.) This trace is just one possible trace depending on the scheduling
algorithm the recorder uses.

Analyzer: hybrid schedule. Given the execution trace, the analyzer starts by computing a hybrid
schedule. It first extracts a sync-schedule consisting of the operations tagged with (1), (2), ..., (8)
in Figure 4. It then detects races in the trace according to this sync-schedule, and finds the race

���������	
��
��������������

��	
��
�����������������������

��������	 ��������

������������������������������

�����������
������ �
������

�	
��
����
!

��"����	
��
����������������

��	
��
����������������������"

�	
��
����
!

�	
��
�����

�	
��
�����

������	
��
���������
#$%�&�
�'�������(����������
#$%'&�
�)������������������
��***�
����
��������������+��	
��

������������	
��
��
�������
�������������������+��	
��

�"�������������,�
��
�-.���
��/���������
���������������
������������
��
�� �
��� ���
��'��
���������+��(�0��	
��

��'������������+��(�0��	
��

��)�������������
���%�&�����

����������������
�����������

�+��(�0��	
��
���������
�����'

�+��(�0��	
��
���������������'

���%�&����������������������)

�)�

���

�/�

���

�'�

���

�1�

�2�
�"�

����������������������������/

��
�� �
��� �����������������

�������	

���
������������

Figure 4: Execution trace, hybrid schedule, and trace slice. An execution trace of the program in Figure 3
on arguments “2 2 0” is shown. Each executed instruction is tagged with its static line number Li. Branch
instructions are also tagged with their outcome (true or false). Synchronization operations (green), including
thread entry and exit, are tagged with their relative positions in the synchronization order. They form a sync-
schedule whose order constraints are shown with solid arrows. L15 of thread t1 and L9 of thread t0 race on
result, and this race is deterministically resolved by enforcing an execution order constraint shown by the
dotted arrow. Together, these order constraints form a hybrid schedule. Instruction L7 of t0 (italic and blue) is
included in the trace slice to avoid new races, while L6, L4:false, L4:true, L3, L2, and L1 of t0 are included due
to intra-thread dependencies. Crossed-out (gray) instructions are elided from the slice.

on result between L15 of thread t1 and L9 of t0. It then computes an execution order constraint
to deterministically resolve this race, shown as the dotted arrow in Figure 4. The sync-schedule
and execution order constraint together form the hybrid schedule. Although this hybrid schedule
constrains the order of synchronization and the last two accesses to result, it can still be efficiently
reused because the core computation done by worker can still run in parallel.

Analyzer: simplified program. To improve analysis precision, the analyzer simplifies the pro-
gram according to the hybrid schedule. For instance, based on the number of pthread_create()
operations in the schedule, the analyzer clones function worker() to give each thread a copy, so that
the alias analysis separates different threads and determines that the two instances of L13 in t0 and

(atoi_argv1 = 2)∧(atoi_argv2 ≥ atoi_argv1)∧(atoi_argv3 �= 1)

Figure 5: Preconditions computed from the trace slice in Figure 4. Variable atoi_argvi represents the return of
atoi(arg[i]).

t1 access different malloc’ed locations and never race.

Analyzer: trace slice. The analyzer uses determinism-preserving slicing to reduce the execution
trace into a trace slice, so that it can compute relaxed preconditions. The final trace slice consists of
the instructions not crossed out in Figure 4. The analyzer computes this trace slice using inter-thread
and intra-thread steps. In the inter-thread step, it adds instructions required to avoid new races into
the slice. Specifically, for t0 it adds the false branch of L7, or L7:false, because if the true branch is
taken, a new race between L8 of t0 and L15 of t1 occurs. It ignores branches of line L12 because
alias analysis already determines that L13 of t0 and L13 of t1 never race.

In the intra-thread step, the analyzer adds instructions required to reach all instructions identified
in the inter-thread step (L7:false of t0 in this example) and all events in the hybrid schedule. It does
so by traversing the execution trace backwards and tracking control- and data-dependencies. In this
example, it removes L15, L13, L12, L11, and L10 because no instructions currently in the trace
slice depend on them. It adds L6 because without this call, the execution will not reach instructions
L14 and L16 of thread t0. It adds L4:false because if the true branch is taken, the execution of t0
will reach one more pthread_create(), instead of L14, pthread_mutex_lock(), of t0. It adds
L4:true because this branch is required to reach L5, the pthread_create() call. It similarly adds
L3, L2, and L1 because later instructions in the trace slice depend on them.

Analyzer: preconditions. After slicing, all branches from L12 are gone. The analyzer joins
the remaining branches together as the preconditions, using a version of KLEE [15] augmented with
thread support [19]. Specifically, the analyzer marks input data as symbolic, and then uses KLEE to
track how this symbolic data is propagated and observed by the instructions in the trace slice. (Our
PEREGRINE prototype runs symbolic execution within the recorder for simplicity; see §6.1.) If a
branch instruction inspects symbolic data and proceeds down the true branch, the analyzer adds the
precondition that the symbolic data makes the branch condition true. The analyzer uses symbolic
summaries [18] to succinctly generalize common library functions. For instance, it considers the
return of atoi(arg) symbolic if arg is symbolic.

Figure 5 shows the preconditions the analyzer computes from the trace slice in Figure 4. These
preconditions illustrate two key benefits of PEREGRINE. First, they are sufficient to ensure determin-
istic reuses of the schedule. Second, they only loosely constrain the data size (atoi_argv2) and do
not constrain the data contents (from read()), allowing frequent schedule-reuses. The reason is that
L10–L13 are all sliced out. One way to leverage this benefit is to populate a schedule cache with
small workloads to reduce analysis time, and then reuse the schedules on large workloads.

Replayer. Suppose we run this program again on different arguments “2 1000 8.” The replayer
checks the new arguments against the preconditions in Figure 5 using KLEE’s constraint checker,
and finds that these arguments satisfy the preconditions, despite the much larger data size. It can
therefore reuse the hybrid schedule in Figure 4 on this new input by enforcing the same order of
synchronization operations and accesses to result.

2.2 Deployment and Usage Scenarios

PEREGRINE runs in user-space and requires no special hardware, presenting few challenges for de-
ployment. To populate a schedule cache, a user can record execution traces from real workloads; or
a developer can run (small) representative workloads to pre-compute schedules before deployment.
PEREGRINE efficiently makes the behaviors of multithreaded programs more repeatable, even across
a range of inputs. We envision that users can use this repeatability in at least four ways.

Concurrency error avoidance. PEREGRINE can reuse well-tested schedules collected from the
testing lab or the field, reducing the risk of running into untested, buggy schedules. Currently PERE-
GRINE detects and avoids only data races. However, combined with the right error detectors, PERE-
GRINE can be easily extended to detect and avoid other types of concurrency errors.

Record and replay. Existing deterministic record-replay systems tend to incur high CPU and
storage overhead (e.g., 15X slowdown [13] and 11.7 GB/day storage [22]). A record-replay system

on top of PEREGRINE may drastically reduce this overhead: for inputs that hit the schedule cache,
we do not have to log any schedule.

Replication. To keep replicas of a multithreaded program consistent, a replication tool often
records the thread schedules at one replica and replays them at others. This technique is essentially
online replay [35]. It may thus incur high CPU, storage, and bandwidth overhead. With PEREGRINE,
replicas can maintain a consistent schedule cache. If an input hits the schedule cache, all replicas will
automatically select the same deterministic schedule, incurring zero bandwidth overhead.

Schedule-diversification. Replication can tolerate hardware or network failures, but the replicas
may still run into the same concurrency error because they all use the same schedules. Fortunately,
many programs are already “mostly-deterministic” as they either compute the same correct result or
encounter heisenbugs. We can thus run PEREGRINE to deterministically diversify the schedules at
different replicas (e.g., using different scheduling algorithms or schedule caches) to tolerate unknown
concurrency errors,

Applications of individual techniques. The individual ideas in PEREGRINE can also benefit
other research efforts. For instance, hybrid schedules can make the sync-schedule approach deter-
ministic without recording executions, by coupling it with a sound static race detector. Determinism-
preserving slicing can (1) compute input filters to block bad inputs [18] causing concurrency errors
and (2) randomize an input causing a concurrency error for use with anonymous bug reporting [16].
Schedule-guided simplification can transparently improve the precision of many existing static anal-
yses: simply run them on the simplified programs. This improved precision may be leveraged to
accurately detect errors or even verify the correctness of a program according to a set of sched-
ules. Indeed, from a verification perspective, our simplification technique helps verify that executions
reusing schedules have no new races.

2.3 Assumptions

At a design level, we anticipate the schedule-relaxation approach to work well for many pro-
grams/workloads as long as (1) they can benefit from repeatability, (2) their schedules can be fre-
quently reused, (3) their races are rare, and (4) their nondeterminism comes from the sources tracked
by PEREGRINE. This approach is certainly not designed for every multithreaded program. For in-
stance, like other DMT systems, PEREGRINE should not be used for parallel simulators that de-
sire nondeterminism for statistical confidence. For programs/workloads that rarely reuse schedules,
PEREGRINE may be unable to amortize the cost of recording and analyzing execution traces. For
programs full of races, enforcing hybrid schedules may be as slow as mem-schedules. PEREGRINE

addresses nondeterminism due to thread scheduling and data races. It mitigates input nondetermin-
ism by reusing schedules on different inputs. It currently considers command line arguments, data
read from a file or a socket, and the values returned by random()-variants as inputs. PEREGRINE

ensures that schedule-reuses are fully deterministic if a program contains only these nondetermin-
ism sources, an assumption met by typical programs. If a program is nondeterministic due to other
sources, such as functions that query physical time (e.g., gettimeofday()), pointer addresses re-
turned by malloc(), and nondeterminism in the kernel or external libraries, PEREGRINE relies on
developers to annotate these sources.

The underlying techniques that PEREGRINE leverages make assumptions as well. PEREGRINE

computes preconditions from a trace slice using the symbolic execution engine KLEE, which does
not handle floating point operations; though recent work [17] has made advances in symbolic exe-
cution of floating point programs. (Note that floating point operations not in trace slices are not an
issue.) We explicitly designed PEREGRINE’s slicing technique to compute sufficient preconditions,
but these preconditions may still include unnecessary ones, because computing the weakest (most
relaxed) preconditions in general is undecidable [4]. The alias analysis PEREGRINE uses makes a
few assumptions about the analyzed programs [8]; a “sounder” alias analysis [28] would remove
these assumptions. These analyses may all get expensive for large programs. For server programs,
PEREGRINE borrows the windowing idea from our previous work [19]; it is thus similarly limited
(§6.3).

At an implementation level, PEREGRINE uses the LLVM framework, thus requiring that a program
is in either source (so we can compile using LLVM) or LLVM IR format. PEREGRINE ignores inline
x86 assembly or calls to external functions it does not know. For soundness, developers have to lift

��������
�����������
	�

��������
�������������
	�

��������
�������������

�

��������
�����������

�

��������	

�������������

��������

�������������

�����������������

Figure 6: No PEREGRINE race with respect to this schedule.

x86 assembly to LLVM IR and provide summaries for external functions. (The external function
problem is alleviated because KLEE comes with a Libc implementation.) Currently PEREGRINE

works only with a single process, but previous work [10] has demonstrated how DMT systems can
be extended to multiple processes.

3 Hybrid Schedules
This section describes how PEREGRINE computes (§3.1) and enforces (§3.2) hybrid schedules.

3.1 Computing Hybrid Schedules

To compute a hybrid schedule, PEREGRINE first extracts a total order of synchronization op-
erations from an execution trace. Currently, it considers 28 pthread operations, such as
pthread_mutex_lock() and pthread_cond_wait(). It also considers the entry and exit of a
thread as synchronization operations so that it can order these events together with other synchro-
nization operations. These operations are sufficient to run the programs evaluated, and more can be
easily added. PEREGRINE uses a total, instead of a partial, order because previous work has shown
that a total order is already efficient [19, 42].

For determinism, PEREGRINE must detect races that occurred during the recorded execution and
compute execution order constraints to deterministically resolve the races. An off-the-shelf race
detector would flag too many races because it considers the original synchronization constraints of
the program, whereas PEREGRINE wants to detect races according to a sync-schedule [44, 45]. To
illustrate, consider Figure 6, a modified sync-schedule based on the one in Figure 4. Suppose the two
threads acquire different mutex variables, and thread t1 acquires and releases its mutex before t0.
Typical lockset-based [47] or happens-before-based [34] race detectors would flag a race on result,
but our race detector does not: the sync-schedule in the figure deterministically resolves the order of
accesses to result. Sync-schedules anecdotally reduced the number of possible races greatly, in one
extreme case, from more than a million to four [44].

Mechanically, PEREGRINE detects occurred races using a happens-before-based algorithm. It flags
two memory accesses as a race iff (1) they access the same memory location and at least one is
a store and (2) they are concurrent. To determine whether two accesses are concurrent, typical
happens-before-based detectors use vector clocks [40] to track logically when the accesses occur.
Since PEREGRINE already enforces a total synchronization order, it uses a simpler and more memory-
efficient logical clock representation.

Specifically, given two adjacent synchronization operations within one thread with relative posi-
tions m and n in the sync-schedule, PEREGRINE uses [m, n) as the logical clock of all instructions
executed by the thread between the two synchronization operations. For instance, in Figure 4, all
instructions run by thread t0 between the pthread_mutex_unlock() operation and the thread exit
have clock [4, 8). PEREGRINE considers two accesses with clocks [m0, n0) and [m1, n1) concur-
rent if the two clock ranges overlap, i.e., m0 < n1 ∧ m1 < n0. For instance, [4, 8) and [5, 6) are
concurrent.

To deterministically resolve a race, PEREGRINE enforces an execution order constraint inst1 →
inst2 where inst1 and inst2 are the two dynamic instruction instances involved in the race.
PEREGRINE identifies a dynamic instruction instance by 〈sid, tid, nbr〉 where sid refers to the

����

�����

����
����!

��������	 ��������

"�#��
��

Figure 7: Example subsumed execution order constraint.

unique ID of a static instruction in the executable file; tid refers to the internal thread ID main-
tained by PEREGRINE, which always starts from zero and increments deterministically upon each
pthread_create(); and nbr refers to the number of control-transfer instructions (branch, call,
and return) locally executed within the thread from the last synchronization to instruction insti.
For instance, PEREGRINE represents the execution order constraint in Figure 4 as 〈L15, t1, 0〉 →
〈L9, t0, 2〉, where the branch count 2 includes the return from worker and the branch L7 of thread
t0. We must distinguish different dynamic instances of a static instruction because some of these
dynamic instances may be involved in races while others are not. We do so by counting branches
because if an instruction is executed twice, there must be a control-transfer between the two in-
stances [22]. We count branches starting from the last synchronization operation because the partial
schedule preceding this operation is already made deterministic.

If one execution order constraint subsumes another, PEREGRINE does not add the subsumed one to
the schedule. Figure 7 shows a subsumed constraint example. Algorithmically, PEREGRINE consid-
ers an execution order constraint inst1 → inst4 subsumed by inst2 → inst3 if (1) inst1 and inst2
have the same logical clock (so they must be executed by the same thread) and inst2 occurs no earlier
than inst1 in the recorded execution trace; (2) inst3 and inst4 have the same logical clock and inst3
occurs no later than inst4 in the trace. This algorithm ignores transitive order constraints, so it may
miss some subsumed constraints. For instance, it does not consider inst1 → inst4 subsumed if we
replace constraint inst2 → inst3 with inst2 → instother and instother → inst3 where instother

is executed by a third thread.

3.2 Enforcing Hybrid Schedules

To enforce a synchronization order, PEREGRINE uses a technique called semaphore relay [19] that
orders synchronization operations with per-thread semaphores. At runtime, a synchronization wrap-
per (recall that PEREGRINE instruments synchronization operations for runtime control) waits on the
semaphore of the current thread. Once it is woken up, it proceeds with the actual synchronization
operation, then wakes up the next thread according to the synchronization order. For programs that
frequently do synchronization operations, the overhead of semaphore may be large because it may
cause a thread to block. Thus, PEREGRINE also provides a spin-wait version of semaphore relay
called flag relay. This technique turns out to be very fast for many programs evaluated (§7.2).

To enforce an execution order constraint, PEREGRINE uses program instrumentation, avoiding the
need for special hardware, such as the often imprecise hardware branch counters [22]. Specifically,
given a dynamic instruction instance 〈sid, tid, nbr〉, PEREGRINE instruments the static instruction
sid with a semaphore up() or down() operation. It also instruments the branch instructions counted
in nbr so that when each of these branch instructions runs, a per-thread branch counter is incremented.
PEREGRINE activates the inserted semaphore operation for thread tid only when the thread’s branch
counter matches nbr. To avoid interference and unnecessary contention when there are multiple order
constraints, PEREGRINE assigns a unique semaphore to each constraint.

PEREGRINE instruments a program by leveraging a fast instrumentation framework we previously
built [53]. It keeps two versions of each basic block: a normally compiled, fast version, and a slow
backup padded with calls to a slot() function before each instruction. As shown in Figure 8, the
slot() function interprets the actions (semaphore up/down) to be taken at each instruction. To
instrument an instruction, PEREGRINE simply updates the actions for that instruction. This instru-
mentation may be expensive, but fortunately, PEREGRINE leaves it off most of the time and turns it
on only at the last synchronization operation before an inserted semaphore operation.

void slot(int sid) { // sid is static instruction id
if(instruction sid is branch)

nbr[self()] ++; // increment per-thread branch counter
// get semaphore operations for current thread at instruction sid
my actions = actions[sid][self()];
for action in my actions

if nbr[self()] == action.nbr // check branch counter
actions.do(); // perform up() or down()

}

Figure 8: Instrumentation to enforce execution order constraints.

PEREGRINE turns on/off this instrumentation by switching a per-thread flag. Upon each function
entry, PEREGRINE inserts code to check this flag and determine whether to run the normal or slow
version of the basic blocks. PEREGRINE also inserts this check after each function returns in case the
callee has switched the per-thread flag. The overhead of these checks tend to be small because the
flags are rarely switched and hardware branch predication works well in this case [53].

One potential issue with branch-counting is that PEREGRINE has to “fix” the partial path from the
last synchronization to the dynamic instruction instance involved in a race so that the branch-counts
match between the recorded execution and all executions reusing the extracted hybrid schedule, po-
tentially reducing schedule-reuse rates. Fortunately, races are rare, so this issue has not reduced
PEREGRINE’s schedule-reuse rates based on our evaluation.

4 Determinism-Preserving Slicing
PEREGRINE uses determinism-preserving slicing to (1) compute sufficient preconditions to avoid new
races and ensure that a schedule is feasible, and (2) filter many unnecessary preconditions to increase
schedule-reuse rates. It does so using inter- and intra-thread steps. In the inter-thread step (§4.1), it
detects and avoids input-dependent races that do not occur in the execution trace, but may occur if we
reuse the schedule on a different input. In the intra-thread step (§4.1), the analyzer computes a path
slice per thread by including instructions that may affect the events in the schedule or the instructions
identified in the inter-thread step.

4.1 Inter-thread Step

In the inter-thread step, PEREGRINE detects and avoids input-dependent races with respect to a hybrid
schedule. An example input-dependent race is the one between lines L8 and L15 in Figure 3, which
occurs when atoi(argv[3]) returns 1 causing the true branch of L7 to be taken. Figure 9 shows
two more types of input-dependent races.

To detect such races, PEREGRINE starts by refining the logical clocks computed based on the
sync-schedule (§3.1) with execution order constraints because it will also enforce these constraints.
PEREGRINE then iterates through all pairs of concurrent regions, where a region is a set of instructions
with an identical logical clock. For each pair, it detects input-dependent races, and adds the racy
instructions to a list of slicing targets used by the intra-thread step.

Figure 10 shows the algorithm to detect input-dependent races for two concurrent regions. The
algorithm iterates through each pair of instructions respectively from the two regions, and handles
three types of input-dependent races. First, if neither instruction is a branch instruction, it queries
alias analysis to determine whether the instructions may race. If so, it adds both instructions to
slicing_targets and adds additional preconditions to ensure that the pointers dereferenced are
different, so that reusing the schedule on a different input does not cause the may-race to become a
real race. Figure 9(a) shows a race of this type.

Second, if exactly one of the instructions is a branch instruction, the algorithm checks whether the

// thread t1 // thread t2
a[input1]++; a[input2] = 0;

(a)

// thread t1 // thread t2
if(input1==0) if(input2==0)

a++; a = 0;
(b)

Figure 9: Input-dependent races. Race (a) occurs when input1 and input2 are the same; Race (b) occurs when
both true branches are taken.

// detect input-dependent races, and add involved dynamic instruction
// instances to slicing targets used by the inter-thread step. r1 and
// r2 are two concurrent regions
void detect input dependent races(r1, r2) {

// iterate through all instruction pairs in r1, r2
for (i1, i2) in (r1, r2) {

if (neither i1 nor i2 is a branch instruction) {
if(mayrace(i1, i2)) {

slicing targets.add(i1); // add i1 to slicing targets
slicing targets.add(i2); // add i2 to slicing targets

}
} else if (exactly one of i1, i2 is a branch instruction) {

br = branch instruction in i1, i2;
inst = the other instruction in i1, i2;
nottaken = the not taken branch of br in the execution trace;
if(mayrace br(br, nottaken, inst)) {

// add the taken branch of br to slicing targets
taken = the taken branch of br in trace;
slicing targets.add br(br, taken);

}
} else { // both i1, i2 are branches

nottaken1 = the not taken branch of i1 in trace;
nottaken2 = the not taken branch of i2 in trace;
if(mayrace br br(i1, nottaken1, i2, nottaken2) {

taken1 = the taken branch of i1 in trace;
slicing targets.add br(i1, taken1);

}
}

}
}
// return true if instructions i1 and i2 may race
bool mayrace(i1, i2) {

// query alias analysis
return mayalias(i1, i2) && ((i1 is a store) | | (i2 is a store));

}
// return true if the not-taken branch of br may race with inst
bool mayrace br(br, nottaken, inst) {

for i in (instructions in the nottaken branch of br) {
if(mayrace(i, inst))

return true;
}
return false;

}
// return true if the not-taken branch of br1 may race with the
// not-taken branch of br2
bool mayrace br br(br1, nottaken1, br2, nottaken2) {

for inst in (instructions in the nottaken2 branch of br2) {
if(mayrace br(br1, nottaken1, inst))

return true;
}
return false;

}
Figure 10: Input-dependent race detection algorithm.

instructions contained in the not-taken branch1 of this instruction may race with the other instruction.
It must check the not-taken branch because a new execution may well take the not-taken branch and
cause a race. To avoid such a race, PEREGRINE adds the taken branch into the trace slice so that
executions reusing the schedule always go down the taken branch. For instance, to avoid the input-
dependent race between lines L8 and L15 in Figure 3, PEREGRINE includes the false branch of L7 in
the trace slice.

1PEREGRINE computes instructions contained in a not-taken branch using an interprocedural post-
dominator analysis [4].

Third, if both instructions are branch instructions, the algorithm checks whether the not-taken
branches of the instructions may race, and if so, it adds either taken branch to slicing_targets.
For instance, to avoid the race in Figure 9(b), PEREGRINE includes one of the false branches in the
trace slice.

For efficiency, PEREGRINE avoids iterating through all pairs of instructions from two concurrent
regions because instructions in one region often repeatedly access the same memory locations. Thus,
PEREGRINE computes memory locations read or written by all instructions in one region, then checks
whether instructions in the other region also read or write these memory locations. These locations
are static operands, not dynamic addresses [14], so that PEREGRINE can aggressively cache them per
static function or branch. The complexity of our algorithm thus drops from O(MN) to O(M + N)
where M and N are the numbers of memory instructions in the two regions respectively.

4.2 Intra-thread Step
In the intra-thread step, PEREGRINE leverages a previous algorithm [18] to compute a per-thread path
slice, by including instructions required for the thread to reach the slicing_targets identified in
the inter-thread step and the events in the hybrid schedule. To do so, PEREGRINE first prepares a
per-thread ordered target list by splitting slicing_targets and events in the hybrid schedule and
sorting them based on their order in the execution trace.

PEREGRINE then traverses the execution trace backwards to compute path slices. When it sees a
target, it adds the target to the path slice of the corresponding thread, and starts to track the control-
and data-dependencies of this target.2 PEREGRINE adds a branch instruction to the path slice if
taking the opposite branch may cause the thread not to reach any instruction in the current (partial)
path slice; L3 in Figure 4 is added for this reason. It adds a non-branch instruction to the path slice
if the result of this instruction may be used by instructions in the current path slice; L1 in Figure 4 is
added for this reason.

A “load p” instruction may depend on an earlier “store q” if p and q may alias even though p
and q may not be the same in the execution trace, because an execution on a different input may cause
p and q to be the same. Thus, PEREGRINE queries alias analysis to compute such may-dependencies
and include the depended-upon instructions in the trace slice.

Our main modification to [18] is to slice toward multiple ordered targets. To illustrate this need,
consider branch L4:false of t0 in Figure 4. PEREGRINE must add this branch to thread t0’s slice,
because otherwise, the thread would reach another pthread_create(), a different synchronization
operation than the pthread_mutex_lock() operation in the schedule.

The choice of LLVM IR has considerably simplified our slicing implementation. First, LLVM IR
limits memory access to only two instructions, load and store, so that our algorithms need consider
only these instructions. Second, LLVM IR uses an unlimited number of virtual registers, so that our
analysis does not get poisoned by stack spilling instructions. Third, each virtual register is defined
exactly once, and multiple definitions to a variable are merged using a special instruction. This
representation (static single assignment) simplifies control- and data-dependency tracking. Lastly,
the type information LLVM IR preserves helps improving the precision of the alias analysis.

5 Schedule-Guided Simplification
In both the inter- and intra-thread steps of determinism-preserving slicing, PEREGRINE frequently
queries alias analysis. The inter-thread step needs alias information to determine whether two in-
structions may race (mayalias() in Figure 10). The intra-thread step needs alias information to
track potential dependencies.

We thus integrated bddbddb [51, 52], one of the best alias analyses, into PEREGRINE by creating
an LLVM frontend to collect program facts into the format bddbddb expects. However, our initial
evaluation showed that bddbddb sometimes yielded overly imprecise results, causing PEREGRINE

to prune few branches, reducing schedule-reuse rates (§7.3). The cause of the imprecision is that

2For readers familiar with precondition slicing, PEREGRINE does not always track data-dependencies
for the operands of a target. For instance, consider instruction L9 of thread t0 in Figure 4. PERE-
GRINE’s goal is to deterministically resolve the race involving L9 of t0, but it allows the value of
result to be different. Thus, PEREGRINE does not track dependencies for the value of result; L15
of t0 is elided from the slice for this reason.

standard alias analysis is purely static, and has to be conservative and assume all possible executions.
However, PEREGRINE requires alias results only for the executions that may reuse a schedule, thus
suffering from unnecessary imprecision of standard alias analysis.

To illustrate, consider the example in Figure 3. Since the number of threads is determined at
runtime, static analysis has to abstract this unknown number of dynamic thread instances, often coa-
lescing results for multiple threads into one. When PEREGRINE slices the trace in Figure 4, bddbddb
reports that the accesses to data (L13 instances) in different threads may alias. PEREGRINE thus has
to add them to the trace slice to avoid new races (§4.1). Since L13 depends on L12, L11, and L10,
PEREGRINE has to add them to the trace slice, too. Eventually, an imprecise alias result snowballs
into a slice as large as the trace itself. The preconditions from this slice constrains the data size to be
exactly 2, so PEREGRINE cannot reuse the hybrid schedule in Figure 4 on other data sizes.

To improve precision, PEREGRINE uses schedule-guided simplification to simplify a program ac-
cording to a schedule, so that alias analysis is less likely to get confused. Specifically, PEREGRINE

performs three main simplifications:
1. It clones the functions as needed. For instance, it gives each thread in a schedule a copy of the

thread function.
2. It unrolls a loop when it can determine the loop bound based on a schedule. For instance, from the

number of the pthread_create() operations in a schedule, it can determine how many times
the loop at lines L4–L5 in Figure 3 executes.

3. It removes branches that contradict the schedule. Loop unrolling can be viewed as a special case
of this simplification.

PEREGRINE does all three simplifications using one algorithm. From a high level, this algorithm
iterates through the events in a schedule. For each pair of adjacent events, it checks whether they are
“at the same level,” i.e., within the same function and loop iteration. If so, PEREGRINE does not clone
anything; otherwise, PEREGRINE clones the mismatched portion of instructions between the events.
(To find these instructions, PEREGRINE uses an interprocedural reachability analysis by traversing
the control flow graph of the program.) Once these simplifications are applied, PEREGRINE can
further simplify the program by running stock LLVM transformations such as constant folding. It
then feeds the simplified program to bddbddb, which can now distinguish different thread instances
(thread-sensitivity in programing language terms) and precisely reports that L13 of t0 and L13 of t1
are not aliases, enabling PEREGRINE to compute the small trace slice in Figure 4.

By simplifying a program, PEREGRINE can automatically improve the precision of not only alias
analysis, but also other analyses. We have implemented range analysis [46] to improve the precision
of alias analysis on programs that divide a global array into disjoint partitions, then process each
partition within a thread. The accesses to these disjoint partitions from different threads do not alias,
but bddbddb often collapses the elements of an array into one or two abstract locations, and reports
the accesses as aliases. Range analysis can solve this problem by tracking the lower and upper bounds
of the integers and pointers. With range analysis, PEREGRINE answers alias queries as follows. Given
two pointers (p+i) and (q+i), it first queries bddbddb whether p and q may alias. If so, it queries
the more expensive range analysis whether p+i and q+j may be equal. It considers the pointers
as aliases only when both queries are true. Note that our simplification technique is again key to
precision because standard range analysis would merge ranges of different threads into one.

While schedule-guided simplification improves precision, PEREGRINE has to run alias analysis for
each schedule, instead of once for the program. This analysis time is reasonable as PEREGRINE’s an-
alyzer runs offline. Nonetheless, the simplified programs PEREGRINE computes for different sched-
ules are largely the same, so a potential optimization is to incrementally analyze a program, which
we leave for future work.

6 Implementation Issues
6.1 Recording an Execution

To record an execution trace, PEREGRINE can use one of the existing deterministic record-replay sys-
tems [13, 22, 33] provided that PEREGRINE can extract an instruction trace. For simplicity, we have
built a crude recorder on top of the LLVM interpreter in KLEE. When an program calls the PERE-
GRINE-provided wrapper to pthread_create(..., func, args), the recorder spawns a thread

to run func(args) within an interpreter instance. These interpreter instances log each instruction
interpreted into a central file. For simplicity, PEREGRINE does symbolic execution during recording
because it already runs KLEE when recording an execution and pays the high overhead of interpreta-
tion. A faster recorder would enable PEREGRINE to symbolically execute only the trace slices instead
of the typically larger execution traces. Since deterministic record-replay is a well studied topic, we
have not focused our efforts on optimizing the recorder.

6.2 Handling Blocking System Calls

Blocking system calls are natural scheduling points, so PEREGRINE includes them in the sched-
ules [19]. It currently considers eight blocking system calls, such as sleep(), accept(), and
read(). For each blocking system call, the recorder logs when the call is issued and when the call is
returned. When PEREGRINE computes a schedule, it includes these blocking system call and return
operations. When reusing a schedule, PEREGRINE attempts to enforce the same call and return order.
This method works well for blocking system calls that access local state, such as sleep() or read()
on local file descriptors. However, other blocking system calls receive input from the external world,
which may or may not arrive each time a schedule is reused. Fortunately, programs that use these
operations tend to be server programs, and PEREGRINE handles this class of programs differently.

6.3 Handling Server Programs

Server programs present two challenges for PEREGRINE. First, they are more prone to timing non-
determinism than batch programs because their inputs (client requests) arrive nondeterministically.
Second, they often run continuously, making their schedules too specific to reuse.

PEREGRINE addresses these challenges with the windowing idea from our previous work [19].
The insight is that server programs tend to return to the same quiescent states. Thus, instead of pro-
cessing requests as they arrive, PEREGRINE breaks a continuous request stream down into windows
of requests. Within each window, it admits requests only at fixed points in the current schedule. If
no requests arrive at an admission point for a predefined timeout, PEREGRINE simply proceeds with
the partial window. While a window is running, PEREGRINE buffers newly arrived requests so that
they do not interfere with the running window. With windowing, PEREGRINE can record and reuse
schedules across windows.

PEREGRINE requires developers to annotate points at which request processing begins and ends.
It also assumes that after a server processes all current requests, it returns to the same quiescent
state. That is, the input from the requests does not propagate further after the requests are processed.
The same assumption applies to the data read from local files. For server programs not meeting
this assumption, developers can manually annotate the functions that observe the changed server
state, so that PEREGRINE can consider the return values of these functions as input. For instance,
since Apache caches client requests, we made it work with PEREGRINE by annotating the return of
cache_find() as input.

One limitation of applying our PEREGRINE prototype to server programs is that our cur-
rent implementation of schedule-guided simplification does not work well with thread pool-
ing. To give each thread a copy of the corresponding thread function, PEREGRINE identifies
pthread_create(...,func,...) operations in a program and clones function func. Server pro-
grams that use thread pooling tend to create worker threads to run generic thread functions during pro-
gram initialization, then repeatedly use the threads to process client requests. Cloning these generic
thread functions thus helps little with precision. One method to solve this problem is to clone the
relevant functions for processing client requests. We have not implemented this method because the
programs we evaluated include only one server program, Apache, on which slicing already performs
reasonably well without simplification (§7.3).

6.4 Skipping Wait Operations

When reusing a schedule, PEREGRINE enforces a total order of synchronization operations, which
subsumes the execution order enforced by the original synchronization operations. Thus, for
speed, PEREGRINE can actually skip the original synchronization operations as in [19]. PERE-
GRINE currently skips sleep-related operations such as sleep() and wait-related operations such as
pthread_barrier_wait(). These operations often unconditionally block the calling thread, in-

Program Race Description
Apache Reference count decrement and check against 0 are not atomic, resulting in a program

crash.
PBZip2 Variable fifo is used by one thread after being freed by another thread, resulting in a

program crash.
barnes Variable tracktime is read by one thread before assigned the correct value by another

thread.
fft initdonetime and finishtime are read by one thread before assigned the correct

values by another thread.
lu-non-contig Variable rf is read by one thread before assigned the correct value by another thread.
streamcluster PARSEC has a custom barrier implementation that synchronizes using a shared integer

flag is_arrival_phase.
racey Numerous intentional races caused by multiple threads reading and writing global arrays

sig and m without synchronization.

Table 1: Programs used for evaluating PEREGRINE’s determinism.

curring context switch overhead, yet this blocking is unnecessary as PEREGRINE already enforces a
correct execution order. Our evaluation shows that skipping blocking operations significantly speeds
up executions.

6.5 Manual Annotations

PEREGRINE works automatically for most of the programs we evaluated. However, as discussed in
§6.3, it requires manual annotations for server programs. In addition, if a program has nondetermin-
ism sources beyond what PEREGRINE automatically tracks, developers should annotate these sources
with input(void* addr, size_t nbyte) to mark nbyte of data starting from addr as input, so
that PEREGRINE can track this data.

Developers can also supply optional annotations to improve PEREGRINE’s precision in four ways.
First, for better alias results, developers can add custom memory allocators and memcpy-like functions
to a configuration file of PEREGRINE. Second, they can help PEREGRINE better track ranges by
adding assert() statements. For instance, a function in the FFT implementation we evaluated uses
bit-flip operations to transform an array index into another, yet both indexes have the same range.
The range analysis we implemented cannot precisely track these bit-flip operations, so it assumes
the resultant index is unbounded. Developers can fix this problem by annotating the range of the
index with an assertion “assert(index<bound).” Third, they can provide symbolic summaries to
help PEREGRINE compute more relaxed constraints. For instance, consider Figure 5 and a typical
implementation of atoi() that iterates through all characters in the input string and checks whether
each character is a digit. Without a summary of atoi(), PEREGRINE would symbolically execute the
body of atoi(). The preconditions it computes for argv[3] would be (argv3,0 �= 49)∧(argv3,1 <
48 ∨ argv3,1 > 57), where argv3,i is the ith byte of argv[3] and 48, 49, and 57 are ASCII
codes of ‘0’, ‘1’, and ‘9’. These preconditions thus unnecessarily constrain argv[3] to have a valid
length of one. Another example is string search. When a program calls strstr(), it often concerns
whether there exists a match, not specifically where the match occurs. Without a symbolic summary
of strstr(), the preconditions from strstr() would constrain the exact location where the match
occurs. Similarly, if a trace slice contains complex code such as a decryption function, users can
provide a summary of this function to mark the decrypted data as symbolic when the argument is
symbolic. Note that complex code not included in trace slices, such as the read() in Figure 3, is not
an issue.

7 Evaluation
Our PEREGRINE implementation consists of 29,582 lines of C++ code, including 1,338 lines for the
recorder; 2,277 lines for the replayer; and 25,967 lines for the analyzer. The analyzer further splits
into 7,845 lines for determinism-preserving slicing, 12,332 lines for schedule-guided simplification,
and 5,790 lines for our LLVM frontend to bddbddb.

We evaluated our PEREGRINE implementation on a diverse set of 18 programs, including Apache,
a popular web server; PBZip2, a parallel compression utility; aget, a parallel wget-like utility;
pfscan, a parallel grep-like utility; parallel implementations of 13 computation-intensive algo-
rithms, 10 in SPLASH2 and 3 in PARSEC; and racey, a benchmark specifically designed to exercise

Program Races Order Constraints
Apache 0 0
PBZip2 4 3
barnes 5 1
fft 10 4

lu-non-contig 10 7
streamcluster 0 0

racey 167974 9963

Table 2: Hybrid schedule statistics. Column Races shows the number of races detected according the correspond-
ing sync-schedule, and Column Order Constraints shows the number of execution order constraints PEREGRINE

adds to the final hybrid schedule. The latter can be smaller than the former because PEREGRINE prunes subsumed
execution order constraints (§3). PEREGRINE detected no races for Apache and streamcluster because the cor-
responding sync-schedules are sufficient to resolve the races deterministically; it thus adds no order constraints
for these programs.

deterministic execution and replay systems [29]. All SPLASH2 benchmarks were included except
one that we cannot compile, one that our current prototype cannot handle due to an implementation
bug, and one that does not run correctly in 64-bit environment. The chosen PARSEC benchmarks
(blackscholes, swaptions and streamcluster) include the ones that (1) we can compile, (2) use
threads, and (3) use no x86 inline assemblies. These programs were widely used in previous studies
(e.g., [12, 39, 54]).

Our evaluation machine was a 2.67 GHz dual-socket quad-core Intel Xeon machine with 24 GB
memory running Linux 2.6.35. When evaluating PEREGRINE on Apache and aget, we ran the eval-
uated program on this machine and the corresponding client or server on another to avoid contention
between the programs. These machines were connected via 1Gbps LAN. We compiled all programs
to machine code using llvm-gcc -O2 and the LLVM compiler llc. We used eight worker threads
for all experiments.

Unless otherwise specified, we used the following workloads in our experiments. For Apache,
we used ApacheBench [1] to repeatedly download a 100 KB webpage. For PBZip2, we com-
pressed a 10 MB randomly generated text file. For aget, we downloaded a 77 MB file
(Linux-3.0.1.tar.bz2). For pfscan, we scanned the keyword return from 100 randomly chosen
files in GCC. For SPLASH2 and PARSEC programs, we ran workloads which typically completed
in 1-100 ms.

In the remainder of this section, we focus on four questions:
§7.1: Is PEREGRINE deterministic if there are data races? Determinism is one of the strengths of

PEREGRINE over the sync-schedule approach.
§7.2: Is PEREGRINE fast? For typical multithreaded programs that have rare data races, PEREGRINE

should be roughly as fast as the sync-schedule approach. Efficiency is one of the strengths of
PEREGRINE over the mem-schedule approach.

§7.3: Is PEREGRINE stable? That is, can it frequently reuse schedules? The higher the reuse rate, the
more repeatable program behaviors become and the more PEREGRINE can amortize the cost of
computing hybrid schedules.

§7.4: Can PEREGRINE significantly reduce manual annotation overhead? Recall that our previous
work [19] required developers to manually annotate the input affecting schedules.

7.1 Determinism

We evaluated PEREGRINE’s determinism by checking whether PEREGRINE could deterministically
resolve races. Table 1 lists the seven racy programs used in this experiment. We selected the first
five because they were frequently used in previous studies [37, 39, 43, 44] and we could reproduce
their races on our evaluation machine. We selected the integer flag race in PARSEC to test whether
PEREGRINE can handle ad hoc synchronization [54]. We selected racey to stress test PEREGRINE:
each run of racey may have thousands of races, and if any of these races is resolved differently,
racey’s final output changes with high probability [29].

For each program with races, we recorded an execution trace and computed a hybrid schedule
from the trace. Table 2 shows for each program (1) the number of dynamic races detected according
to the sync-schedule and (2) the number of execution order constraints in the hybrid schedule. The

Program Deterministic?
sync-schedule hybrid schedule

Apache � �
PBZip2 � �
barnes � �
fft � �

lu-non-contig � �
streamcluster � �

racey � �

Table 3: Determinism of sync-schedules v.s. hybrid schedules.

reduction from the former to the latter shows how effectively PEREGRINE can prune redundant order
constraints (§3). In particular, PEREGRINE prunes 94% of the constraints for racey. For Apache
and streamcluster, their races are already resolved deterministically by their sync-schedules, so
PEREGRINE adds no execution order constraints.

To verify that the hybrid schedules PEREGRINE computed are deterministic, we first manually
inspected the order constraints PEREGRINE added for each program except racey (because it has too
many races for manual verification). Our inspection results show that these constraints are sufficient
to resolve the corresponding races. We then re-ran each program including racey 1000 times while
enforcing the hybrid schedule and injecting delays; and verified that each run reused the schedule
and computed equivalent results. (We determined result equivalence by checking either the output or
whether the program crashed.)

We also compared the determinism of PEREGRINE to our previous work [19] which only enforces
sync-schedules. Specifically, we reran the seven programs with races 50 times enforcing only the
sync-schedules and injecting delays, and checked whether the reuse runs computed equivalent re-
sults as the recorded run. As shown in Table 3, sync-schedules are unsurprisingly deterministic for
Apache and streamcluster, because no races are detected according to the corresponding sync-
schedules. However, they are not deterministic for the other five programs, illustrating one advantage
of PEREGRINE over the sync-schedule approach.

7.2 Efficiency

Replayer overhead. The most performance-critical component is the replayer because it operates
within a deployed program. Figure 11 shows the execution times when reusing hybrid schedules;
these times are normalized to the nondeterministic execution time. (The next paragraph compares
these times to those of sync-schedules.) For Apache, we show the throughput (TPUT) and re-
sponse time (RESP). All numbers reported were averaged over 500 runs. PEREGRINE has relatively
high overhead on water-nsquared (22.6%) and cholesky (46.6%) because these programs do a
large number of mutex operations within tight loops. Still, this overhead is lower than the reported
1.2X-6X overhead of a mem-schedule DMT system [9]. Moreover, PEREGRINE speeds up barnes,
lu-non-contig, radix, water-spatial, and ocean (by up to 68.7%) because it safely skips syn-
chronization and sleep operations (§6.4). For the other programs, PEREGRINE’s overhead or speedup
is within 15%. (Note that increasing the page or file sizes of the workload tends to reduce PERE-
GRINE’s relative overhead because the network and disk latencies dwarf PEREGRINE’s.)

For comparison, Figure 11 shows the normalized execution time when enforcing just the sync-
schedules. This overhead is comparable to our previous work [19]. For all programs except
water-nsquared, the overhead of enforcing hybrid schedules is only slightly larger (at most 5.4%)
than that of enforcing sync-schedules. This slight increase comes from two sources: (1) PEREGRINE

has to enforce execution order constraints to resolve races deterministically for PBZip2, barnes, fft,
and lu-non-contig; and (2) the instrumentation framework PEREGRINE uses also incurs overhead
(§3.2). The overhead for water-nsquared increases by 13.4% because it calls functions more fre-
quently than the other benchmarks, and our instrumentation framework inserts code at each function
entry and return (§3.2).

Figure 12 shows the speedup of flag relay (§3.2) and skipping blocking operations (§6.4). Besides
water-nsquared and cholesky, a second group of programs, including barnes, lu-non-contig,
radix, water-spatial, and ocean, also perform many synchronization operations, so flag relay
speeds up both groups of programs significantly. Moreover, among the synchronization operations

0

0.5

1.0

1.5

A

pa
ch

e-
TP

U
T

A

pa
ch

e-
R

E
S

P

 P

B
Zi

p2

 a
ge

t

 p

fs
ca

n

 b

ar
ne

s

 f
ft

 l

u-
co

nt
ig

 lu
-n

on
-c

on
tig

ra

di
x

 w
at

er
-s

pa
tia

l
w

at
er

-n
sq

ua
re

d

oc
ea

n

 f
m

m

ch

ol
es

ky
 b

la
ck

sc
ho

le
s

 s

w
ap

tio
ns

 s
tre

am
cl

us
te

rN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Sync-schedule
Hybrid schedule

Figure 11: Normalized execution time when reusing sync-schedules v.s. hybrid schedules. A time value greater
than 1 indicates a slowdown compared to a nondeterministic execution without PEREGRINE. We did not include
racey because it was not designed for performance benchmarking.

0

0.5

1.0

1.5

2.0

2.5

6.0

7.0

A

pa
ch

e-
TP

U
T

A

pa
ch

e-
R

E
S

P

 P

B
Zi

p2

 a
ge

t

 p

fs
ca

n

 b

ar
ne

s

 f
ft

 l

u-
co

nt
ig

 lu
-n

on
-c

on
tig

ra

di
x

 w
at

er
-s

pa
tia

l
w

at
er

-n
sq

ua
re

d

oc
ea

n

 f
m

m

ch

ol
es

ky
 b

la
ck

sc
ho

le
s

 s

w
ap

tio
ns

 s
tre

am
cl

us
te

rN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

6.11
Semaphore relay

Flag relay
Skip wait

Figure 12: Speedup of optimization techniques. Note that Y axis is broken.

Program Trace Det Sli Sim Sym
Apache 449 0.4 885.32 n/a 5.8
PBZip2 2,227 0.1 587.9 317.8 19.7
aget 233 0.4 78.8 60.1 13.2

pfscan 46,602 1.1 1,601.4 2,047.9 1,136.6
barnes 324 0.2 300.5 481.5 56.9
fft 39 0.0 2.1 3,661.7 0.4

lu-contig 44,799 19.9 1,271.5 124.9 1,126.7
lu-non-contig 41,302 21.2 1,999.8 14,243.8 1,201.0

radix 3,110 1.5 46.2 96.4 182.9
water-spatial 7,508 1.0 1,407.0 9,628.1 120.6
water-nsquared 12,381 1.7 962.3 1,841.4 215.7

ocean 55,247 26.4 2,259.3 5,902.8 2,062.1
fmm 13,772 8.3 260.5 1,107.5 151.3

cholesky 47,200 28.8 3,102.9 6,350.1 685.5
blackscholes 62,024 16.5 539.9 542.9 3,284.8
swaptions 1,366 0.0 23.2 87.3 1.2

streamcluster 259 0.1 1.4 1.9 4.9

Table 4: Analysis time. Trace shows the number of thousand LLVM instructions in the execution trace of the
evaluated programs, the main factor affecting the execution time of PEREGRINE’s various analysis techniques, in-
cluding race detection (Det), slicing (Sli), simplification and alias analysis (Sim), and symbolic execution (Sym).
The execution time is measured in seconds. The Apache trace is collected from one window of eight requests.
Apache uses thread pooling which our simplification technique currently does not handle well (§6.3); nonetheless,
slicing without simplification works reasonably well for Apache already (§7.3).

done by the second group of programs, many are pthread_barrier_wait() operations, so PERE-
GRINE further speeds up these programs by skipping these wait operations.

Analyzer and recorder overhead. Table 4 shows the execution time of PEREGRINE’s various
program analyses. The execution time largely depends on the size of the execution trace. All analy-
ses typically finish within a few hours. For PBZip2 and fft, we used small workloads (compressing
1 KB file and transforming a 256X256 matrix) to reduce analysis time and to illustrate that the
schedules learned from small workloads can be efficiently reused on large workloads. The simplifi-
cation and alias analysis time of fft is large compared to its slicing time because it performs many
multiplications on array indexes, slowing down our range analysis. Although lu-non-contig and
lu-contig implement the same scientific algorithm, their data access patterns are very different
(§7.3), causing PEREGRINE to spend more time analyzing lu-non-contig than lu-contig.

As discussed in §6.1, PEREGRINE currently runs KLEE to record executions. Column Sym is
also the overhead of PEREGRINE’s recorder. This crude, unoptimized recorder can incur large slow-
down compared to the normal execution of a program. However, this slowdown can be reduced to
around 10X using existing record-replay techniques [13, 33]. Indeed, we have experimented with a

0

10

20

30

40

ag

et

 ff

t

lu
-n

on
-c

on
tig

 r
ad

ix

w
at

er
-s

pa
tia

l

 o
ce

an

 fm

m

 s

w
ap

tio
ns

S
lo

w
do

w
n

(T
im

es
)

Figure 13: Overhead of recording load and store instructions.

0
10
20
30
40
50
60
70
80

 A
pa

ch
e

 P
B

Zi
p2

 a

ge
t

 p
fs

ca
n

 b
ar

ne
s

 f

ft

 l
u-

co
nt

ig
 lu

-n
on

-c
on

tig

ra
di

x
 w

at
er

-s
pa

tia
l

w
at

er
-n

sq
ua

re
d

oc

ea
n

 f

m
m

ch
ol

es
ky

 b
la

ck
sc

ho
le

s

 s
w

ap
tio

ns
 s

tre
am

cl
us

te
r

S
lic

e
S

iz
e/

Tr
ac

e
S

iz
e

(%
)

n/
a

0.
07

0.
00

05

0.
00

03

0.
01

0.

33

0.
09

w/o simplification
w/ simplification

Figure 14: Slicing ratio after applying determinism-preserving slicing alone (§4) and after further applying
schedule-guided simplification (§5).

preliminary version of a new recorder that records an execution by instrumenting load and store
instructions and saving them into per-thread logs [13]. Figure 13 shows that this new recorder incurs
roughly 2-35X slowdown on eight programs, comparable to existing record-replay systems. Due to
time constraints, we have not integrated this new recorder with PEREGRINE.

7.3 Stability

Stability measures how frequently PEREGRINE can reuse schedules. The more frequently PERE-
GRINE reuses schedules, the more efficient it is, and the more repeatable a program running on top
of PEREGRINE becomes. While PEREGRINE achieves determinism and efficiency through hybrid
schedules, it may have to pay the cost of slightly reduced reuse rates compared to a manual ap-
proach [19].

A key factor determining PEREGRINE’s schedule-reuse rates is how effectively it can slice out irrel-
evant instructions from the execution traces. Figure 14 shows the ratio of the slice size over the trace
size for PEREGRINE’s determinism-preserving slicing technique, with and without schedule-guided
simplification. The slicing technique alone reduces the trace size by over 50% for all programs ex-
cept PBZip2, aget, pfscan, fft, lu-non-contig, ocean, and swaptions. The slicing technique
combined with scheduled-guide simplification vastly reduces the trace size for PBZip2, aget, fft,
lu-contig, and swaptions.

Recall that PEREGRINE computes the preconditions of a schedule from the input-dependent
branches in a trace slice. The fewer branches included in the slice, the more general the precon-
ditions PEREGRINE computes tend to be. We further measured the number of such branches in
the trace slices. Table 5 shows the results, together with a upper bound determined by the total
number of input-dependent branches in the execution trace, and a lower bound determined by only
including branches required to reach the recorded synchronization operations. This lower bound may
not be tight as we ignored data dependency. For barnes, fft, blackscholes, swaptions, and
streamcluster, slicing with simplification (Column “Slicing+Sim”) achieves the best possible re-
duction. For PBZip2, aget, pfscan, and lu-contig, the number of input-dependent branches in
the trace slice is close to the lower bound. In the remaining programs, Apache, fmm, and cholesky

Program UB PEREGRINE LBSlicing Slicing+Sim
Apache 4,522 624 n/a 56
PBZip2 913 865 101 94
aget 20,826 18,859 9,514 9,491

pfscan 1,062,047 992,524 992,520 992,501
barnes 92 52 52 52
fft 2,266 1,568 17 17

lu-contig 2,823,379 2,337,431 131 128
lu-non-contig 2,962,621 2,877,877 2,876,364 128

radix 175,679 98,750 89,732 75
water-spatial 98,054 77,567 76,763 233
water-nsquared 89,348 76,786 76,242 1,843

ocean 2,605,185 2,364,538 2,361,256 400
fmm 299,816 57,670 56,532 1,642

cholesky 7,459 1,627 1,627 1,233
blackscholes 421,909 409,618 10 10
swaptions 35,584 35,005 21 21

streamcluster 20,851 75 42 42

Table 5: Effectiveness of program analysis techniques. UB shows the total number of input-dependent branches
in the corresponding execution trace, an upper bound on the number included in the trace slice. Slicing and
Slicing+Sim show the number of input-dependent branches in the slice after applying determinism-preserving
slicing alone (§4) and after further applying schedule-guided simplification (§5). LB shows a lower bound on
the number of input-dependent branches, determined by only including branches required to reach the recorded
synchronization operations. This lower bound may not be tight as we ignored data dependency when computing
it.

also enjoy large reduction, while the other five programs do not. This table also shows that schedule-
guided simplification is key to reduce the number of input-dependent branches for PBZip2, fft,
lu-contig, blackscholes, and swaptions, and to reach the lower bound for blackscholes,
swaptions, and streamcluster.

We manually examined the preconditions PEREGRINE computed from the input-dependent
branches for these programs. We category these programs below.

Best case: PBZip2, fft, lu-contig, blackscholes, swaptions, and streamcluster. PERE-
GRINE computes the weakest (i.e., most relaxed) preconditions for these programs. The preconditions
often allow PEREGRINE to reuse one or two schedules for each number of threads, putting no or few
constraints on the data processed. Schedule-guided simplification is crucial for these programs; with-
out simplification, the preconditions would fix the data size and contents.

Slicing limitation: Apache and aget. The preconditions PEREGRINE computes for Apache fix
the URL length; they also constrain the page size to be within an 8 KB-aligned range if the page is not
cached. The preconditions PEREGRINE computes for aget fix the positions of “/” in the URL and
narrow down the file size to be within an 8 KB-aligned range. These preconditions thus unnecessarily
reduce the schedule-reuse rates. Nonetheless, they can still match many different inputs, because they
do not constrain the page or file contents.

Symbolic execution limitation: barnes. barnes reads in two floating point numbers from a
file, and their values affect schedules. Since PEREGRINE cannot symbolically execute floating point
instructions, it currently does not collect preconditions from them.

Alias limitation: lu-non-contig, radix, water-spatial, water-nsquared, ocean, and
cholesky. Even with simplification, PEREGRINE’s alias analysis sometimes reports may-alias for
pointers accessed in different threads, causing PEREGRINE to include more instructions than nec-
essary in the slices and compute preconditions that fix the input data. For instance, each thread in
lu-non-contig accesses disjoint regions in a global array, but the accesses from one thread are not
continuous, confusing PEREGRINE’s alias analysis. (In contrast, each thread in lu-contig accesses
a contiguous array partition.)

Programs that rarely reuse schedules: pfscan and fmm. For instance, pfscan searches a key-
word in a set of files using multiple threads, and for each match, it grabs a lock to increment a counter.
A schedule computed on one set of files is unlikely to suit another.

Program LOC PEREGRINE TERN
Apache 464 K 24 6
PBZip2 7,371 1 3
aget 834 0 n/a

pfscan 776 0 n/a
barnes 1,954 0 9
fft 1,403 1 4

lu-contig 991 0 n/a
lu-non-contig 1,265 0 3

radix 661 0 4
water-spatial 1,573 0 9
water-nsquared 1,188 0 10

ocean 6,494 0 5
fmm 3,208 0 9

cholesky 3,683 0 4
blackscholes 1,275 0 n/a
swaptions 1,110 0 n/a

streamcluster 1,963 0 n/a
racey 124 0 n/a

Table 6: Source annotation requirements of PEREGRINE v.s. TERN. PEREGRINE represents the number of
annotations added for PEREGRINE, and TERN counts annotations added for TERN. Programs not included in
the TERN evaluation are labeled n/a. LOC of PBZip2 also includes the lines of code of the compression library
libbz2.

7.4 Ease of Use

Table 6 shows the annotations (§6.5) we added to make the evaluated programs work with PERE-
GRINE. For most programs, PEREGRINE works out of the box. Apache uses its own library functions
for common tasks such as memory allocation, so we annotated 21 such functions. We added two
annotations to mark the boundaries of client request processing and one to expose the hidden state in
Apache (§6.3). PBZip2 decompression uses a custom search function (memstr) to scan through the
input file for block boundaries. We added one annotation for this function to relax the preconditions
PEREGRINE computes. (PEREGRINE works automatically with PBZip2 compression.) We added
one assertion to annotate the range of a variable in fft (§6.5).

For comparison, Table 6 also shows the annotation overhead of our previous DMT system
TERN [19]. For all programs except Apache, PEREGRINE has fewer number of annotations than
TERN. Although the number of annotations that TERN has is also small, adding these annotations
may require developers to manually reconstruct the control- and data-dependencies between instruc-
tions.

In order to make the evaluated programs work with PEREGRINE, we had to fix several bugs in them.
For aget, we fixed an off-by-one write in revstr() which prevented us from tracking constraints
for the problematic write, and a missing check on the return value of pwrite() which prevented us
from computing precise ranges. We fixed similar missing checks in swaptions, streamcluster,
and radix. We did not count these modifications in Table 6 because they are real bug fixes. (This
interesting side-effect illustrates the potential of PEREGRINE as an error detection tool: the precision
gained from simplification enables PEREGRINE to detect real races in well-studied programs.)

8 Related Work
Deterministic execution. By reusing schedules, PEREGRINE mitigates input nondeterminism
and makes program behaviors repeatable across inputs. This method is based on the schedule-
memoization idea in our previous work TERN [19], but PEREGRINE largely eliminates manual an-
notations, and provides stronger determinism guarantees than TERN. To our knowledge, no other
DMT systems mitigate input nondeterminism; some actually aggravate it, potentially creating “input-
heisenbugs.”

PEREGRINE and other DMT systems can be complementary: PEREGRINE can use an existing
DMT algorithm when it runs a program on a new input so that it may compute the same schedules
at different sites; existing DMT systems can speed up their pathological cases using the schedule-
relaxation idea.

Determinator [7] advocates a new, radical programming model that converts all races, including
races on memory and other shared resources, into exceptions, to achieve pervasive determinism. This
programming model is not designed to be backward-compatible. dOS [10] provides similar per-
vasive determinism with backward compatibility, using a DMT algorithm first proposed in [20] to
enforce mem-schedules. While PEREGRINE currently focuses on multithreaded programs, the ideas
in PEREGRINE can be applied to other shared resources to provide pervasive determinism. PERE-
GRINE’s hybrid schedule idea may help reduce dOS’s overhead. Grace [12] makes multithreaded
programs with fork-join parallelism behave like sequential programs. It detects memory access con-
flicts efficiently using hardware page protection. Unlike Grace, PEREGRINE aims to make general
multithreaded programs, not just fork-join programs, repeatable.

Concurrent to our work, DTHREADS [36] is another efficient DMT system. It tracks memory
modifications using hardware page protection and provides a protocol to deterministically commit
these modifications. In contrast to DTHREADS, PEREGRINE is software-only and does not rely
on page protection hardware which may be expensive and suffer from false sharing; PEREGRINE

records and reuses schedules, thus it can handle programs with ad hoc synchronizations [54] and
make program behaviors stable.

Program analysis. Program slicing [49] is a general technique to prune irrelevant statements from
a program or trace. Recently, systems researchers have leveraged or invented slicing techniques to
block malicious input [18], synthesize executions for better error diagnosis [57], infer source code
paths from log messages for postmortem analysis [56], and identify critical inter-thread reads that
may lead to concurrency errors [59]. Our determinism-preserving slicing technique produces a cor-
rect trace slice for multithreaded programs and supports multiple ordered targets. It thus has the
potential to benefit existing systems that use slicing.

Our schedule-guided simplification technique shares similarity with SherLog [56] such as the re-
moval of branches contradicting a schedule. However, SherLog starts from log messages and tries
to compute an execution trace, whereas PEREGRINE starts with a schedule and an execution trace
and computes a simplified yet runnable program. PEREGRINE can thus transparently improve the
precision of many existing analyses: simply run them on the simplified program.

Replay and re-execution. Deterministic replay [5, 21, 22, 26, 27, 32, 33, 41, 44, 48, 50] aims to
replay the exact recorded executions, whereas PEREGRINE “replays” schedules on different inputs.
Some recent deterministic replay systems include Scribe, which tracks page ownership to enforce
deterministic memory access [33]; Capo, which defines a novel software-hardware interface and a set
of abstractions for efficient replay [41]; PRES and ODR, which systematically search for a complete
execution based on a partial one [5, 44]; SMP-ReVirt, which uses page protection for recording
the order of conflicting memory accesses [22]; and Respec [35], which uses online replay to keep
multiple replicas of a multithreaded program in sync. Several systems [35, 44] share the same insight
as PEREGRINE: although many programs have races, these races tend to occur infrequently.

PEREGRINE can help these systems reduce CPU, disk, or network bandwidth overhead, because
for inputs that hit PEREGRINE’s schedule cache, these systems do not have to record a schedule.

Retro [30] shares some similarity with PEREGRINE because it also supports “mutated” replay.
When repairing a compromised system, Retro can replay legal actions while removing malicious
ones using a novel dependency graph and predicates to detect when changes to an object need not
be propagated further. PEREGRINE’s determinism-preserving slicing algorithm may be used to auto-
matically compute these predicates, so that Retro does not have to rely on programmer annotations.

Concurrency errors. The complexity in developing multithreaded programs has led to many con-
currency errors [39]. Much work exists on concurrency error detection, diagnosis, and correction
(e.g., [23–25, 38, 43, 55, 58, 59]). PEREGRINE aims to make the executions of multithreaded pro-
grams repeatable, and is complementary to existing work on concurrency errors. PEREGRINE may
use existing work to detect and fix the errors in the schedules it computes. Even for programs free of
concurrency errors, PEREGRINE still provides value by making their behaviors repeatable.

9 Conclusion and Future Work
PEREGRINE is one of the first efficient and fully deterministic multithreading systems. Leveraging
the insight that races are rare, PEREGRINE combines sync-schedules and mem-schedules into hy-

brid schedules, getting the benefits of both. PEREGRINE reuses schedules across different inputs,
amortizing the cost of computing hybrid schedules and making program behaviors repeatable across
inputs. It further improves efficiency using two new techniques: determinism-preserving slicing to
generalize a schedule to more inputs while preserving determinism, and schedule-guided simplifica-
tion to precisely analyze a program according to a dynamic schedule. Our evaluation on a diverse
set of programs shows that PEREGRINE is both deterministic and efficient, and can frequently reuse
schedules for half of the evaluated programs.

PEREGRINE’s system and ideas have broad applications. Our immediate future work is to build
applications on top of PEREGRINE, such as fast deterministic replay, replication, and diversification
systems. We will also extend our approach to system-wide deterministic execution by computing
inter-process communication schedules and preconditions. PEREGRINE enables precise program
analysis according to a set of inputs and dynamic schedules. We will leverage this capability to
accurately detect concurrency errors and verify concurrency-error-freedom for real programs.

Acknowledgement
We thank Cristian Cadar, Bryan Ford (our shepherd), Ying Xu, and the anonymous reviewers for
their many helpful comments, which have substantially improved the content and presentation of this
paper. We thank Dawson Engler, Yang Tang, and Gang Hu for proofreading. This work was sup-
ported in part by AFRL FA8650-10-C-7024 and FA8750-10-2-0253, and NSF grants CNS-1117805,
CNS-1054906 (CAREER), CNS-1012633, and CNS-0905246.

References
[1] ab - Apache HTTP server benchmarking tool. http://httpd.apache.org/docs/2.2/

programs/ab.html.

[2] The LLVM Compiler Framework. http://llvm.org.

[3] Parallel BZIP2 (PBZIP2). http://compression.ca/pbzip2/.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley, 2006.

[5] G. Altekar and I. Stoica. ODR: output-deterministic replay for multicore debugging. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP ’09), pages 193–206, Oct. 2009.

[6] Apache Web Server. http://www.apache.org.

[7] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced deterministic parallelism. In Pro-
ceedings of the Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10), Oct. 2010.

[8] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving software security with a C pointer analysis.
In Proceedings of the 27th International Conference on Software Engineering (ICSE ’05), pages 332–341,
May 2005.

[9] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet: a compiler and runtime system
for deterministic multithreaded execution. In Fifteenth International Conference on Architecture Support
for Programming Languages and Operating Systems (ASPLOS ’10), pages 53–64, Mar. 2010.

[10] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic process groups in dOS. In Proceedings of the
Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10), pages 1–16, Oct. 2010.

[11] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The deterministic execution hammer: how well does it actually
pound nails? In The 2nd Workshop on Determinism and Correctness in Parallel Programming (WODET
’11), Mar. 2011.

[12] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. Novark. Grace: safe and efficient concurrent programming.
In Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’09),
pages 81–96, Oct. 2009.

[13] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinić, D. Mihocka, and J. Chau. Frame-
work for instruction-level tracing and analysis of program executions. In Proceedings of the 2nd Interna-
tional Conference on Virtual Execution Environments (VEE ’06), pages 154–163, June 2006.

[14] P. Boonstoppel, C. Cadar, and D. Engler. RWset: attacking path explosion in constraint-based test gener-
ation. In Proceedings of the Theory and practice of software, 14th international conference on Tools and
algorithms for the construction and analysis of systems, pages 351–366, Mar. 2008.

[15] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the Eighth Symposium on Operating Systems Design and

Implementation (OSDI ’08), pages 209–224, Dec. 2008.

[16] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better privacy. In Thirteenth International
Conference on Architecture Support for Programming Languages and Operating Systems (ASPLOS ’08),
pages 319–328, Mar. 2008.

[17] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic crosschecking of floating-point and SIMD code. In
Proceedings of the 6th ACM European Conference on Computer Systems (EUROSYS ’11), pages 315–328,
Apr. 2011.

[18] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer: securing software by blocking bad
input. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP ’07), pages
117–130, Oct. 2007.

[19] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic multithreading through schedule memoization.
In Proceedings of the Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10), Oct.
2010.

[20] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic shared memory multiprocessing. In
Fourteenth International Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS ’09), pages 85–96, Mar. 2009.

[21] G. Dunlap, S. T. King, S. Cinar, M. Basrat, and P. Chen. ReVirt: enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI ’02), pages 211–224, Dec. 2002.

[22] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution replay of multiprocessor
virtual machines. In Proceedings of the 4th International Conference on Virtual Execution Environments
(VEE ’08), pages 121–130, Mar. 2008.

[23] D. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions and deadlocks. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages 237–252, Oct.
2003.

[24] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concurrency bugs in large multi-threaded applications.
In Proceedings of the 6th ACM European Conference on Computer Systems (EUROSYS ’11), pages 215–
228, Apr. 2011.

[25] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2ndStrike: towards manifesting hidden concurrency
typestate bugs. In Sixteenth International Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS ’11), pages 239–250, Mar. 2011.

[26] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday: global comprehension for distributed
replay. In Proceedings of the Fourth Symposium on Networked Systems Design and Implementation (NSDI
’07), Apr. 2007.

[27] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and Z. Zhang. R2: An application-level
kernel for record and replay. In Proceedings of the Eighth Symposium on Operating Systems Design and
Implementation (OSDI ’08), pages 193–208, Dec. 2008.

[28] B. Hackett and A. Aiken. How is aliasing used in systems software? In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14), pages
69–80, Nov. 2006.

[29] M. D. Hill and M. Xu. Racey: A stress test for deterministic execution. http://www.cs.wisc.edu/
~markhill/racey.html.

[30] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. Intrusion recovery using selective re-execution. In
Proceedings of the Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10), pages
1–9, Oct. 2010.

[31] J. C. King. A new approach to program testing. In Proceedings of the international conference on Reliable
software, pages 228–233, 1975.

[32] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay of distributed Java applications. In Pro-
ceedings of the 14th International Symposium on Parallel and Distributed Processing (IPDPS ’00), pages
219–228, May 2000.

[33] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight application execution replay on commodity
multiprocessor operating systems. In Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’10), pages 155–166, June 2010.

[34] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm. ACM, 21(7):558–565,
1978.

[35] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and J. Flinn. Respec: efficient online
multiprocessor replayvia speculation and external determinism. In Fifteenth International Conference on
Architecture Support for Programming Languages and Operating Systems (ASPLOS ’10), pages 77–90,
Mar. 2010.

[36] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: efficient deterministic multithreading. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP ’11), Oct. 2011.

[37] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity violations via access interleaving invariants.
In Twelfth International Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS ’06), pages 37–48, Oct. 2006.

[38] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou. Muvi: automatically inferring multi-
variable access correlations and detecting related semantic and concurrency bugs. SIGOPS Oper. Syst. Rev.,
41(6):103–116, 2007.

[39] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive study on real world concur-
rency bug characteristics. In Thirteenth International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’08), pages 329–339, Mar. 2008.

[40] F. Mattern. Virtual time and global states of distributed systems. In Proceedings of the International Work-
shop on Parallel and Distributed Algorithms, pages 215–226. 1988.

[41] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: a software-hardware interface for practical
deterministic multiprocessor replay. In Fourteenth International Conference on Architecture Support for
Programming Languages and Operating Systems (ASPLOS ’09), pages 73–84, Mar. 2009.

[42] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient deterministic multithreading in software. In
Fourteenth International Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS ’09), pages 97–108, Mar. 2009.

[43] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation bugs from their hiding places. In
Fourteenth International Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS ’09), pages 25–36, Mar. 2009.

[44] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu. PRES: probabilistic replay with
execution sketching on multiprocessors. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pages 177–192, Oct. 2009.

[45] M. Ronsse and K. De Bosschere. Recplay: a fully integrated practical record/replay system. ACM Trans.
Comput. Syst., 17(2):133–152, 1999.

[46] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices, and accessed memory
regions. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation (PLDI ’00), pages 182–195, June 2000.

[47] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A dynamic data race detector
for multithreaded programming. ACM Trans. Comput. Syst., pages 391–411, Nov. 1997.

[48] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: A lightweight extension for roll-
back and deterministic replay for software debugging. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’04), pages 29–44, June 2004.

[49] F. Tip. A survey of program slicing techniques. Journal of Programming Languages 3(3), pages 121–189,
1995.

[50] VMWare Virtual Lab Automation. http://www.vmware.com/solutions/vla/.

[51] J. Whaley. bddbddb Project. http://bddbddb.sourceforge.net. URL http://bddbddb.sourceforge.
net.

[52] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary decision
diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation (PLDI ’04), pages 131–144, June 2004.

[53] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications with execution filters. In Proceedings of the
Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10), Oct. 2010.

[54] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc synchronization considered harmful. In Proceed-
ings of the Ninth Symposium on Operating Systems Design and Implementation (OSDI ’10), Oct. 2010.

[55] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detection of data race conditions via adaptive
tracking. In Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages
221–234, Oct. 2005.

[56] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy. SherLog: error diagnosis by connecting
clues from run-time logs. In Fifteenth International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’10), pages 143–154, Mar. 2010.

[57] C. Zamfir and G. Candea. Execution synthesis: a technique for automated software debugging. In Pro-
ceedings of the 5th ACM European Conference on Computer Systems (EUROSYS ’10), pages 321–334, Apr.
2010.

[58] W. Zhang, C. Sun, and S. Lu. ConMem: detecting severe concurrency bugs through an effect-oriented
approach. In Fifteenth International Conference on Architecture Support for Programming Languages and
Operating Systems (ASPLOS ’10), pages 179–192, Mar. 2010.

[59] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and T. Reps. ConSeq: detecting concur-
rency bugs through sequential errors. In Sixteenth International Conference on Architecture Support for
Programming Languages and Operating Systems (ASPLOS ’11), pages 251–264, Mar. 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

