Modularity Meets Batching: Towards an Experimental Platform for High-speed Software Routers

Joongi Kim¹, Seonggu Huh¹, Sangjin Han², Keon Jang¹, KyoungSoo Park³, and Sue Moon¹

¹Department of Computer Science, KAIST, {joongi, seonggu, keon}@an.kaist.ac.kr, sbmoon@kaist.edu
²Computer Science Division, U.C.Berkeley, sangjin@eecs.berkeley.edu
³Department of Electrical Engineering, KAIST, kyoungsoo@ee.kaist.ac.kr

Motivation

Hardware aspects:

→ Next-generation hardware technology is proceeding to massively parallel processors.
 ▶ Example: Tilera’s many core processors, AMD’s APUs, and AMD/NVIDIA’s GPGPUs
→ High-performance software routers can benefit from GPUs, which parallelizes batch processing.
 ▶ Our prior work PacketShader showed GPUs can boost common packet processing operations.

Software aspects:

→ Batch processing is the key for performance.
 ▶ PacketShader showed I/O batching is essential.
→ Modularity is the key for programmability.
 ▶ Modern routers tends to add more complex functions which are difficult to integrate with existing systems.

Technical Challenges

→ Per-packet path diversity within a pack of packets
→ Copy overheads between the host & GPU memory
→ Load balancing for overloaded cases

Our Strategic Bullets

→ Efficient pack split/merge mechanisms
 ▶ Use of zero-copy pack data structures
→ Abstraction of memory resources
 ▶ Table buffers & packet buffers for sharing data between the host/GPU memory, differentiated by updating mechanisms
→ Load balancing techniques
 ▶ Opportunistic off-loading of computations to decrease latency of batching (small data → CPU, large data → GPU)
 ▶ Dynamic module-to-processor assignment depending on traffic patterns and processor usage

Accommodating both batching & modularity is not trivial.