Elastic Replication for Scalable Consistent Services
Hussam Abu-Libdeh, Haoyan Geng, Robbert van Renesse
{hussam, geng, rvr}@cs.cornell.edu

Motivation
- Eventual consistency not (always) enough
- State Machine Replication protocols like Paxos are not scalable

Can we build scalable and strongly consistent services?

Salient properties:
- Do not assume accurate failure detection (crash-failure)
- Minimize replica count (no majority voting)
- Fully decentralized implementation

Possible Solution
- Fail-stop protocols + centralized configuration manager.
- Manager notifies clients when configuration changes.

Tolerating Failures
Suspect a replica is faulty?
- Broadcast a wedge command to all replicas.
- A wedged replica does not modify its state.
- At least one replica will be wedged.

Wedging Guarantees Safety!
State cannot diverge and clients cannot see inconsistency due to network partitioning or inaccurate failure detection.

Reconfigure for Liveness
New configuration’s replicas inherit state from any wedged replica of prior configuration.

Novelty:
Wedging eliminates need to vote on new configuration’s state!

Stale configurations lead to inconsistencies!
- Not all clients learn about new configuration at the same time.
- Some might continue to talk to defunct replicas.

Scaling Out
Horizontal partitioning to cut costs
- Each partition is an elastically replicated object.
- A partition’s state is separate from its configuration.
- Partitions act as configuration sequencers of one another.
- When a partition needs to be reconfigured, its sequencer wedges the old configuration and issues a new one.

No need for a centralized configuration management service.

Each partition only needs \(f + 1 \) replicas to tolerate \(f \) crash failures.
(as long as there always exists at least one partition with no faulty replicas)