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1 Introduction
Many production systems make use of fault-tolerance
techniques, such as replication, to prevent faults from dis-
rupting the operation of the system. This is particularly
important in large-scale systems where faults are frequent.
Many practical fault tolerant systems focus on tolerat-
ing crashes because they are frequently observed and eas-
ily diagnosed. Observations from real systems, however,
have shown that undetected commission faults leading to
incorrect behavior instead of crashes do happen in prac-
tice. A famous example is given by the internal state cor-
ruptions that caused an 8-hour outage of the Amazon S3
service and was diagnosed as follows.1

A handful of messages had a single bit corrupted
such that the message was still intelligible, but the
system state information was incorrect. We used
MD5 checksums throughout the system (but not) for
this particular internal state information. (...) When
the corruption occurred, we did not detect it and it
spread throughout the system causing the symptoms
described above.

The use of CRCs, MD5 hashes or other error detection
codes is common practice in practical distributed fault-
tolerant systems to prevent such undetected corruptions.
Due to the lack of principled approaches, however, adding
these checks manually is a difficult and cumbersome pro-
cess that is sometimes not effective.

Such observations have led in the recent years to a vari-
ety of protocols targeting Byzantine failures, especially in
the context of state machine replication (also called BFT),
as for example PBFT [1]. Assuming Byzantine failures is
a very weak assumption on the behavior of faulty pro-
cesses and thus leads to more robust replicated systems.
Despite the good performance of BFT systems and the
presence of complex prototypes of realistic distributed
systems such as [2], the industry has not adopted BFT,
to the best of our knowledge, and has favored instead the
hardening of crash-tolerant systems through error detec-
tion. There can be multiple explanations for this. BFT
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requires a higher degree of replication than crash toler-
ance. Furthermore, applying state machine replication in
scalable systems can be a difficult endeavor, especially as
many distributed systems use weaker application-specific
consistency models where active replication is not a suit-
able design choice.

In this paper, we propose an approach to harden pro-
cesses of crash-tolerant systems in a sound and transpar-
ent manner, relieving developers of the burden of decid-
ing where to place error detection checks. We focus on
tolerating Arbitrary State Corruption (ASC) faults, where
the state of a process can be modified by faults but not
its code. We need this restriction to reason about local er-
ror detection guarantees, since we cannot reason about the
local behavior of a process that does not follow its specifi-
cation. Hardening guarantees the error isolation property,
which reduces non-silent faults into crashes or omission,
making the hardening of crash-tolerant systems into ASC-
tolerant ones trivial.

One can harden processes of a variety of ASC-tolerant
distributed systems, ranging from state machine replica-
tion to scalable eventually-consistent storage.

2 ASC hardening

ASC model. We propose a new ASC fault model, which
allows faults to arbitrarily modify all variables of a faulty
process state. The process state includes the program
counter, so faults can let the control flow of a faulty pro-
cess jump to an arbitrary instruction. Faults can occur
an unbounded number of times and at any point in time
given that at most one fault occurs during the processing
of a message.

We consider a data integrity property called fault diver-
sity that corresponds, in the ASC model, to the crypto-
graphic assumptions made about the strength of an adver-
sary by protocols using the Byzantine fault model. As-
sume that v is a variable of the state of a process and that
the value of v is replicated in a replica variable v′. When
a fault modifies the value of v, this will be different from
the one of v′. After the fault, the condition v 6= v′ is only
required to hold until v or v′ are modified again.
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Figure 1: 0/0 benchmarks w. batching
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Figure 2: Zookeeper benchmark
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Figure 3: Eventually-consistent store

Hardening processes. Hardening can be applied to any
process following the event-based paradigm. Hardened
processes are guaranteed to respect error confinement,
which is defined as follows. Let m be a message with
some corrupted field. No correct recipient of m modifies
its state according to m. If a faulty recipient modifies its
state according to m, it crashes before sending any output
message. Our notion of “corrupted” at a time t is for-
mally defined based on the correct state of the process at
t. Any divergence from the correct state, be it through
a fault directly corrupting a variable or through internal
error propagation, is considered as corruption.

A hardened process keeps two local replicas of the pro-
cess state. A hardened process guarantees that if a vari-
able is corrupted when an output message is sent, then it is
different from its replica. Error isolation can thus be guar-
anteed by attaching a CRC of the output message replica
to each output message.

The original event handler, i.e., the procedure which
would have handled the input message in the original non-
hardened process, is executed twice, on the original and
on the replica states. In both executions, all variables are
compared with their replicas before being read and the
process crashes in case of a mismatch. This is necessary
to prevent error propagation. The changes to the original
state caused by the event handler are not directly applied.
This is to prevent the presence of incomplete state updates
due to control flow faults. A hardened process first com-
putes a set of incremental updates of the original state,
then executes event handling on the replica state, and fi-
nally applies the incremental changes to the original state.

PASC library. In order to make hardening practical, we
implemented it as a Java library called PASC. PASC is a
runtime environment that wraps processes, transparently
replicating their state and executing checks. The user
needs to specify the state of processes and implement
the event handlers of its distributed algorithm as imple-
mentations of PASC classes. During the execution of the
protocol, the runtime accepts a message as input, execute
the corresponding message handler, and produces output

messages. Beyond defining message handlers and the pro-
cess state, implementing message passing is left to the de-
veloper for better flexibility.

3 Use cases
We are currently doing performance optimization of
PASC using a cluster of machines with eight 2.5Ghz
cores and 16 GB of memory, connected by a Gigabit net-
work. We implemented the Paxos state machine replica-
tion protocol [4] with and without PASC hardening, us-
ing 2f + 1 replicas to tolerate f ASC-faulty and crashed
processes, respectively. The performance of PASC Paxos
using empty requests and replies is comparable to Paxos
and better than the C++ PBFT library (see Figure 1). We
then implemented a subset of Zookeeper [3] as a state ma-
chine on top of Paxos. We kept the state machine exter-
nal to PASC to reduce memory and CPU costs. Since
PASC-Paxos makes all correct replicas agree on the order
of operations in presence of ASC faults, we can simply
use voting to tolerate ASC-faulty state machines. In terms
of maximum throughput, PASC Paxos achieves only 10-
20% less throughput than Paxos and has a small latency
overhead (see Figure 2). The steady-state JVM user mem-
ory occupation is very similar because the Zookeeper state
machine is not replicated by PASC. We also implemented
a simple eventually-consistent key-value store called Sim-
pleKV (see Figure 3). The throughput scalability with and
without hardening is similar.
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