An Algorithm for Stabilisng Multiple Stores

‘Ewa Z. Bem and “John Rosenberg

‘School of Computing and Information Technology
University of Western Sydney Nepean
PO Box 10, Kingswood, NSW 2747, Austrdia
ewa@it. nepean. uws. edu. au

2Faculty of Information Tedhnology
Monash University
j ohnr @ nf ot ech. nonash. edu. au

Abstract. The dgorithm for stabili sing multiple stores, which we present in this paper, was
developed in the process of designing the global stability and resilience mechanism for
Grasshopper, an operating system explicitly designed for experimentation in persistence
Grasshopper's persistent store is divided into multiple logicd partitions (locd stores) with
arbitrary data interdependencies. A global asynchronous chedkpoint mechanism is used to
ensure the resili ence of the store & awhale. In order to eliminate the known deficiencies of
such an approach our agorithm takes advantage of the hardware techniques originaly
developed for fault tolerant systems, ie. mirrored disks and an urinterruptible power source
(UPS. We show that these two techniques complement eat ather resulting in a simple and
efficient algorithm where the main cost is the st of additional hardware. Although
developed in the mntext of the Grasshopper system, the dgorithm can be applied to multiple
persistent storesin general.

Keywords: multiple stores, persistence, global chedpoint, stability, fault tolerance

1 Introduction

The commonly applied mechanism to ensure stability and resilience in multiple stores is an
asynchronous “fuzzy” globa chedkpoint with shadow paging or logging wsed for stability.
Variations of this mecdanism were proposed for L3/Eumel [6], Napier store [9], the MONADS
systems [10], the KeyKOS nanokernel [4], and others. This approach addresses the main problem
of the synchronous “stop the world” global checkpaint, as it does not require that user adivity
stops while the data modified since the last chedkpoint is copied to stable storage. With
asynchronous checkpoint this data, commonly represented in terms of pages, is copied lazly in the
period d time between two chedkpaints. Unfortunately this medanism till suffers from major
performance penalties:

e the alditional disk 1/0 operations needed to stabili se the modified pages compete with the 1/0O

operations requested by users,

« typicdly the logging and shadow paging techniques contribute to the lossof data locdlity.

The dgorithm for stability and resili ence for multi ple persistent stores, presented in this paper,
is an attempt to remedy these problems by combining the techniques originally developed to
provide fault toleranceie. mirrored dsks and an uninterruptible power source (UPS. Both of these
techniques are used in the IBM AS/400 system [11], but they are applied there in a significantly
diff erent manner than the one we propose.

Our algorithm was developed in the context of Grasshopper [1,3,7], an experimental
orthogonall y persistent operating system operating system, which supports persistence of both data
and computations as the only permanent data storage. Since there is nofile system, all datain the
Grasshopper system has to be stable ie. survive any breskdown of service and resilient ie. retain
its consistency despite system malfunctions. Grasshopper's persistent store is composed of
multiple locd stores (partitions), each managed independently by an entity cdled a manager,
resporsible for providing stability to data in its partition. Arbitrary dependencies may develop
amongst partitions, so in order to ensure aherence and resilience of the whole store, ancther
entity, cdled a ontroller, isresponsible for synchronising the adiviti es of the managers.

This paper is organised as foll ows. Sedion 2describes the structure of the global multiple store,
sedion 3 pesents the dgorithm we developed, sedion 4 demonstrates how this algorithm can be
applied in a mixed environment with ead locd store stabili sed in a diff erent manner, and sedion
5 presents our conclusions.

2 Structureof the Global Store
As gated before the global store mnsists of multiple independently managed locd stores. Each
store has a manager resporsible for al the agpeds of datain the store, including data stability. The

resili ence of the global store isthe responsibility of a controller. The adivities of the wntroller and
the managers can be grouped according to the phasesin the life ¢ycle of the store shown in fig. 1.

recovery phase work phase
(warm start)
initializati checkpoint phase

initialization phase
Fig. 1. Life g/cle of the persistent store

(cold start)

Both the antroll er and the managers require some alditional storage in memory and on disk to
maintain their respedive control data. The controller maintains two versions of a global root page
of the store in a known areaof the disk and an adive copy d the current global root page in
memory. Each disk version d global root page defines one stable state of the store. The store
effedively moves from one stable state to another and ead such state is represented by a state
interval. Eadh goba root page mntains two copies of the @rresponding state interval number,
links to locd root pages of ead of the partitions, and information required to restart the managers.
The two interval numbersin al root pages (global and locd), physicdly located at the start and at
the end of a page, are used to ensure the mnsistency of the disk block acording to Challis
algorithm [2].

The in-memory adive global rocot page @ntains a number of flags to indicate the aurrent state
of eat partition. These flags are used by the controller to synchronise the global checkpoint
events. The antroller is not diredly responsible for any user data in the locd store; this is the
resporsibility of managers.

Each manager maintains two sets of control data on dsk corresponding to the two most recent
chedkpoaints (stable states) of the locd store. Each set contains a partition locd root page, a free
block bitmap and a disk page table. The manager also maintains adive ontrol data in memory
derived from disk copies. On disk the disk page table contains elements cdled dsk page table
entries (DPTE), eat of which contains the virtual address of the crresponding page ad its
locaion ondisk (disk addres9, the adive DPTE in memory has an additional field for the physicad
memory address of resident pages, and flags indicating the state of the page. Logicdly the disk
page table is alinea lookup table, which maps page virtual addresses to disk addresss. Sincethis
table is garsely popuated, it is implemented as a hash table to avoid an unnecessary waste of
storage.

2.1 Activities of the controller

The initidisation phase performed by the controller spans two state intervals to allow for the
orderly credion d globa control data, al partitions with their managers, and loca control data
within partitions. Once the store is initiaised the antroller commences the work phase by
enabling wser adivity. The time between two checkpaints, determined by the controller, may be
fixed, or it may be aljusted dyremicdly based on various aspeds of system behaviour, for
example the number of pages modified during the aurrent interval, avail ability of physica pagesin

memory etc. During the checkpoint phase the cntroller direds the adivities of the managers to
ensure that the global order of eventsis asfoll ows:
« al managers gabili se their partitions, excluding the root pages
« al managers gabili se their corresponding loca root pages
< the ontroller writes the global root page to stable storage
« the cntroller increments the state interval number

In the recovery phase the store is rebuilt from a wpy ondisk. It logicdly foll ows the chedkpoint
phase, dthoughin fad there muld have been an intervening work phase which was interrupted by
a system crash. The disk potentialy contains two complete stable states of the store, one
corresponding to the last chedkpoint and the other to the preceding chedkpoint. Consequently there
may be two gobal roat pages avail able, and the controller hasto dedde which ore of them is most
recent, based on the state interval number recorded in ead page. If the crash occurred while the
more recant roct page was being written to disk, it will nat have two matching interval numbers. In
such case the other root page is sleded.

2.2 Activities of the manager

The role of the manager is to respond to requests from the controll er, and to colled and maintain
enough information to be able to comply with these requests. During the work phase (normal
operation) the manager responds to al page-related events in its partition. These events include
new page aeaion, read fault, write fault, page discard etc.

In the dheckpoint phase the manager stabili ses all the pages modified since the last chedkpoint,
the new bitmap and the new disk page tables. For ead page the gpropriate flags in its memory
DPTE are set to ensure the crred handling d the page in the next state interval. The in-memory
alocae bitmap is overwritten with the new bitmap. On request from the controller the manager
stabili ses the adive locd root page, creaing a new stable state of its partition.

In the recovery phase the manager seleds the locd roat page which matches the state interval
number seleded by the controller, and reaeaes the in-memory control data. It is then ready for
normal operation, which will commence & onas the controll er enables user adivity.

3 TheProposed Algorithm

Combining the mirrored disks and UPS techniques allowed us to buld a simple and efficient
algorithm for providing stability in a locd store. We gplied the fault tolerance technique of
mirrored disks as the basis for stability of pages to eliminate the deficiencies of commonly used
software-based mechanisms. In itself disk mirroring at the hardware level could not contribute to
stahility, since it would overwrite both copies of a page a the same time. The way two identicd
disks are used to provide stability isto delay writing of one disk until the state of the other one is
consistent. To make this distinction clea we use the term disk pair. The disks in a pair are
designated as the primary and the secondary disk. When the system is first started bah disks are
initi alised identicdly. The primary disk corresponds to the aurrent state interval, and the secondary
disk to the immediately precading state interval.

With the addition d UPSthe main memory can be treaed as a stable media and an extension of
the hard disk, so pagesresident in memory are stable and can be shadowed temporarily by copying
to anather memory locdion. Pages are only copied to disk as a result of the page discard, and
during the system shutdown. No disk 1/0 is performed for stabili sation d the pages in the store.

A pagein the store can be in one of the foll owing states:

e DO (disk original) - the page resides on both disks, no copy existsin memory (initial state)

« MO (memory origina) - the page resides on bdh disks, and in memory (read orly page)

 MD (memory dirty) - the page was modified in the current state interval (read/write page)

¢ MC (memory clean copy-on-write) - the page was modified in the previous gate interval, and
will be copied in memory beforeit is modified again

e ML (memory locked) - the pageisa opy d an MC page modified in the aurrent state interval,
it islocked for both read and write.

The state transitions of pages are best illustrated by viewing the pages in memory as members
of two logicd lists: an adive list asociated with the primary disk, and a passve list associated

with the seoondary disk. A page can either be amember of both lists (DO, MO and MC pages), the
adivelist only (MD pages), or the passve list only (ML pages). An MD page can further modified
since it arealy has a shadow either on disk or in memory. All pages in the passve list are write
proteded since any attempt to write has to be catured to ensure an appropriate state transition for
the page:

* MC page — a oopy in memory is creded, the original page changes date to MD page, and the

copyto ML,
¢ MO page — changes gate to MD,

e ML page — dces not belong to the current address pace and any attempt at writingisill egal.

To perform the store stabili sation duing chedkpoint, MD pages change state to MC, and ML
pages are marked free in the adive in-memory bitmap. The ML pages do not belong to the
chedpointed state of the store any more. The page state transition dagram which excludes the
discad of MD pages is own in figure 2. The page replacement algorithm is adjusted to the
requirements of chedkpoint, and the pages are discarded in the foll owing order:
¢ ML page — written to secondary disk only
¢ MO page —resident on bdh disks, no dsk I1/O involved
¢ MC page—written to bah disks

memory
original

'/ on disk
original

DO

memory
dirty
MD

\
copy

memory
locked

ML
———— checkpoint

—— discard
page rr_10ved ------ » read fault
to disk — = = —» write fault

page removed
from memory

Fig. 2. Page state transitions without MD discard.

The posgble discard of MD pages (figure 3) creaes a number of problems. As an MD page
belongs to the current state interval (and the adive list) it shoud be written to the primary disk
only. During the next chedkpoint this page will be transferred to the MC state, and as gich
bewmmes the member of both lists, so a @py should exist on both disks. A discarded MD page
would have to be brought badk from disk to memory, so that it can be copied to the secondary
disk.

This is in conflict with the original design intention to eliminate chedkpoint related disk 1/0
adivity. In addition if MD page discard is alowed, it is necessary to keep track of the movement
of pagesto disksin the pair, and if necessary make copies to the seaondary disk on stabili se.

A preferred approach isto disallow discard of MD pages. Insteal, in case of memory shortage,
after al ML, MC and MO pages were removed from memory, the cntroller should trigger a new
chedkpoaint. This adion transfers al MD pages to the MC state, and makes them avail able for
discard. Also the ML pages are removed, which makes more memory avail able for adive pages.
Frequent checkpoints triggered by memory shortage will affed the performance of the system, just
like page thrashing in virtual memory systems. The only red remedy in such case is adding more
main memory.

memory
original

on disk
original

memory
clean

MC
1

\
copy

memory
locked

on
primary
disk
_ D1
sgcagr?d!aor o ———> checkpoint
disk Y memory \, . —> discard
clean .~ e » read fault
primary = = — —» write fault
M1

Fig. 3. Page state transitions with full discard

page removed
from memory

With UPSthe recmvery phase is inherently complicated becaise two levels of physicd storage
are invaved in the process When the system goes down it is not known how longit will remain
off line. As a UPScanna supply power to the system indefinitely, the available time has to be
used to transfer the MD, MC and ML pages from the main memory to dsk.

In the cae of an orderly system shutdown, a disk chedkpoint is performed which copiesal MC
and MD pages to disk. The ML pages may be excluded as we an guarantee the succesdul
completion of the chedkpoint. A system crash may nat alow for the orderly sequence of adions
described above. In such a cae adedicaed dsk is used to dump the contents of main memory
with no attempt at seleding any spedfic pages. In order to be ale to restore the contents of the
productive disks when the system is eventually restarted, the physicad locaion in memory of the
global root pages has to be known. Also to maintain the principle of persistence by readability,
the physicd memory locaion of partition locd root pages has to be available in the global roct
page. Oncethisinformation is avail able the production disks can be updated using the information
stored in the memory dump. With the disks updated and refleding the aurrent consistent state of
the store, the restart can proceel in the usual way.

4 A Mixed Environment

In a multiple store it is reasonable to exped that ead locd store shoud be ale to chose the
stabili sation mechanism which best fits its data charaderistics. The proposed algorithm can be
used in some of the locd stores, whil e the others are using conventional shadow paging a logging.

The store in this example nsists of three partitions ead uwsing a different stabili sation
medhanism:

e PartitionA - the dter image shadow paging [8]
e PartitionB - the UPSwith disk pairs
e PartitionC -the KeyKOS stylelog[5]

The resili ence of the whole store is ensured by the aynchronous global chedpoint, as srown in
figure 4. In step 1 the controller requests all three managers to prepare for the stabili se mode by
proteding all pages modified in their respedive partitions in the aurrent state interval. In partition
A this means that all the pages modified in the current state interval are write proteded to be
copied to disk in the next step. In partition B al the MD pages are moved to MC state, and ML
pages are dropped. In partition C the modified pages in memory are logicadly copied to the
working area with the adual copy deferred, using a @wpy-on-write mechanism. The roles of the
two swap areas are reversed; the working areabemmes the chedkpoint area and viceversa.

When the managers complete the above adivities the store enters the proper stabili se stage. In
partition A all the pages marked for copying are progressvely written to disk. For partition B no
spedal adionsare necessry. Any page in MC state, if written, is copied in memory, just as during

the normal operation. Partition C undergoes the migration phase, ie. all the pages in the chedkpaint
area ae written to their home locations on dsk. This partition is potentially a we& point of the
store, asit uses the least efficient stabili sation medhanism.

controller Partition A Partition B Partition C users
AISP UPS & disk pairs KeyKOS
style log

l

done pages | lransition

initiate stop 1 _stabilize_mode
s — —
wite protect MD - MC
Step 1: modifed page state
page transiti

stabilised
iniiate step2 T [commence

stabilised migration
- slableed

stabilised _ copy marked
PR
pages to disk

do nothing phase

e
write root finished

Step 2: —_—

oa
do nothing updated

nnnnnnnnnn

Fig. 4. Global chedkpoint in the mixed environment

Eventually the controller requests the managers to stabili se their respedive locd root pages. It
is expeded that all data pagesin the partitions are stable by this time. In partition A the root page
is smply written to dsk. In partition B the roat page is arealy stable in memory. If required its
ML copy may be written to the secondary disk at this dage. For partition C the adion
corresponding to stabili sing the root page is ®nding a mpy of the new chedpoint header to the
cortroller. This completes gep 2 of the checkpoint phase, and step 1 of the next checkpoint may
now commence

Obvioudly the dficiency of the global checkpoint in a mixed environment is limited by the
dowest store, in this case the KeyKOS style log-based partition. It is important to seled the
stabili sation techniques for the loca storesin such away that the largest and most adive stores use
the most efficient mechanisms. Once this ledion is made axy change of the stabilisation
mechanism for a spedfic store may require a onsiderable conversion eff ort.

5 Conclusions

We have shown that the proposed stabili sation algorithm eliminates all chedkpoint related disk 1/0
adivity and maintains the original clustering of pages in the store, which are the two main sources
of poor performance for globa asynchronous checkpoint systems. The loss of performance is
prevented at the st of incressed demand for main memory and dsk space and the addition of
UPShardware. The discard mechanism, if properly integrated with chedpoint, helps to reduce the
demand for memory by reducing the number of MO, MC and ML pages.

Despite the demonstrated ability to support a variety of stabili sation algorithms in the proposed
model, we believe that the optimal solution for any multiple store is to use the most efficient
available dgorithm for al the partitions in the store. The proposed checkpoint algorithm achieves
the stabilit y and resili ence of the store & a very low cost in terms of performance It does not affed
the eror-freeoperation, and guarantees that in the cae of an unexpeded crash or failure of power
supdy the lossof productive work is very small. We have shown that this is only possble if the
additional hardware is used to supplement and support software mechanisms. With the prices of
main memory and magnetic disks falling continuously, the alditional cost of storage is aff ordable.
The prices of UPSdevices vary depending on their capadty and battery run-time, but on average
the mst is of the same magnitude & other computer system componrents.

The software overhead imposed by the dgorithm is much smaller than in ather known systems.
It is limited to maintenance of root pages, and dsk page tables for the partitions, and the adual
processng is limited to shadowing the pages in memory, and a single pass over the adive DPT
oncefor ead chedkpointing cycle.

References

8.

0.

. Bem, E.Z., “Global Stability and Resiliencein a Persistent Operating System”, PhD Thesis, University of

Sydney, 1999

. Challis, M.F. “Database Consistency and Integrity in a Multiuser Environment” Databases: Improving

Usedbility and resposiveness Academic press pp. 245-270, 1978

. Deale, A., et d “Grasshopper: An Orthogonally Persistent Operating System”, Computer Systems, Vol

7(3), Summer 1994

. Hardy, N. “The KeyKOS Architecure” Operating System Review, 198
. Landau, C.R., “The Chedpoint Mechanism in KeyKOS” Procealings of the 2nd International Workshop

on Objed Orientation in Operating Systems, | EEE, 1992

Liedtke, J., “A Persistent System in Red Use — Experiences of the First 13 Yeas’ Procealings of the 3"
International Workshop on Objed-Orientation in Operating Systems, North Carolina, 1993

Lindstrom, A., A. Deale, R. di Bona, S. Norris, J. Rosenberg, F. Vaughan “Persistencein the Grasshopper
Kernel” Procealings of the Eighteenth Australasian Computer Science Conference, ACSC-18, ed.
Ramamohanarao Kotagiri, Glenelg, South Australia, February 1995

Lorie, RA. “Physicd Integrity in a Large Segmented Database” ACM Transadions on Database Systems,
vol.2 no 1 pp.91-104, 1976

Morrison, R., A.L. Brown, R.C.H. Conor, A. Deale “The Napier88 Reference Manual” Technicd report
PPRR-77-89 University of St Andrew, St Andrew,1989

10.Rosenberg, J. “The MONADS Architedure: A Layered View” The Fourth Internationa Workshop on

Persistent Objed Systems, eds A. Deale, G.M. Shaw and S.B. Zdonik, Morgan Kaufmann, 1990

11.Soltis, F.G. “Inside AS/400” Duke Press Loveland, Colorado,1995

