
Decomposition of Preemptive Scheduling in the Go! Component-Based
Operating System

Greg Law & Julie McCann,
Dept. of Computing,

City University,
London, UK

email: {gel,jam}@soi.city.ac.uk

Abstract

Embedded systems are required to exhibit ever increas-
ing functionality while continuing to use minimal re-
sources. The next generation of embedded operating
systems must support protection with very low over-
heads, as well as being (dynamically) configurable. Go!
is a prototype component-based system that runs na-
tively on the Intel 386 based PC. Its novel protection
mechanism means that components are (optionally)
protected from one another, but exhibit very low over-
heads. Furthermore, components can perform system
tasks previously considered bound to the kernel (such
as interrupt handling and preemptive scheduling).

Go! does not provide multithreading, but is con-
structed so that components comprising a ‘library op-
erating system’ may provide (preemptive) multithread-
ing with relative ease. This paper describes that sup-
port, and goes on to present the scheduling provided
by GTE (a ‘proof-of-concept’ library operating sys-
tem built on top of Go!). We show that decomposing
multithreading into thread components, an interrupt-
dispatcher and a scheduler is practical, useful, stable,
and performs well.

1 Introduction

Personal Digital Assistants (PDAs) and wearable com-
puters currently provide a small set of applications
using non-standard communication protocols and op-
erating systems. The move toward a more compre-
hensive handheld device that runs as a super PDA (ie
it is a phone, two-way radio, television, pager, hand-
held computer, pointing device etc) requires support
from an operating system that is lightweight, exten-
sible (flexible or adaptable) and that performs well.

That is, functionality such as improved application-
defined protection schemes, dynamic component re-
placement and application participation in resource
management is now required from the OS. The Go!
[7] component-based operating system provides a so-
lution to these problems.

Decomposition of the operating system can result in
improvements in flexibility, systems-software engineer-
ing and availability. However, conventional protection
models make it difficult to decompose fundamental
system services, (such as interrupt handling, schedul-
ing and context switching) into separate components.
Most current component-based operating systems em-
ploy a Micro-kernel to perform these tasks, at least at
some level [5, 2]. These Micro-kernels exhibit high lev-
els of coupling, and consquently suffer the associated
draw-backs (e.g., poor software engineering, flexibility
and configurability [8]).

Go! is different. Its analogue of a kernel is the
ORB (Object Request Broker). Unlike a kernel, the
ORB provides component-management only. That
is, the ORB supports inter-component communica-
tion (over RPC), component instantiation and de-
struction, and type registration and de-registration.
There is no support for many of the services usu-
ally expected of even the smallest kernels (such as
Exokernels [1]). E.g., the ORB does not handle in-
terrupts or paging, not even just to farm them out
to ‘user-space’ — the ORB is blissfully unaware of
such details. If services such as interrupt manage-
ment or multithreading are required they must be
implemented by user components. This way tasks
that (while related) have quite separate implemen-
tations (such as component-management, memory-
management, interrupt dispatching and thread pre-
emption/scheduling) can be separated into distinct

1

components.
As a proof of this concept, a library operating sys-

tem has been developed for Go! that provides interrupt
management, preemptive multithreading and mem-
ory management. This library operating system is
called GTE (Go! Test Environment). GTE’s preemp-
tive scheduler, as well as its interaction with the rest
of GTE and the ORB is described in this paper.

The structure of this paper is as follows. Section
2 presents an overview Go!, and Section 3 describes
Go!’s support for library OS multithreading. Section 4
describes the design and implementation of scheduling
in GTE. Section 5 reports on performance experiments
and their results, and section 6 concludes.

2 An Overview of Go!

Go! is a prototype, component-based operating sys-
tem that runs natively on the Intel 386 based PC. The
fundamental OS primitive provided by Go! is the com-
ponent. Go! enables components to be protected from
one another in a novel way, which allows Go! itself to
be responsible only for component management. More
accurately, ‘application-level’ components are able to
perform system tasks such as interrupt handling be-
cause of the ‘code-scanning’ technique developed with
Go!.

Code-scanning works as follows: all code executes
in the most privileged mode on the micro-processor
(Ring 0 on the Intel 80386). Untrusted components
have their code-section scanned prior to installation on
the system; components found to contain instructions
which they are not sufficiently privileged to execute
are rejected.

Memory protection is enforced through the Intel’s
segmentation hardware: each component instance’s
data reside in their own data segment, and each in-
stance is of some type, the code of which resides in
its own segment. An instance can be identified by its
data segment, and a type by its code segment.

The code-scanner considers a segment-register load
to be a privileged operation, so that holding a seg-
ment’s selector in a segment register is a capability to
access that segment [6]. In other words, a component’s
data can be accessed only by its code segment — en-
capsulation is enforced. This means that a context
switch can be effected by loading the code, data, and
stack segment registers with new values (a segment-
register load takes just 3 cycles on a Pentium). This
reduces local null-RPC latency to around one order of

magnitude lower than high performance OSs like L4
[4]. Note that an inter-segment branch is considered a
segment-register load, and so prohibited. The excep-
tion is calls into the ORB’s (well-known) code segment
at a few (well-know) offsets (e.g. call 8:16 issues a
(local) RPC to another component).

Code-scanning obviously prevents self-modifying
code1 and embedding arbitrary data in code seg-
ments. However, both techniques are employed rarely
and modern micro-processors impose significant per-
formance penalties on their use. In the rare event
that components do require such functionality, those
few components can execute while the processor is in
user mode.

Implementing code-scanning on a CISC machine
is non-trivial. The variable-length instructions mean
that it is difficult (although rarely impossible) to de-
termine what bytes will be executed as code and
what bytes will be read as an instruction’s immedi-
ate data. The presence of indirect branches (includ-
ing sub-routine returns) compounds this problem. In
those few cases where it is not possible to determine
that it is safe to execute a component in kernel mode,
that component can be executed in user mode (and
incur the associated performance penalties).

As well as improved performance, this model allows
the operating system to be truly decomposed: a nor-
mal ‘application-level’ component can implement sys-
tem behaviour (such as interrupt handling) 2. Re-
quiring a segment-register load to perform a context
switch, along with the single processor mode also dras-
tically reduces inter-component communication times.
This allows improved systems-software engineering
through finely-grained, protected components without
sacrificing performance (thus requiring less resources).

Although the ORB does not provide many ‘sys-
tem services’, it is designed so that library operating
systems can be easily constructed from components.
That is, although the ORB does not provide mul-
tithreading, interrupt-handling, paging or memory-
management, the implementation of these services was
considered during Go!’s design.

For a more in depth discussion of the Go! protection
model, see [7].

1Note that self-modifying code does not include ‘dynamic
code generation’, such as with a Java JIT compiler — a JIT
does not modify itself, but produces new code, which would be
fed through the code-scanner prior to execution.

2The code-scanner must know to trust certain system com-
ponents. It is up to the library operating system to decide what
components are trusted.

2

3 Go! Multithreading Support

Although Go! does not provide multithreading di-
rectly, it does have support for its implementation by
library operating systems. In order to understand the
issues involved in this support, one must be familiar
with the ORB’s thread-tunnelling RPC mechanism.
Local RPC is the principle means of inter-component
communication in Go!. The caller (or client) requests
that the ORB invokes a method on another component
(the callee, or server). Once the callee has completed
its work it returns control to the caller, again via the
ORB. This is illustrated in Figure 1.

call ret

The ORB

Client component Server component

Figure 1: Inter-component RPC via the ORB

The (single) thread of control migrates between
components during RPCs. The caller’s stack frame
is (optionally) protected from the callee component.
Although no time-out mechanism is imposed, when
the callee issues a ‘return’ request to the ORB, con-
trol is guaranteed to return to the instruction imme-
diately following the most recent call. In effect, an
inter-component call is guaranteed to return properly,
but no bounds are imposed on the time this takes (the
callee not returning is the same as the call taking infi-
nite time). As with conventional systems, if the caller
does not trust the callee to return, it should arrange
to respond to some time-out (i.e., this is the ‘halting
problem’ [9]).

The ORB’s call and return primitives might be im-
plemented as follows:

call(comp target, int method)

1. load the ORB data segment

2. validate target and find its data segment

3. validate method number

4. push out-going component ID onto stack

5. protect caller’s stack frame by:

(a) push the existing old limit

(b) set old limit to stack segment’s limit

(c) push the existing old sp

(d) set old sp to stack-pointer

(e) set stack segment limit to stack-pointer

6. increment call depth and callee’s call count

7. locate callee’s method table

8. load callee data segment

9. place caller’s ID in general-purpose register

10. jump into callee code segment at offset indicated
by method table

return()

1. load the ORB data segment

2. unprotect the caller’s stack frame by:

(a) set the stack’s limit to old limit

(b) set the stack-pointer to old sp

(c) pop old sp

(d) pop old limit

3. decrement call depth and callee’s call count

4. pop caller’s ID

5. load caller’s data segment

6. return to caller (using the x86 retf instruction)

The most important support for multithreading is
that the RPC call and return primitives are reentrant.
However, because the ORB has no notion of threads,
blocking synchronisation methods (such as ‘mutexes’)
are not an option. Also, because Go! does not manage
interrupts (and due to performance considerations) it
cannot simply acquire a large spin-lock during exe-
cution of the RPC primitives. Instead, non-blocking
synchronisation [3] is used to control concurrent ac-
cess to data shared between threads (e.g. components’
call count variable referred to above).

Even non-blocking synchronisation is not possible
for variables such as old sp, as these are specific to
the current thread. In this case, the ORB supports the

3

creation of new ‘stack-contexts’ and the switching be-
tween them. That is, there is not just one instance of
variables such as old sp as implied above, but (effec-
tively) a variable-sized array. The ‘stack-context’ con-
sists of the old limit, old sp and call depth shown
above (along with several other data, the details of
which are beyond the scope of this paper). Library op-
erating systems switch between these stack-contexts
when scheduling a new thread — that is, the ORB
is only reentrant as long as the appropriate stacks-
context is used for each thread. Note that the opera-
tion to switch between stack-contexts is not reentrant
— it is up to the component invoking the switch to en-
sure mutual exclusion. Note also that switching stack-
contexts does not alter the stack itself — this too is
delegated to the caller (that is, the library operating
system).

The Go! ORB defines a few ‘standard types’ (types
which are integrally part of Go!, and do not need to
be loaded explicitly: analogous to UNIX processes
such as swapper). This includes the stack component
type. The stack type has no methods, other than
the compulsory constructor and destructor methods
(which are implemented by the ORB for all stan-
dard types). During construction of an instance of
the stack type, a new stack-context is created and
associated with the new component. Stack-contexts
are identified by their associated stack instance —
that is, when calling on the ORB to switch to specific
stack-context, the relevant stack is specified. It is an-
ticipated that library operating systems will associate
a stack component with each thread, and load the
stack-segment register with the stack’s data segment
when scheduling that thread.

4 Scheduling in GTE

The GTE library operating system provides simple,
round-robin, single-priority, preemptive scheduling.
As well as the ORB, four component types are in-
volved in providing preemptive scheduling: the inter-
rupt dispatcher (idisp), the scheduler (sched) a com-
ponent to represent threads (thread), and the stack
type introduced in Section 3. The IDL of these inter-
faces is:

interface comp {
void ctor();
void dtor();
void catch(comp xcp, uint offs);

};

interface thread : comp {
void ctor(comp startc, uint startm, size_t s);

void start();
void resume(uint gp_regs[8], uint eip);
stack get_stack();

};

interface idisp : comp {
void attach(thread t, uint vector);
void unattach(uint vector);
void intr_done(uint vector);

};

interface sched : comp {
void intr(thread handler);
void attach(thread t, uint flags);
void unattach(thread t);
void tick();

void block(thread hand_off = 0);
void unblock(thread t);

thread get_current();
};

To create a new thread, it is necessary to create an
instance of the thread type and attach it to sched.
As shown, the thread type’s constructor takes 3 argu-
ments: the component and method-number where the
thread will commence execution (startc and startm
respectively) and the size of its stack (s). As part
of construction, thread will create a stack compo-
nent of the relevant size (this stack can be retrieved
by calling the thread’s get stack() method). When
start is called, the thread will (at least) call method
startm on component startc.

In order to activate a thread, it must be attached
to the single instance of the sched component. The
flags parameter specifies scheduling information, in-
cluding whether or not the thread should be attached
in a blocked state and what action to take on the
thread’s termination. When the thread is first sched-
uled, its start() method is invoked. Depending on
the flags parameter when the thread is attached, its
resume method will be called at the beginning of each
subsequent ‘time-slice’.

The idisp component is used to schedule a thread
immediately on the receipt of an interrupt on a given
vector (interrupt vectors are not prioritised in the cur-
rent version of GTE). Interrupt-driven threads must
also be attached to sched, otherwise they will not be
executed on receipt of an interrupt.

4

The implementation of sched is somewhat intricate,
and its interface (although not its implementation) is
intertwined with idisp’s. On construction, a thread
component is created, and used as the ‘scheduler-
thread’. sched creates the scheduler-thread so that
it will call its tick method when first scheduled, and
attaches the thread to itself in a blocked state. The
‘scheduler-thread’ is then attached to idisp on vector
32 (the timer interrupt). This means that the tick
method is called on each timer tick. The tick method
does nothing except to call the idisp’s intr done
method. After re-enabling interrupts on vector 32,
idisp’s intr done method will call upon sched to
block the current thread (i.e. the scheduler-thread).
Since blocking a thread causes a new one to be sched-
uled, this means that each clock-tick results in the cur-
rently executing thread being suspended, and a new
one being scheduled. In summary, on each timer in-
terrupt: (1) the current thread is suspended; (2) the
scheduler-thread is woken; (3) the scheduler-thread
is blocked; (4) the next thread is resumed. This is
demonstrated in Figure 2.

__vec32_entry

idisp sched

sc
he

du
le

tick()

intr_done()

intr(handler)
suspend(current);
resume(handler);

block(handler);
resume(next());

block(handler)

In-coming thread
Out-going thread

interrupt

Figure 2: sched and idisp interaction

This mechanism results in extra temporal overhead
due to the unnecessary resumption of the intermediate
‘scheduler-thread’ between thread switches. However,
this mechanism means that the timer interrupt is han-
dled just as any other interrupt. Furthermore, in a
more complete system it is likely that sched’s tick
method will perform useful work, such as checking for
time-outs.

5 Experiments and Results

Two experiments were conducted to test the above im-
plementation of decomposed preemptive scheduling.

Firstly, a stress-test was conducted, to provide rea-
sonable assurance of the scheme’s (and implementa-
tion’s) correctness. Secondly, performance tests have
been conducted to ascertain the overhead imposed by
the decomposition.

The experiments were conducted using an 90 MHz
Intel Pentium P54C, with 32 MB of 90 ns EDO
DRAM.

5.1 The Stress-Test

This test involved creating 1,000 threads, each thread
(pseudo) randomly making an inter-component call or
return, so that between 1 and 20 calls were nested
in any one thread. In addition, key-strokes were pro-
duced randomly and processed by the command line in
order to produce asynchronous stimuli for the system.
This test ran continually for 48 hours and identified
no bugs.

5.2 Performance Results

Each timer interrupt schedules a new thread, result-
ing in the interaction of 7 distinct components (the
out-going and incoming thread and stack components,
the interrupt-dispatcher, the scheduler and the ORB).
Contrasting this with conventional systems (including
micro-kernels) that incorporate these 7 distinct com-
ponents into a single entity (namely, the kernel), it is
clear that the above approach incurs potential perfor-
mance problems.

An experiment was conducted to assess whether the
decomposition of scheduling introduces unacceptable
overhead. The experiment was conducted with two
runnable threads, operating with interrupts disabled.
A timer interrupt was simulated by issuing an int
32 instruction from the first thread, and the time was
measured for the second thread to receive control. Us-
ing the Pentium’s rdtsc instruction to count proces-
sor cycles, this time was found to be just under 2,500
cycles.

With the default interrupt frequency of 100 ticks
per second, this is a overhead of less than 0.3% on
the 90MHz test machine used. Furthermore, rela-
tively little of this overhead can be attributed to the
decomposition. Firstly, the single interrupt causes 2
threads to be scheduled (the scheduler-thread, as well
as the second runnable thread). Secondly, for simplic-
ity the current implementation uses the Intel’s TSS
task-switching mechanism, known to perform poorly.
Thirdly, the scheduling code is not heavily optimised.

5

Implementing these three optimisations is likely to
drastically reduce the time.

6 Conclusions

This paper has described the implementation of pre-
emptive scheduling on the Go! operating system. The
scheduling mechanism described is decomposed into
5 types of component: the Go! ORB; an interrupt-
dispatcher; the stack type; a thread type; and a
scheduler.

Decomposing system services such as scheduling
into constituent components offers several advantages,
particularly to the next generation of embedded sys-
tems. Embedded systems must strike a balance be-
tween time-to-market, resource usage (including unit
price and power consumption) and functionality. De-
composing system services allows the heart of embed-
ded systems to be tailored more easily, reducing time-
to-market and increasing functionality. Furthermore,
the extremely low overheads of protection in Go! re-
duces resource consumption while also increasing flex-
ibility (for example, the ability to ‘hot-swap’ a compo-
nent’s implementation without resetting the system).

Two of the main goals of this decomposition have
been to improve systems-software engineering and
configurability. In the authors’ experience at least,
significant improvements have been made in systems-
software engineering. Improvements to configurabil-
ity have been demonstrated by replacing component
implementations without affecting other components.
For example, a new implementation of the interrupt
dispatcher that allows prioritisation of interrupts has
been added, which does not affect any other compo-
nents.

As well as the optimisations mentioned in Section 5,
future work includes the development of a more com-
plete system in order to demonstrate fully the bene-
fits (or otherwise) of the techniques introduced here.
Also, the experiences of other software-engineers will
be valuable to asses Go!’s true impact to systems-
software engineering.

References
[1] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel:

An operating sytem architecture for application-level
resource management. In Proc. 15th Symposium on
Operating System Principles (SOSP-95), pages 251–
266, 1995.

[2] E. Gabber, J. Bruno, J. Brustoloni, A. Silberscatz, and
C. Small. The Pebble Component-Based Operating
System. In Proc. 1999 USENIX Technical Conference,
Monterey, CA, June 1999.

[3] Michael Greenwald and David Cheriton. The synergy
between non-blocking synchronization and operating
system structure. In 2nd Symposium on Operating Sys-
tems Design and Implementation (OSDI ’96), Seattle,
WA, pages 123–136, October 1996.

[4] Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Sebastian Schönberg, and Jean Wolter. The perfor-
mance of µ-Kernel-based systems. In Proceedings of
the 16th Symposium on Operating Systems, pages 66–
77, 1997.

[5] Trent Jaeger, Jochen Liedtke, Vsevolod Panteleenko,
Yoonho Park, and Nayeem Islam. Security architec-
ture for component-based operating systems. In ACM
Special Interest Group in Operating Systems (SIGOPS)
European Workshop, 1998.

[6] J. Keedy and J. Rosenberg. Support for objects in the
MONADS architecture. In Proc. Workshop on per-
sistent object systems, pages 202–213, Newcastle NSW
(Australia), January 1989.

[7] Greg Law and Julie McCann. A New Protection Model
for Component-Based Operating Systems. In Proceed-
ings of the IEEE Conference on Computing and Com-
minications, Phoenix, AZ, USA, February 2000.

[8] Bertrand Meyer. Object-oriented Software Construc-
tion. Prentice Hall, February 1997.

[9] A. M. Turing. On computable numbers, with an ap-
plication to the entscheidungsproblem. Proceedings
of the London Mathematical Society, Series 2(42):230–
265, 1936-1937.

6

