
1

Multiprocessing and Portability for PDAs

Grzegorz Czajkowski

Sun Microsystems Laboratories
901 San Antonio Rd., MS MTV29-112, Mountain View, CA 94303

Grzegorz.Czajkowski@sun.com

Abstract
The role of small devices in the emerging all-connected
computer infrastructure is growing. So are the requirements
that the application execution environments face. Portability,
mobility, resource scarcity, and security concerns aggravated
by often unknown sources of executed code combine together
to create a challenging design and implementation task. It has
been extensively argued and demonstrated that safe
languages can solve some of these problems. In this paper,
we focus on the multiprocessing aspect. We argue, in the
context of the Java™ programming language, that
multiprocessing execution environments based on safe
languages for small devices can be built. However, in order to
achieve lightweight and robust designs one has to consider a
departure from replicating time-proven, traditional OS
structure in the Java Virtual Machine (JVM™).

1 Introduction
Several general features of computing on modern small
devices and the expectations made with respect to roles
these devices should play in a larger infrastructure
(agent systems, ubiquitous computing, etc) make
designing application execution environments
challenging. Mobility magnifies problems of
application protection because of the increased
exposure to potentially malicious code. Resource
control must be adequate to fend off wide classes of
denial-of-service attacks but at the same time flexible
enough to accommodate for rapidly changing
workloads. Resources are typically much scarcer on
PDAs than on “standard” computers, which makes the
designer’s life more difficult in yet another dimension.
On top of that, heterogeneity coupled with the need for
code mobility and cross-platform interoperability
further increases the challenge.

Safe languages offer the promise of a safe
multiprocessing execution environment for portable
code. The promise is not realized yet, however. In the
workstation and desktop world, one can always fall
back (in an arguably non-scalable fashion) on the
protection offered by an underlying operating system.
Thus, more often than not, multiple applications written
in the Java programming language [AG98,LY99] and
running on the same machine are executed in separate
JVMs (separate processes). In the small devices world

often no such easy exit exists, since there may be no
sufficient OS process model.

Despite a rather pressing need and motivation, there is
no standard for running multiple applications in the
same JVM. Existing solutions, based on class loaders
[LB98], are not safe. They are also not general, because
of the emergence of JVMs for small devices, which do
not have to support class loaders [Jav99].

This short paper discusses application isolation and
resource control from the perspective of a designer of
an execution environment based on a safe language.
The focus is PDAs where often little can be assumed
about available hardware protection, OS assistance, or
plentiful computational resources. The context of the
discussion is design decisions made during an ongoing
project to turn the KVM [Jav99] into a multiprocessing
JVM suitable for the Palm [Palm99].

2 Isolation

Currently, executing multiple applications in the same
instance of the JVM poses problems. Applications are
not isolated at the level of data access, because static
fields of classes are accessible to all classes loaded by
the same class loader. Using multiple class loaders
alleviates the problem, since each application can have
its own classes loaded by its own class loader. The
solution is not complete, since system classes are still
shared. This approach may also waste resources, since
some classes may have to be parsed and JITed many
times when used by many applications.

Running a separate JVM/process for each application
does not scale up. It also does not scale down to small
devices where the OS may not allow running of more
than one process. The common wisdom defense of this
approach is on the grounds of reliability and follows
more or less along the lines of “no JVM is as reliable
as any commercially available OS”. This is certainly
true now but does not have to be in the future – after all,
an OS kernel is also a piece of software. What
distinguishes it from other pieces of software (apart
from its functionality) is tremendous debugging effort,
far from anything any JVM implementation has ever
been subject to. Ultimately, one trusts software,

2

whether it is an OS or a runtime of a safe language. The
reliability issues of the Java platform and of an OS
kernel are essentially the same. Moreover, a program
coded in a safe language has less potential to crash due
to software problems.

2.1 Data protection

Consider straightforward multiprocessing in the Java
programming language: all applications share all
classes. Since it is a safe language, there is already
some built-in support for isolating applications from
one another: data references cannot be forged. The only
data exchange mechanism (barring explicit inter-
application communication) is through static fields. In
the absence of application-defined native code, this can
be done only by explicit manipulation of static fields or
by invoking methods that access these fields. This can
lead to unexpected and incorrect behavior depending on
how many applications use the same class with static
fields.

The above observation suggests an approach for
achieving separation among applications: maintain a
separate copy of static fields for each class, one such
copy per application that uses a given class. However,
only one copy of any class should exist in the system,
regardless of how many applications use it, since
methods cannot transfer data from one application to
another after the static fields communication channel is
removed. (Removing covert communication channels,
apparently impossible in general [Lamp73], is beyond
the scope of this paper). Static fields for a new
application are properly initialized (modified static
initializers are invoked whenever necessary.) Figure 1
contrasts the sharing and isolation in (i) the most
straightforward (and too simplistic) approach, (ii) the
approach based on class loaders, and (iii) the new
model.

In the absence of VM-specific features (Sec. 2.4) this
idea combines the best isolation features of the OS
based approach with the scalability of a single JVM
approach. Moreover, API is unchanged. In particular,
existing bytecode does not have to be modified to
execute under the proposed isolation model.

A deficiency of our approach when compared to class
loaders is that only one version of any given class can
be loaded into the system. Thus, dealing with changing
class implementations and dynamically loading new
versions of them for new instances of applications is
impossible in our current design.

In certain cases, the virtualizing of static fields
described above may have to be turned off. For
instance, consider 6\VWHP�RXW or its equivalent. It is
important to ensure that each application has an access

to 6\VWHP�RXW (if the security policy of a given
environment allows this) and, at the same time, this
static field is not directly shared by the applications.
System properties are another example. In general,
resources that must be shared by all classes have to be
identified for each particular implementation of the
JVM. Such cases are rare, though. Manually dealing
with them may be necessary for a handful of system
classes only.

2.2 Code access

Sharing classes among multiple applications may lead
to the following problem concerning static
synchronized methods. A thread may enter such a
method and then immediately it may be suspended by
another thread from the same application. This is a
serious denial-of-service problem since the suspended
thread still holds a monitor and no other application is
able to call the method. Thus, in the new isolation
model, class monitors must be virtualized so that there
is a class monitor for each application. The objective is
to ensure that proper mutual exclusion takes place
among the threads of each application but one
application cannot prevent anyone else from using a
given synchronized method.

2.3 Communication

The proposed isolation model favors communicating
via data copying (i.e. no sharing). The main reasons are
the ease of resource management (no sharing facilitates
termination and does cause problems with resource
accounting) and easily controllable data separation.
However, it can be argued that for some classes of
applications data sharing is more appropriate.

2.4 VM-specific issues

The separation discussed above is sufficient to turn an
idealistic implementation of the JVM into a
multiprocessing environment with strong application
isolation properties. However, most JVMs have
implementation-specific features that improve
performance but at the same time make the isolation
more difficult to achieve.

Native code and thread termination are such issues. In
our KVM implementation, they were addressed
relatively easily, mostly because of a simple user-level
thread model. Other facts we took advantage of are that
(i) there is no user-defined native code, and that (ii)
system native code cannot be entered simultaneously by
more than one thread, is non-blocking, and its execution
cannot be interrupted by a context switch. Isolating the
applications from one another and the ability to
terminate threads allows for clean application
termination. VM-specific issues must be addressed in

3

their specific contexts in order to turn the presented
approach into a fully functional system.

3 Resource Control

Controlling resources consumed by programs written in
the Java programming language is the topic of several
recent publications [BTS+98,CvE98,HCC+98]. The
focus has been on particular issues - how to account for
resources, and how to make sure that resource limits are
not exceeded, how to isolate resource consumption of
one applications from this of other ones. The projects
work with a mental model of a typical operating system
and its fixed set of computational resources to manage
(CPU time, memory, network, disk I/Os). The hardware
protection/OS mindset manifests itself in the avoidance
of resource sharing. For instance, Alta/GVM allocate
physically separate heaps for different applications
executing in the same JVM [BTS+98]. Manageability
concerns justify such approaches but designs promoting
sharing are more attractive when resources are scarce.

3.1 Shared heap
Separate per-process heaps are not adequate for
environments with small amounts of memory (like, for
instance, PalmV Organizer, with only 96K of RAM).
Separate heaps do not allow best-effort memory
allocation. Memory is pre-allocated for an application
and can be underutilized. These facts made us choose a
single, shared heap.

Due to our separation scheme, which virtualizes static
fields, applications cannot share data. Thus, their
garbage collection root sets are also disjoint. This
means that the heap is logically partitioned into a set of
separate sub-heaps and garbage collection can be
invoked concurrently; moreover, it is easy to determine
how much memory any given application is using.

This scheme enables dynamic changes to how much
memory an application can use. While it is easy to give
an application more memory, having applications
release memory (for instance, when a new application
has to be launched) is more problematic. In our design,
applications are given a guaranteed amount of memory;
anything beyond that is granted only if memory is

static fieldsstatic fields

AppClass

static fields static fields

SystemClass

static fields

AppClass

static fields

AppClass

static fields

SystemClass

static fields

AppClass

static fields

SystemClass

 App1 App2 App1 App2 App1 App2

Figure 1. The naïve approach to multiprocessing (“share everything”) in the Java programming language is
shown at the left; the center shows the class loaders based solution; the right presents the new model. Shaded
parts are shared by all applications; all other pieces are owned exclusively by a single application.

4

available but the application must be prepared to release
it. If an application wants to use more memory than its
guaranteed amount, it registers a callback to be notified
whenever the surplus memory has to be released. The
practical appeal of this approach remains to be seen.

3.2 Growing set of resources

A system written entirely in a safe language, without
any support from an operating system/hardware
protection poses additional challenges with respect to
resource control. Different components of the system
are shared differently than in an operating system. For
instance, consider a garbage collector (which does not
even appear in a traditional OS but is an integral part of
a safe language) and consider in how many ways a
malicious/buggy application can attempt to abuse it.

The most obvious attack is to try acquiring so much
memory that other applications cannot get any of it.
This problem is well understood, one possible solution
is to monitor the amount of memory allocated on a per-
application basis and reject requests for more. Another
attack is to allocate objects at a fast rate but discard
them right after the allocation. This stresses the garbage
collector (GC). A solution is to add resources consumed
by the GC to the accounting information pertaining to a
given application. Yet another, admittedly quite
sophisticated attack, aimed at non-compacting GCs, is
to allocate and discard objects in such a pattern so as to
lead to significant fragmentation. A solution here would
be to try to allocate application’s objects in larger
contiguous chunks or to use separate heaps.

The preceding paragraph is structured as a sequence of
“a possible attack is... a solution is...”. However, this
was just a GC example. We do not claim to know all
sorts of (DoS) attacks one can fancy against a GC.
Neither do we know all possible attacks against all
resources (we cannot even say we know all resources
that may be attacked in one way or another.) In our
opinion this justifies the following design decision: a
modular resource control system, where all sorts of
resources (such as various measures of heap usage or

screen real estate) can be registered and centrally
monitored.

Why centrally? This provides a convenient place for
enforcing various resource usage policies. For instance,
resource tradeoffs [CCH+98] can be easily made in
such a central place. In contrast, scattered managers of
a single resource with different APIs (or sometimes
without any external API at all) make it difficult to
combine knowledge about consumption of various
resources. Software engineering argument also favors
modularity – it is easier to add new resources this way,
since adding a new resource amounts to implementing a
mechanism to gather information about its
consumption; policies can be implemented separately.
Figure 2 contrasts our approach with a more typical
resource management structure.

4 Related Work

Space limitations allow us to only gloss over a few of
the related projects. The most relevant one (and
mentioned throughout the paper) is being carried out at
the University of Utah [BTS+98]. Two operating
systems have been designed that demonstrate how a
process model can be implemented in the JVM. The
first system, GVM, is structured much like a monolithic
kernel and focuses on complete resource isolation
between processes and on comprehensive control over
resources. A GVM process consists of a class loader-
based name space, a heap, and a set of threads in that
heap. In addition to their own heaps (each process has
its own heap) all processes have access to a special,
shared system heap. For every heap, GVM tracks all
references leading to other heaps and all references
pointing into it.

Alta closely models a micro-kernel model with nested
processes, in which a parent process can manage all
resources available to child processes. Memory
management is supported explicitly, through a simple
allocator-pays scheme. The garbage collector credits
the owning process when an object is eventually
reclaimed. Because Alta allows cross-process

references,
any existing
objects are

logically
added into the

parent
memory. This
makes the
parent process

responsible
for making
sure that
cross-process

Resource 1

use

monitor

Resource 2

use

monitor

Resource 3

use

monitor

Resource 1

notify

permit

Resource 3

Resource 2

Resource
manager

notify notify

permit

permit

Figure 3. Central resource manager (right) vs resources being managed separately (left).

5

references are not created if full memory reclamation is
necessary upon process termination. Both GVM and
Alta are implemented as considerable modifications to
the JVM. Both systems support strong process models:
each can limit the resource consumption of processes,
but still permit processes to share data directly.

An example of a class loader based approach to
application protection is the J-Kernel [HCC+98]. The J-
Kernel adds protection domains to the JVM, and makes
a strong distinction between objects that can be shared
between tasks, and objects that are confined to a single
task. Each domain has its own class loader. The system,
written as a portable Java library, provides mechanisms
for clean domain termination (e.g. no memory allocated
by the task is “left over” after it is terminated) and
inter-application communication (performed either via
deep object copy of method arguments and return
values or via controlled sharing enabled by revocable
capabilities).

Balfanz and Gong designed a multiprocessing JVM in
order to explore the use of the Java security architecture
to protect applications from each other [BG97]. The
proposed extensions, based on class loaders, enhance
the standard JVM so that it can support
multiprocessing. An important part of the work is the
clear identification of several areas of the JDK that
assume a single-application model.

5 Conclusions

The approach to multiprocessing in Java outlined in this
paper is, in our opinion, well suited for simple JVMs
designed for PDAs. Isolating applications without
having to rely on OS processes or class loaders and
modular resource management make the design both
lightweight and relatively easy to extend whenever a
new DoS attack is found to be possible. In the absence
of any inter-application communication mechanisms,
the isolation model allows for clean application
termination and exact resource accounting. This
simplicity of the model made us opt for copy-only
communication. Assessing the value of controlled
sharing based on capabilities like in the J-Kernel or on a
special heap like in GVM still needs to be investigated
in these settings.

6 References
[BTS+98] Back, G, Tullmann, P, Stoller, L, Hsieh, W, and

Lepreau, J. Java Operating Systems: Design and
Implementation. TR UUCS-98-015, Department of
Computer Science, University of Utah, August 1998.

[BG97] Balfanz, D., and Gong, L. Experience with Secure
Multi-Processing in Java. TR 560-97, Dept. of Computer
Science, Princeton University, September 1997.

[CvE98] Czajkowski, G., and von Eicken, T. JRes: A
Resource Control Interface for Java. ACM OOPSLA’98,
Vancouver, BC, Canada, October 1998.

[CCH+98] Czajkowski, G., Chang, C-C., Hawblitzel, C., Hu,
D., and von Eicken, T. Resource Management for
Extensible Internet Servers. 8th ACM SIGOPS European
Workshop, Sintra, Portugal, September 1998

[GS98] Gong, L. and Schemers, R. Implementing Protection
Domains in the Java Development Kit 1.2. Internet
Society Symposium on Network and Distributed System
Security, San Diego, CA, March 1998.

[HCC+98] Hawblitzel, C., Chang, C-C., Czajkowski, G., Hu,
D. and von Eicken, T. Implementing Multiple Protection
Domains in Java. USENIX Annual Conference, New
Orleans, LA, June 1998.

[Jav99] Sun Microsystems, Inc. The K Virtual Machine – A
White Paper. http://java.sun.com/products/kvm/wp.

[Lamp73] Lampson, B. A Note on the Confinement Problem.
Communications of the ACM, 16(1), October 1973.

[LB98] Liang S., and Bracha, G. Dynamic Class Loading in
the Java Virtual Machine. In Proceedings of ACM
OOPSLA’98, Vancouver, BC, Canada, October 1998.

[LY99] Lindholm, T., and Yellin, F.. The Java Virtual
Machine Specification. 2nd Ed. Addison-Wesley, 1999.

[Palm99] Palm Computing, Inc. The Palm Computing
Platform Development Zone. www.palm.com/devzone.

