
The Design of a Robust Peer-to-Peer System

Rodrigo Rodrigues, Barbara Liskov, Liuba Shrira
�

MIT Laboratory for Computer Science�
rodrigo, liskov, liuba � @lcs.mit.edu

Abstract

Peer-to-peer (P2P) overlay networks have recently become
one of the hottest topics in OS research. These networks
bring with them the promise of harnessing idle storage and
network resources from client machines that voluntarily join
the system; self-configuration and automatic load balanc-
ing; censorship resistance; and extremely good scalability
due to the use of symmetric algorithms. However, the use
of unreliable client machines leads to two defects of these
systems that precludes their use in a number of applica-
tions: storage is inherently unreliable, and lookup algo-
rithms have long latencies. In this paper we propose a de-
sign of a robust peer-to-peer storage service, composed not
of client nodes, but server nodes that are dedicated to run-
ning the peer-to-peer application. We argue that our system
overcomes the defects of peer-to-peer systems while retain-
ing their nice properties with the exception of utilizing spare
resources of client machines. Our system is capable of sur-
viving arbitrary failures of its nodes (Byzantine faults) and
we expect it to perform and scale well, even in a wide-area
network.

1 Introduction

We have witnessed the recent emergence of a number
of peer-to-peer (P2P) distributed systems, i.e., systems in
which all nodes have identical responsibilities and all com-
munication is symmetric. Successful applications of these
systems include content sharing [7] and large-scale storage
systems [6].

Peer-to-peer computing offers several advantages over
other traditional distributed systems, such as automatic load
balancing and self-organization. But perhaps the most valu-
able feature of these systems is that, due to the symmet-

�
Department of Computer Science, Brandeis University

This research was supported by DARPA under contract F30602-98-
1-0237 monitored by the Air Force Research Laboratory. Rodrigo
Rodrigues is supported by a Praxis XXI fellowship.

ric nature of peer-to-peer, the desirable properties of the
system can scale when new nodes are added to the sys-
tem. These properties include (but are not limited to) per-
formance, availability, and fault-tolerance.

Part of the success of these systems comes from their
ability to harness idle storage and network resources, of-
fered by everyone who is willing to participate in the sys-
tem. Unfortunately, such resources are inherently unreli-
able: we cannot control what code is running in these ma-
chines, and they will join and leave the network frequently.
This leads to two essential defects of P2P storage systems:
they offer weak guarantees in terms of storage reliability;
and they must include complicated lookup algorithms (with
very high latency) to allow low cost routing information up-
dates in the presence of frequent joins and leaves.

In this paper we describe the design of a P2P storage
system that solves these problems. Our system provides
reliable storage in the presence of failstop failures. In ad-
dition it also performs reliably in the presence of Byzantine
failures: the storage service will continue to work correctly
even if faulty components behave arbitrarily. Our system
overcomes the main problems of traditional P2P storage
systems while maintaining their essential design philosophy
and the advantages that derive from it.

Our system has a hybrid architecture, consisting of a set
of servers — not unreliable client machines that participate
in the system intermittently — acting as the P2P nodes, and
a configuration service (CS). The CS runs on a set of special
servers (presumably less failure-prone than P2P nodes). It
is responsible for computing the current configuration (in-
cluding removing faulty P2P nodes from the system), and
informing the P2P nodes about the current configuration.

Not all applications require the kind of robustness this
system provides. In particular, applications like the Coop-
erative File System (CFS) [3] assume that the file system
is created in a secure place and the untrusted peer-to-peer
storage is used only to publish information. Therefore, if
the peer-to-peer system loses state, the information can be
refreshed from the original source. Our techniques are re-
quired, however, for applications that store their actual state,
rather than a copy of the state, in the P2P system. Examples

1

SESSION 7. PEER-TO-PEER 117

of such applications include various kinds of archival ser-
vices, ranging from digital libraries to archives for file sys-
tems and object-oriented systems; mail services; key distri-
bution services; and databases that store large amounts of
information such as astronomical data.

The next section discusses P2P computing and motivates
our approach by explaining why P2P systems as presently
designed cannot tolerate Byzantine-faulty nodes and what
is needed to fix the problem. Section 3 presents our system
model and lists our assumptions. The configuration service
is presented in Section 4 and the P2P nodes in Section 5.
We conclude in Section 6.

2 Motivation

This section presents a brief description of P2P systems
and then explains why these systems cannot tolerate Byzan-
tine failures. Then it describes what is necessary to solve
the problems: P2P servers that do proactive recovery and
a configuration service that determines the current configu-
ration using Byzantine agreement protocols and propagates
the information to the P2P nodes.

2.1 Peer-to-Peer Computing

Recently proposed P2P storage systems provide the ab-
straction of a distributed hash table [12, 14, 18, 19]. Each
data item is assigned an ID, and the system provides the
ability to store the item with that ID and to retrieve it later.
Applications choose the IDs and this is typically done in a
way that allows the data to be self-verifying.

The system is composed of nodes each of which is as-
signed an ID. The system stores an item at a node or nodes
based on a computation that takes into account the item ID
and the node IDs.

The functionality of the P2P nodes is divided into a
lookup layer that locates the nodes responsible for an item
given its ID, and a storage layer built on top of the lookup
layer that provides the distributed hash table abstraction.
Each of these layers provides both client and server func-
tionalities: the client storage layer uses the client lookup
layer to locate servers that hold the desired data. The server
storage layer is responsible for storing the data items, main-
taining proper levels of replication, and performing caching.
The server storage layer and lookup layer interact in order
to maintain the correct mapping between the servers that are
present in the system and the data they hold.

Node IDs are typically computed by applying a
collision-resistant base hash function such as SHA-1 [16]
to information about the node, such as its IP address, re-
sulting in an � -bit identifier. Data item IDs are also of the
same length (and are often computed by hashing the content
of the item).

Different peer-to-peer lookup systems use different cri-
teria to determine which node is responsible for storing a
particular data item. For instance, Chord [18] is based on
consistent hashing [8], where identifiers are ordered in an
identifier circle modulo

���
, and the data item with ID � is

assigned to the first node whose identifier is equal to or fol-
lows � in the identifier space (called the successor node of
ID �). Pastry [14], on the other hand, allows applications to
store data items in the nodes with IDs numerically closest
to the ID of item being stored. Without loss of generality,
we will assume the use of consistent hashing in our system
description. Changing the system to use other mappings
should be straightforward.

The storage layer builds a reliable storage service on top
of the lookup layer. Reliability cannot be achieved without
replication, and therefore this layer must make decisions on
where to store the replicas of the data. Typically, there is
a great deal of interdependence between the replica place-
ment decisions and the details of the lookup algorithms. For
instance, the DHash layer built on top of Chord [3] stores
the data item not only at the successor of its ID � but also
at the next � successors. These are easy to determine since
the Chord layer maintains a list of successors for each node.
Similarly, PAST [15] stores replicas on the � nodes whose
ID are numerically closest to the item ID � , which is also
information contained in the data structures maintained by
the Pastry lookup algorithm.

Our system can easily adapt to any placement strategy.
We will assume, without loss of generality, that we store
each data item at the � successors of ID � in the ID space
(similarly to DHash). We believe that changing this place-
ment strategy does not affect the properties of our system,
as long as the strategy is based on randomly-chosen node
IDs. This is important so that the likelihood of replicas of
each data item failing is as independent as possible. Ran-
dom node IDs avoids, for instance, having all replicas in the
same LAN, which would make a simple disconnection of
the LAN from the Internet sufficient to make the data un-
available.

2.2 Problems in Peer-to-Peer Systems

Most currently proposed peer-to-peer systems are de-
signed to tolerate failstop failures (e.g., [14, 18]). They as-
sume replicas fail by stopping or omitting some steps. Two
aspects of these algorithms make them particularly vulner-
able to malicious attacks.

First, there is no admission control. This implies that an
attacker can join the system with multiple personalities that
offer a large amount of resources (even if the attacker does
not own such resources, as described in [5]) and this way
the attacker can control a substantial fraction of the nodes
and increase the probability of a successful attack.

2

SESSION 7. PEER-TO-PEER 118

Second, all nodes trust the configuration information
they hear from other nodes to be correct. If this informa-
tion is incorrect (because it comes from a Byzantine-faulty
node), this can cause a client request to be diverted to a par-
allel, internally consistent system formed only of malicious
nodes that pretend to store the data correctly but can choose
to not allow correct retrieval [17]. Or even more seriously,
a P2P node might update its routing state incorrectly, to re-
flect a bogus configuration change reported by a malicious
node.

Solving this second problem is difficult, and its solution
motivates the main architectural choices of our system: we
need a way to reliably detect faulty nodes and to remove
them from the system. As we will explain, the configuration
service provides this ability.

2.2.1 Detecting Failed Nodes

Knowing a node is faulty is difficult even if we are only try-
ing to detect failstop failures. Typically, fault detection can
be done by some sort of ping protocol where you periodi-
cally test that the node is alive and reachable. Assuming the
node is faulty when you cannot ping it is not reasonable in
the presence of denial of service attacks. Still, if we assume
denial of service of attacks are bounded we can reason this
way.

Detecting Byzantine faults that result, for instance, from
a malicious attack is much harder. This is so because nodes
can appear to behave properly even if they have been com-
promised, and therefore obtaining a proper reply from a
node does not imply it is correct. Also, it is impossible
to check if a node is correct by inspecting its state, since a
faulty node could appear correct when inspected and mis-
behave when replying to clients. Thus, the only way to
detect Byzantine faults by probing is if the probes are in-
distinguishable from client requests. But even with such
probes, we can’t guarantee to detect Byzantine-faulty nodes
in time, because an attacker can compromise more and more
nodes, making them behave properly until enough have
been compromised to cause the system to malfunction. In
other words, it is impossible to get rid of Byzantine faulty
nodes in a timely way using probes.

Thus instead of probing, we rely on a proactive recov-
ery mechanism [2] to make Byzantine-faulty nodes behave
correctly again. In this scheme, all nodes in the system are
recovered proactively and frequently, even if there is no rea-
son to suspect they are faulty. When a node is recovered, it
is rebooted and restarted from a read-only disk that contains
a correct version of the code. Then it is brought up-to-date
by fetching its missing or incorrect parts of the service state
from nodes that contain copies of that state. This mech-
anism allows us to assume that nodes are Byzantine faulty
only for short periods, so that we do not need to worry about

detecting and removing Byzantine faulty nodes. Thus we
will concentrate on removing unreachable nodes from the
system.

Note that proactive recovery makes it unlikely that P2P
nodes could be client machines that voluntarily join the sys-
tem and provide their resources to it. Instead they must be
server machines dedicated to handling the distributed appli-
cation. However, as discussed earlier, there are other rea-
sons why we want to use servers as the P2P nodes. Server
machines are less failure-prone than client machines (which
minimizes the probability of enough machines being com-
promised so that the system becomes unavailable), and they
are not constantly joining and leaving the system, which fa-
cilitates management of the routing state. However, there
can still be huge numbers of nodes in the system, provided
by many different organizations; they can still run symmet-
ric protocols; and the nodes can still be distributed across
a wide area, allowing them to survive catastrophic failures
(from earthquakes to terrorist attacks).

2.2.2 Removing Faulty Nodes

We still need to figure out how to decide what nodes should
be removed from the system and we also need to propagate
this information to the P2P nodes in a way that cannot be
subverted by Byzantine-faulty nodes.

Deciding which nodes are faulty requires some form of
agreement, since we cannot trust an individual node to be
correct and make the right decision. Therefore the decision
must be made by a group of replicas that carry out an agree-
ment protocol that is robust in the presence of Byzantine
failures. These replicas must run a Byzantine agreement
protocol [1, 2] to agree on the correct state of the configura-
tion.

Our architecture uses the configuration service (CS) for
this purpose. The CS controls membership in the current
P2P configuration and periodically notifies the P2P nodes
of configuration changes. It uses an agreement protocol to
decide on changes, and it propagates configuration informa-
tion to the P2P nodes, authenticated using digital signatures
so that the P2P nodes can be certain that the information is
correct.

The CS could run on a subset of the P2P nodes. It could
only run on a subset, rather than on all the P2P nodes, be-
cause the CS replicas need to communicate with all other
nodes, and they need to carry out agreement protocols, so
this would be impractical if all P2P nodes were involved.
The subset might be selected statically, but that would go
against our self-configuring design principle. Or we could
imagine that it is selected dynamically: part of defining the
next configuration is choosing the subset of nodes that will
be the CS for that configuration.

However there are advantages to keeping the CS separate

3

SESSION 7. PEER-TO-PEER 119

from the P2P nodes. The CS nodes can be more reliable
than the P2P nodes, with hardened security (e.g., physically
isolated, geographically diverse, running different software
and with different administrators). In addition the CS nodes
have lots of work of their own to do; having P2P nodes do
this work might lead to excessive load.

3 System Model

We assume an asynchronous distributed system where
nodes are connected by a network. The network may fail
to deliver messages, delay them, duplicate them, or deliver
them out of order. We use a Byzantine failure model, i.e.,
faulty nodes may behave arbitrarily.

To authenticate communication in the presence of
Byzantine faults, we rely on cryptographic techniques that
an adversary cannot subvert. Not only do we need such
protocols for communication within the CS and from the
CS to the P2P nodes, we also require them occasionally for
communication between P2P nodes (as discussed below).
Therefore we assume that each node (both CS and P2P) has
a secure cryptographic co-processor (which prevents expo-
sure of a node’s private key), a read-only disk where it stores
the correct service code, and a watchdog timer that triggers
recoveries. These are common assumptions for Byzantine
fault tolerance algorithms [2].

We assume that all nodes in the system initially get to
know the identity and public keys of the replicas in the CS
using an out-of-band mechanism. When admitting a P2P
node in the system, the CS gets to know its public key as
well. This information is propagated to the P2P nodes as
part of the configuration information.

We allow for a very strong adversary that can coordinate
faulty nodes, delay communication, or delay correct nodes
in order to cause the most damage to the replicated service.
We do assume that the adversary cannot delay correct nodes
indefinitely, and cannot cause an arbitrary delay to messages
that are sent to reachable nodes (i.e., there are bounds on the
duration of a denial-of-service attack).

4 The Configuration Service

The CS is responsible for determining the current con-
figuration of the system, and propagating this information
to the P2P nodes, so that they know what other nodes to
contact to store or retrieve data. The CS replicas carry out
a Byzantine-fault-tolerant protocol [1] to ensure that they
agree about configuration state; this is necessary to ensure
that the configuration state is correct and consistent.

This service performs four main functions that are de-
scribed in the next sections.

4.1 Admission Control

The CS controls nodes entering the system, since other-
wise, as discussed earlier, a malicious party can subvert the
system.

The simplest way to do admission control is for the CS to
maintain a list of authorities who are permitted to add nodes
to the system. Each request to add a node must be signed
by one of these authorities.

In addition, the CS provides a way to add and remove
authorities.

When a node joins the system, the CS must be informed
about its ID, its IP address, and its public key. This in-
formation will be propagated to the P2P nodes in the next
configuration description.

4.2 Node Monitoring

The CS monitors the availability and reachability of the
nodes using a ping protocol. Each CS replica must do its
own monitoring of all the P2P nodes. This is needed so
that it can form its own view of which nodes are faulty;
then it will be able to decide whether a configuration change
proposed by some other replica is reasonable.

CS replicas can do monitoring by sending pings to the
P2P nodes. Alternatively, pings could be initiated by the
P2P nodes. A good time to do this is when the P2P node
restarts after proactive recovery since at that moment, the
node is up and not faulty. We plan to use a combination of
these techniques since each has its advantages. If pings are
initiated by the P2P nodes there is less traffic since pings
need not be acknowledged. Initiating the pings by the CS
allows us to control the periodicity of the pings. This way
we can increase the frequency of pings when we suspect a
node is down, so that we can verify this more credibly.

The results of the pings are inserted in a liveness
database local to the CS replica.

4.3 Deciding on a New Configuration

Periodically the CS nodes must decide on a new configu-
ration. The new configuration will contain all the new nodes
that joined the system since the last configuration was pro-
duced. The new configuration will not contain nodes that
the CS replicas agree are faulty.

CS nodes scan the liveness database and try to evict
potentially faulty nodes from the system. Having the CS
nodes agree on evicting someone is not trivial, as different
nodes will have different values for how long each node has
been unreachable. We solve this using the non-deterministic
choices validation mechanism proposed in [13]. CS nodes
initiate a node eviction operation on the CS group if they
haven’t heard from a node for longer than ����� time units.

4

SESSION 7. PEER-TO-PEER 120

The decision to evict a node is a non-deterministic choice,
and therefore it needs to be validated by other CS replicas.
They should accept the operation if they haven’t heard from
the same node for longer than � time units. This approach
ensures that most eviction operations will succeed.

The eviction threshold � � � is chosen to be longer
than the assumed bound on denial-of-service attacks. It
should be enough longer that the probability of evicting a
non-faulty node because the attack prevents communication
with it is small.

4.4 Propagating Configuration Information

The CS produces new configurations periodically (e.g.,
once every hour). Doing this only once in a while makes the
system much more practical. We require that new configu-
rations be generated often enough to preserve the following
correctness condition for the P2P nodes:

At any moment, for any group of � ����� ��� replicas
of a data item, that group contains no more than � faulty
replicas.

A configuration description includes start and expiration
times. The new configuration has a start time equal to the
expiration time of the previous configuration. We assume
that all participants have loosely synchronized clocks that
allow them to perceive similar configuration intervals. The
assumption about loosely synchronized clocks is a reason-
able one for current systems due to the use of clock synchro-
nization protocols [11]. (If these protocols do not provide
adequate level of fault-tolerance, GPS can be used instead.)

New configurations must be signed by the CS and prop-
agated to all the nodes, e.g., using gossip methods [4] to
avoid overloading the CS. Signing configurations is not triv-
ial, since an attacker can compromise one replica of the CS
at a time, and have each replica sign wrong future config-
urations that are later combined to form a valid signature.
We could solve this by having all P2P nodes read the con-
figuration state from the CS nodes (from

� � ��� of them)
periodically, but this is a heavy weight solution that pre-
cludes the use of gossip methods and increases load on the
CS. One possible solution is to employ threshold cryptog-
raphy methods for signing certificates as proposed in [20].

We have choices about what configuration information
to propagate to which nodes. For example, we could parti-
tion the configuration information and each P2P node would
learn only the information needed for it to carry out its base
algorithm. Thus in a Chord system [18], nodes would be
given their successors and their fingers.

But having to deal with incomplete configuration infor-
mation is a problem in P2P systems. Traditional peer-to-
peer systems have to cope with nodes frequently joining and
leaving the network, and therefore try to limit the amount
of routing state that has to be updated when configuration

changes occur. The penalty for this is having to use lookup
algorithms with high latency: each lookup involves con-
tacting a substantial number — typically 	�

������
������ — of
nodes [12, 14, 18, 19]. In our system, however, we assume
that nodes join and leave the system much less frequently
than client machines in traditional P2P systems, and these
node addition and removal operations are grouped together
in even less frequent configuration changes dictated by the
CS.

Therefore it seems reasonable to take advantage of the
CS to simplify the routing algorithm by disseminating the
entire configuration information to all the P2P nodes. Thus,
routing decisions can be made locally, avoiding the latency
of contacting a series of nodes.

The main cost of this approach is that the P2P nodes must
store all this information. But actually the amount of stor-
age required is small, even when we scale to hundreds of
thousands of nodes. If we assume that the configuration
consists, for each node in the system, of a 160 bit node iden-
tifier (based on a SHA-1 cryptographic hash function), plus
its IP address, port number, and 1024 bit RSA public key,
then the entire configuration will fit in approximately �������
megabytes, when we scale to ������� ���!� nodes. This informa-
tion can easily fit in main memory.

Transmitting the information from the CS to the P2P
nodes is not an issue since this can be done using diffs. The
configuration description must contain a signed certificate
containing the start and end time of the configuration and
a fingerprint of its current state, so that nodes can commu-
nicate about configurations reliably without having to send
the entire configuration.

In addition, the CS needs to allow P2P nodes to read
the entire configuration; this is necessary when a node first
starts using the system, or if it becomes very out of date.
This is a large amount of information to be transmitted,
but some of it is highly compressible (e.g., IP adresses and
port numbers). Also, we could devise a mechanism where
only the current configuration and specific public keys are
obtained immediately, and the remaining public keys are
obtained in the background. After a node is temporarily
disconnected we can minimize the amount of information
transmitted by using Merkle trees [10] to determine exactly
the subset of the configuration that is out-of-date.

5 Peer-to-Peer Nodes

This section describes the processing at the P2P nodes.
We designed our system with an application like CFS in
mind, but extended the model to provide robustness. In the
future, we intend to investigate what aspects of this design
are not suitable for other applications and refine it to over-
come these problems.

Figure 1 illustrates the software structure of the P2P

5

SESSION 7. PEER-TO-PEER 121

nodes. The figure makes a distinction between clients and
servers. However, a server machine can also act as a client,
similar to what happens in other P2P systems; in this case
the application layer must be prepared for the unavailability
of the node during proactive recovery. Alternatively, there
may be dedicated clients that do not implement server func-
tionality.

Other than the possibility of dedicated clients, the soft-
ware structure is similar to what is used in previous P2P
systems. In the description of the P2P nodes, we will use
the term “client” to refer to the client functionality of the
P2P nodes, which may correspond either to the client sub-
set of the P2P node functionality, or to a dedicated client.

Client Server Server

Storage

Application

Storage Storage

Lookup Lookup Lookup

Figure 1. Software Structure

5.1 Lookup Layer

Periodically, the lookup layer receives information from
the CS about the latest configuration. The lookup layer will
notify the storage layer of this fact. In the new configu-
ration, it is likely that the set of P2P nodes storing certain
data items will change; the storage layer must do state trans-
fer (described in Section 5.2.2) to move those items to the
nodes that now store them.

The lookup layer on the client side also maintains infor-
mation about the latest configuration. This enables clients
to go directly to the P2P nodes that hold the data of interest:
the storage layer at the client side asks the lookup layer for
the replicas that hold the data item with a particular ID, and
then it can contact the storage layer at the replicas directly.

P2P nodes obtain the configuration information from the
CS the first time they join the system, but after this they can
obtain new configurations directly from other nodes.

5.2 Storage Layer

Our storage layer must make a distinction between two
types of data that can be stored in the system:

1. Immutable, self-verifying data. For instance, CFS data
blocks do not change over time and are indexed by the
hash of its contents, and therefore their integrity can be
verified.

2. Mutable mappings that may be subject to a replay at-
tack; CFS root blocks are an example. For such data
we need to make sure we are retrieving the latest ver-
sion. We do expect this data to be signed so that its
integrity can also be verified by clients.

To ensure freshness of the second type of data, the client
must extend it with a monotonically increasing version
number that is also covered by the signature.

We will now present the algorithms that are involved in
the operations of the storage layer. We will begin by de-
scribing how we store and retrieve data when the configura-
tion does not change, and then describe what happens dur-
ing configuration changes — how state transfer takes place
and how the storage and retrieval algorithms work in the
presence of a changing configuration.

5.2.1 Storage and Retrieval with a Static Configura-
tion

In general, the storage algorithms for both types of data
must ensure that

� � ��� replicas claim to have stored the
data. The reason why we do not wait for the remaining �
replicas is that they may be faulty and are never going to
respond. Therefore, we need to make progress after hearing
from only ��� � � � � � � replicas.

Thus for a client to write data of either type, it must send
the write to at least

� � � � replicas. It needs to receive ac-
knowledgments from

� � � � replicas before it can be certain
that the write succeeded.

In all storage operations, the integrity of the data should
be verified by the replicas storing that data item to avoid
garbage being stored. For data of type (1), this means veri-
fying that the ID is a hash of the content.

Reading data of type (1) is simple: it is sufficient to read
from one replica, as long as the client verifies that the hash
of the contents matches the ID. If it does not, the client re-
peats the read but this time asks for all the replicas of the
data until it finds one that matches.

Version numbers for writes of data of type (2) are gen-
erated by the clients, and storage nodes reject blocks with
version numbers not greater than the current version that is
stored. The client doing the write can simply generate this
version number (through prior knowledge or storage outside
the system). Or, it can read the current version to learn the
current version number; then it can increment that number
to obtain the new version number and use it when writing
the data.

Reads for data of type (2) have to wait for
� � � � replies

and choose the block with the highest version number. Note
that reading from

� � � � replicas has the nice property that
the set of replicas we read from intersects the set of replicas
for the last write in at least one non-faulty replica. This can

6

SESSION 7. PEER-TO-PEER 122

be seen as a particular instance of a dissemination Byzantine
quorum system [9].

When reading data of type (2), clients must ensure they
are receiving data from the correct nodes, since otherwise
they could be tricked into a replay attack where they would
be presented out-of-date versions of the data. Therefore, re-
quests for data of this type contain a nonce that is sent with
the signed reply to ensure its authenticity and freshness. As
mentioned, clients know the public keys of P2P nodes since
this is part of the configuration information.

One problematic situation is a faulty client sending dif-
ferent data items of type (2) to be stored at different repli-
cas with the same version number. We address this issue
by allowing temporary inconsistencies (different reads may
obtain different values for the data item in question after
the faulty write) which will be solved when a non-faulty
client overwrites that data item. This temporary inconsis-
tency might be avoided by having the replicas perform a
consensus on the value being stored, but we decided against
this because of the slowdown it imposes, especially in a
wide area network.

These algorithms assume, like CFS does, that there are
no concurrent writes to the same data item. Serializability
for concurrent data accesses can be implemented by order-
ing the writes by version number and, if the version num-
bers are the same, by the hash of the contents.

5.2.2 State Transfer

When the configuration changes, the P2P nodes that are re-
sponsible for storing a particular data item in the new con-
figuration may differ from those storing it in the previous
configuration. In this case, state transfer must take place to
bring the new replicas for that data item up-to-date.

This task can be simplified if all replicas involved in this
process have access to both the old and the new configura-
tions. This way everyone knows which nodes contain data
they need, and which nodes need data they have.

So assume that both configurations are distributed to all
nodes (at different times, though). When a node receives a
new configuration (� ���), and realizes it is now responsible
for some new data items, it reads that data from the nodes
that held it in configuration � . Nodes receiving data from
configuration � should check the validity of the sender, the
integrity of the data, and, if it is of type (2), should merge
the copies it receives from different replicas (i.e., keep the
one with the latest version number). Note that for data of
type (1) it is enough to receive the data from one replica,
whereas for data of type (2) the node must receive data from� � � � replicas and pick the one with the highest version
number.

We also assume that nodes include identifiers of the lat-
est configuration they know in the messages they exchange.

If a node detects an identifier greater than its current con-
figuration, it asks the node that sent the identifier for a copy
of that configuration. The same applies to clients: if a client
tries to store a data item and a storage node that it talks to
knows a configuration later than the one the client is us-
ing, it forces the client to fetch the new configuration, and
the client repeats the store operation in the new configura-
tion. This prevents different clients from performing con-
current reads and writes in different configurations, which
could lead to inconsistencies.

6 Conclusions

In this paper we presented techniques to build Byzantine
fault-tolerant peer-to-peer systems. To achieve this level
of robustness in peer-to-peer systems we needed to devi-
ate from traditional peer-to-peer architectures in two fun-
damental ways. First, we proposed a hybrid system, with
symmetric storage nodes that implement the peer-to-peer
system and a configuration service that performs admis-
sion control and determines the current configuration. Sec-
ond, the P2P nodes (and also the CS nodes) must be server
machines dedicated to run the storage application, and not
client machines that run arbitrary code and are constantly
entering and leaving the system. Our server machines have
secure co-processors and perform proactive recovery.

We also sketched the design of a system built according
to these principles. We believe that this design will work
and the resulting system should perform well. The P2P
nodes will not be burdened with determining membership
and therefore can perform their storage function without in-
terference except during configuration changes, which oc-
cur infrequently. In addition, because the P2P nodes and
the clients store the entire configuration, routing is very ef-
ficient.

There is much future work that needs to be done, how-
ever. There are still many design issues to be resolved, and
then we need to implement the system. We also plan to
study the use of the system in various applications, and to
extend it as needed. For example, one needed extension is
providing support for a delete operation and a quota system
to limit the amount of storage a client can use. The two go
together, because when a quota system is deployed, a client
trying to write to the system when its quota is reached needs
to have some way of freeing up space to be able to continue
using the system. We are working on algorithms to support
these two features.

Acknowledgements

We would like to thank Emil Sit, Steven Richman,
Chuang-Hue Moh, Sameer Ajmani, and the anonymous ref-
erees for their helpful comments on drafts of this paper.

7

SESSION 7. PEER-TO-PEER 123

References

[1] Miguel Castro and Barbara Liskov. Practical Byzantine fault
tolerance. In Proceedings of the 3rd Symposium on Oper-
ating Systems Design and Implementation (OSDI-99), pages
173–186, New Orleans, Louisiana, February 1999.

[2] Miguel Castro and Barbara Liskov. Proactive recovery in a
Byzantine-fault-tolerant system. In Proceedings of the 4th
Symposium on Operating Systems Design and Implementa-
tion (OSDI-00), pages 273–288, San Diego, California, Oc-
tober 2000.

[3] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles (SOSP-01), pages 202–215, Banff,
Canada, October 2001.

[4] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and
Doug Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the 6th Annual ACM Sym-
posium on Principles of Distributed Computing, pages 1–12,
Vancouver, Canada, August 1987.

[5] John Douceur. The Sybil attack. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’02),
Cambridge, Massachusetts, March 2002.

[6] Freenet. http://freenet.sourceforge.net/, 2002.

[7] Gnutella. http://gnutella.wego.com/, 2002.

[8] David Karger, Eric Lehman, Tom Leighton, Matthew
Levine, Daniel Lewin, and Rina Panigrahy. Consistent hash-
ing and random trees: Distributed caching protocols for re-
lieving hot spots on the World Wide Web. In Proceedings
of the 29th ACM Symposium on Theory of Computing, pages
654–663, El Paso, Texas, May 1997.

[9] Dahlia Malkhi and Michael Reiter. Byzantine quorum sys-
tems. In Proceedings of the 29th ACM Symposium on Theory
of Computing, pages 569–578, El Paso, Texas, May 1997.

[10] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function. In Carl Pomerance, editor,
Advances in Cryptology - Crypto’87, number 293 in Lec-
ture Notes in Computer Science, pages 369–378. Springer-
Verlag, 1987.

[11] David L. Mills. Network Time Protocol Specification, Im-
plementation and Analysis. Network Working Report RFC
1305, March 1992.

[12] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content-addressable net-
work. In Proceedings of the ACM SIGCOMM 2001 Confer-
ence (SIGCOMM-01), pages 161–172, San Diego, Califor-
nia, August 2001.

[13] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov.
BASE: Using abstraction to improve fault tolerance. In Pro-
ceedings of the 18th ACM Symposium on Operating System
Principles (SOSP-01), pages 15–28, Banff, Canada, October
2001.

[14] Antony Rowstron and Peter Druschel. Pastry: Scalable, de-
centralized object location and routing for large-scale peer-
to-peer systems. In Proceedings of the 18th IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Mid-
dleware), pages 329–350, Heidelberg, Germany, November
2001.

[15] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP-01), pages 188–
201, Banff, Canada, October 2001.

[16] Secure Hash Standard. US Dept. of Commerce/NIST, 1995.

[17] Emil Sit and Robert Morris. Security considerations for peer-
to-peer distributed hash tables. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems (IPTPS ’02),
Cambridge, Massachusetts, March 2002.

[18] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proceedings
of the ACM SIGCOMM 2001 Conference (SIGCOMM-01),
pages 149–160, San Diego, California, August 2001.

[19] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph.
Tapestry: An infrastructure for fault-resilient wide-area lo-
cation and routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, University of California at
Berkeley, April 2001.

[20] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse.
COCA: A secure distributed on-line certification authority.
Technical report, 2000-1828, Department of Computer Sci-
ence, Cornell University, December 2000.

8

SESSION 7. PEER-TO-PEER 124

