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Abstract

This paper addresses the problem of forming groups in
peer-to-peer (P2P) systems and examines what dependabil-
ity means in decentralized distributed systems. Much of the
literature in this field assumes that the participants form a
local picture of global state, yet little research has been done
discussing how this state remains stable as nodes enter and
leave the system. We assume that nodes remain in the sys-
tem long enough to benefit from retaining state, but not suf-
ficiently long that the dynamic nature of the problem can be
ignored. We look at the components that describe a system’s
dependability and argue that next-generation decentralized
systems must explicitly delineate the information dispersal
mechanisms (e.g., probe, event-driven, broadcast), the ca-
pabilities assumed about constituent nodes (bandwidth, up-
time, re-entry distributions), and distribution of informa-
tion demands (needles in a haystack vs. hay in a haystack
[13]). We evaluate two systems based on these criteria:
Chord [22] and a heterogeneous-node hierarchical group-
ing scheme [11]. The former gives a > 1% failed request
rate under normal P2P conditions and a prototype of the
latter a similar rate under more strenuous conditions with
an order of magnitude more organizational messages. This
analysis suggests several methods to greatly improve the
prototype.

1. Introduction

Large-scale decentralized distributed systems — peer-to-
peer, ubiquitous, or sensor network systems with multiple
millions of nodes — are just beyond their infancy and have
not yet had dependability quantified in a consistent manner.
Many P2P projects are in their research phases and only a
handful are in common use. Most of these designs work
well when the rate at which nodes enter and exit the system
is small, but none that we have seen explicitly discuss the de-
sign tradeoffs between the type of information exchange for
which the system is designed, the physical characteristics of

the constituent nodes (e.g., mean time to failure), and how
reliable information exchange needs to be in order to fulfill
the system’s goals. Before more large-scale decentralized
distributed systems are designed and built, the community
needs to reach agreement on the meaning of acceptable and
unacceptable functionality under a variety of dynamic con-
ditions representative of P2P systems.

The intuitive notion of “dependability” for these systems
is one of reachability of information. Accordingly, depend-
ability should be measured by the percentage of times that
a request results in the proper information moving from its
source(s) to its destination(s). The requirements for depend-
ability vary greatly within the parameter space of P2P sys-
tems. Consider a point-to-point system designed to answer
existence queries. An instance where every node has a com-
pletely up-to-date and accurate picture of the rest of the sys-
tem and where the bandwidth consumed by queries and state
transfer does not exceed the capacity of any links would be
perfectly dependable. However, such a design might not
work if the type of information exchanged was event-driven:
if, for example, one node needed to notify another node or
collection of nodes when there was an abrupt temperature
change or if a bridge were about to collapse.

In this paper, we define dependability in P2P systems and
discuss the way in which Chord and our own hierarchically
grouped system self-organize to overcome the unreliability
of nodes that comprise the system.

2. Reliability in Decentralized Systems

A system’s dependability is defined in terms of three
characteristics: the type and method of information ex-
change (e.g., probes, point-to-point streams, broadcast
streams, etc.), the individual nodes’ capabilities, and the dis-
tribution of data and queries among the nodes. One thread
links all three components: local information must provide
a quantifiable and probabilistically accurate depiction of the
global state. The required level of this accuracy depends on
system usage; increased tolerance for out of date local infor-
mation leads to diminished state, messages, bandwidth, and
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uptime requirements. For example, in Chord, the likelihood
that requests will be fulfill-able depends on the join/failure
rate and on the rate at which a node ring stabilization pro-
cedure is run, which in turn depends on the node’s capacity
for topology messages.

The first component to the overall dependability of a
decentralized system is the type of information exchanged
across it. We divide information exchange into the follow-
ing five categories:

probe Probe queries test for the existence of an object.
These queries often use a filter structure (e.g., DHTs
or Bloom filters) or resource intensive naive broadcast
queries (e.g., Gnutella [8], Freenet [5]); the latter gives
the significant advantage of high tolerance against node
failure and allows for receiver-interpreted queries.

event-driven point-to-point A node registers an interest
and is contacted when something matching this inter-
est enters the system. Examples include abrupt tem-
perature change, sensor aggregators [9], change in file
contents, file creation, new authorship, and distributed
triggers[3].

event-driven broadcast This is a broadcast from one node
to all other nodes, used to distribute information glob-
ally. This could be used, for example, to implement a
software update.

continuous stream point-to-point This exchange pro-
vides a path for streaming data for an indeterminate
duration to another node or other nodes. Internet
routing is one such example. The requirement of conti-
nuity may mean pro-active measures against unknown
failures will be necessary (e.g. using multiple paths),
compared with just post-failure cleanup and recovery.

continuous stream broadcast One node continuously up-
dates the entire system, similar to continuous stream
point-to-point. The ubiquitous nature of this type of ex-
change may make it much easier to implement in P2P
systems without pro-active routine measures.

Most P2P designs focus on probe queries while sensor net-
work systems fall into one of the remaining four classes.
That said, one could imagine other systems where P2P sys-
tems support event-based queries and sensor networks use
probes. Regardless, the categories of requests must be con-
sidered when defining the system’s local state.

The nodes’ capabilities are the second characteristic that
defines a system’s dependability. Liben-Nowell et al. intro-
duced the idea of the half-life of a system as the amount of
time it takes for half of the nodes to exit [12]. One can gen-
eralize this concept to include the probability of the node
returning to the system and the length of time between a
node’s exiting and returning. Most of the current crop of

popular P2P research systems [6, 7] were designed with a
large-scale static system in mind, and do not perform well
under high volatility. Unfortunately, this high volatility is
the norm: a study of Mojo Nation found that 80% of the
nodes exist in the system for less than one hour [25]. If they
are to be deployed on dynamic P2P networks or on battery-
conscious sensor networks, new designs need to incorporate
the distribution of node join and return from the beginning.

The third component of dependability is the distribution
of information and requests across the nodes. Adar and Hu-
berman [1] and Ripeanu [18] show that a small percentage
of files make up the bulk of the queries and files in Gnutella,
and that the distribution of searches are heavy-tailed. Lv et
al. [13] use the correlation between file and query distribu-
tions to explain why Gnutella has not collapsed under the
weight of its naive, flooding-based probe scheme, as Rit-
ter predicted [19]. The simulation studies of this paper as-
sume a uniform distribution of files and file requests, which
is probably not appropriate for the Gnutella world. How-
ever, it provides an upper-bound on the query failure rate
for a correlated system. Also, Gnutella-like file correlations
are clearly inappropriate for a library citation, DNS, or simi-
lar environment where users search for both hay and needles
in a haystack of information [13]. We see that it is essential
to consider the distribution of both data and query elements
in order to evaluate the system’s dependability.

Terminology from the fault tolerant community can be
misleading when applied to distributed decentralized sys-
tems. Mean-time-to-failure here refers to the mean-time-
to-node-departure. Mean-time-to-data-loss has less mean-
ing when nodes are always entering and exiting the system;
queries always have a significant chance of failing under re-
alistic conditions. For P2P filesharing systems we can de-
fine mean-time-to-query-failure (MTQF). More generally,
the dependability can be quantified by the mean-time-to-
request-failure (MTRF), which allows for all five categories
of information exchange to be considered.

For Chord and the hierarchical grouping system we de-
scribe below, we assume exact probe searches on a uniform
distribution of files present among live nodes in the system:
only files that currently exist are searched for. We assume
that nodes are not overburdened with other activities, e.g.,
actually moving data. In the Chord experiments, we assume
a uniformity of node capabilities — somewhat realistic in
a sensor network with uniform components, but unrealis-
tic in a P2P setting. In the hierarchical grouping simulator,
nodes can have both uniform and heterogeneous character-
istics, and we present results for both of these situations.
These assessments are clearly only the beginning to a long
series of possible evaluations. It seems unlikely that one
system will work well under the whole range of P2P param-
eters; designers must explicitly state their target node and
data audience and then evaluate dependability accordingly.
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3. Topology of Hierarchical Groups

We have designed and implemented a simulator for a hi-
erarchical grouping scheme which is designed for P2P and
sensor network systems. In earlier work, we evaluated a pro-
totype of its search mechanism [11], but its grouping mech-
anism has not been previously described. For completeness,
we present both here. We refer the reader to other papers
[22, 23] for an introduction to Chord.

3.1. Search Overview

We begin by describing how the search system works and
then move into details of how the system self-configures. A
system consists of many hierarchical groups, each shaped as
a tree. Every group has a root node. The root is responsible
for:

1. Calculating a summary of all objects in the group.

2. Maintaining summaries for each of its immediate chil-
dren (which in turn maintain summaries for their chil-
dren).

3. Directing searches of the group.

Summaries are represented as Bloom filters [4], whose size
is computed by the root. Bloom filters are bit strings whose
size is proportional to the number of objects they summa-
rize [16]. All bits are initialized to zero; the addition of each
object to the filter sets “on” the bits signaled by several hash
functions for which the object being added is the input. Bits
that are already set remain on. To probe a filter for a match,
the same hash functions are performed and the bit array is
checked: if all of the bits are set, the filter matches. Bloom
filters only give false positives, not false negatives. Nodes
underneath the root are arranged in a k—tree structure with
log;, n nodes at level n. Nodes communicate with their chil-
dren, their parent, with the root of their group, and with a
dynamically changing collection of extra-group nodes.

Given this configuration, a search originating at node IV,
proceeds as follows:

1. Consult the group summary filter of node N. If the
filter indicates that the object could exist in the tree,
iterate over all possible children that might contain the
object (using the child filters stored at IV). If the object
is found in any child, the search concludes successfully.

2. If the object is not found in the current tree, node
N passes the query to root(V). Root(N) conducts a
search on its descendants (pruning the part of the tree
already searched by N).

3. If root(V) fails to locate the object in its current tree,
it sends the request to any groups whose filter indicates
that the object could reside there.

4. Each group queried takes one of three actions:

() Ifthe current group filter indicates that the object
cannot be in the group, the group responds with
the new group filter.

(b) If the object isn’t in the group, respond with a
NACK and some suggested groups that might be
queried (that is, consult any other group sum-
maries present and for any potential hits, tell the
initiating group of the potential hit).

(c) Return the location of the node that has the object
in the group.

3.2. Hierarchy Structure

We define the ideal topology as a collection of groups
of nodes, where the nodes in a group are related based
on low intra-group latency and varied mean-time-to-failure
(MTTF), and heterogeneous bandwidth. Our goal is to come
as close to this ideal topology as possible using only local
information.

Nodes benefit from being in a group because they share
information about other groups, so that when node a in G,
receives information about GG, that information is accessi-
ble to all other nodes in G4, because G ’s root caches G’s
filter. These benefits increase as groups grow in size. Nodes
also benefit from the existence of other groups, because
transmitted group summaries serve as an efficient mecha-
nism to prune the search space.

Larger groups provide more shared information, but this
benefit is offset by the cost of keeping the group reason-
ably balanced, maintaining group summaries, and the load
on the root. The root’s workload grows with the size of the
group as it will broker all group searches, maintain group
and child summaries, control entry to the group and deter-
mine the time for partitioning of the group.

It is this last responsibility, determining partition time,
that makes the system feasible. When the root becomes
overloaded, it sheds load by partitioning the group. This
partitioning, in conjunction with responding to requests to
join the group, is what provides the dynamism and self-
configurability of the system.

Several other projects have proposed “supernodes” as the
solution to the heterogeneity empirically extant in P2P sys-
tems. Saroiu et al. have shown that there are multiple,
distinct categories of nodes, ranging from always-on high-
bandwidth nodes to 56k modems only connected for an hour
or less [20]. Hierarchies form a good extension to the “su-
pernodes” currently proposed in several research projects
(e.g., Gnutella++ [8], Brocade [26]). In these projects, there
are two levels of nodes: “supernodes” that do most of the
routing, and regular nodes. A more general heterogeneous
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system should use a heterogeneous topology, with “better”
nodes living closer to the root of each group.

3.3. Node Entry

1. When a node z enters the system, it immediately be-
comes its own group G,.. G forms a list of credentials,
including its bandwidth capabilities and its number of
public files.

2. Node z contacts a well-known location, called a “node
cacher”, to find other nodes S in the system (similar to
Gnutella and Mojo Nation). This bootstrapping com-
ponent only keeps a list of other nodes that have re-
cently contacted it, also trying to find other nodes in
the system. Because this list is the only state it con-
tains, it can be easily replicated, and can pop in and out
of existence.

3. Using the nodes S that the new node learns about from
the “node cacher,” G, forwards its credentials to the
groups containing s € S, by sending messages to each
s, which then forward this information to their roots.

4. Each root that considers G, valid for entry respond to
G, with its credentials. G, chooses which group to
join by picking the one with the best credentials. If
this group agrees, G, then merges with this group. If it
refuses, G, tries another group.

3.4. Node EXxit

We have experimented with two designs for keeping the
descendants of a node part of a group when a node exits. In
one mechanism, nodes try to maintain knowledge of their
siblings and grandparents. This information is sufficient to
elect a new leader to take the place of the missing parent and
then contact the grandparent to inform it of the new topol-
ogy, including the summary filter change. The other, lazy
mechanism just drops children from a group when their par-
ent dies. This expends fewer topology messages and is the
one we use in the simulation.

3.5. Summary Propagation

The root determines the group filter size n by using the
number of objects in the tree to estimate how many bits are
required to produce a Bloom filter with approximately half
of the bits set [16]. The lowest leaf nodes generate filters
of size n bits by hashing on their stored objects, turning on
these bits in their filters, and sending their filters to their par-
ents. These internal nodes also perform their hashing mod-
ulo n bits and logically OR their filters together with their
children’s filters, and pass these filters up the tree. Finally,

the root node will have the summary of all of the objects
in the group, with ideally about half of the bits in its filter
set (more than half-full filters tend to give many false posi-
tives). The hierarchy of filters also makes it likely that more
bits are set higher up in the tree and, conversely, that filters
are more sparse — and therefore more accurate and more
compressible where bandwidth is less — as searches wind
down the tree. This information hierarchy is used both out-
side the group to determine whether to contact the group at
all and within to better direct queries between nodes.

As nodes join and expire from the network, we have them
self-form into a communication- and information-based hi-
erarchy based on local information. With global informa-
tion, nodes would form themselves into ideal groups. With
local information, however, they will form themselves into
a close approximation of this ideal, forming a continuously
maintained “almost-ideal” state.

4. Grouping Analysis

We base our grouping model on natural systems that ex-
hibit self-configuration, driven by particle interactions that
lower energy costs when an organized state is realized. Evo-
lution models [2], non-equilibrium phase transitions [24],
and crystal facet structure formation [15] among others, all
show this behavior, and these ideas have been widely ap-
plied to a number of economics and engineering problems.

We derive a node’s cost based on its bandwidth consump-
tion, though a refinement to include latency would be a nat-
ural extension of this method. To make grouping decisions,
nodes compare their current cost with the cost of being in
the other groups of which they are aware. If, by forming a
group, two nodes can lower the number of queries they re-
ceive and the efficiency of the queries they generate, then a
group configuration is more desirable. However, there is an
activation cost to form a new group, comprised of the one
time cost of distributing filters and reorganizing the tree. If
groups only form when the cost of the old state exceeds the
sum of the activation cost and the new state’s cost, we can
encourage stability. Having groups flit in and out of exis-
tence is expensive and is mitigated by this activation cost.

As noted above, the overall cost that each node seeks to
minimize is the weighted sum of the bandwidth costs. Band-
width usage consists primarily of queries and filter updates.
We assume nodes have poor knowledge of the system out-
side their own group, making query estimates difficult. The
only reliable computation nodes can perform with regards to
the costs outlined above are those local to the group, that is,
specific to the filters. We set the individual group filter cost
to the fraction of bandwidth consumed by filter messages to
total bandwidth:

N fmSQ(g) fsize(9)
Cr0) ="t BW(g)
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where fn.s4(g) is the number of filter messages sent out over
the time 7(g) with average size fs;..(g), and BW (g) is the
total bandwidth of the group. A more sophisticated method
of estimating the filter message rate involving a weighted
average favoring near-time events would be a natural exten-
sion of this model.

The estimate of the combined cost is then

fmsg(g1) + fmsy(g2)> fsize(g1 U g2)
7(g1) 7(g2) BW(g1Ug2)

@@Um=(

From this we can guess that the activation cost should go as

H= Size(gl U gQ)fsize (91 u 92)
thtserdist. (91 U g2) BW (g1 U g2)

where tgiteraist. 1S the average time to redistribute a filter.
Assuming these factors are uniform for groups of a given
size, the activation cost sets the cost scale of the system.

We can also deduce simple information about the effec-
tiveness of searches from the local group information, such
as using connectivity information to determine the quality
of searches. We define the search quality factor to be

Qs = a(size(g1 U g2)) + b(known nodes(g; U g2))

with @ and b proportional to the inverse of the number of
nodes in the system. In the high bandwidth limit we set a to
zero and b to the inverse of the total number of nodes in the
system. Then Q5 goes to one when a group is connected to
the entire system. However, as we may expect many dupli-
cate files, the advantage of having many members in one’s
own group and not just connected may be significant; this is
represented by non-zero a.
The combined cost function is then

Cost = aCy + B/Qs

with the additional constraint of a hard wall in bandwidth
usage, that is
Cf <e€

where € < 1 for most P2P systems where bandwidth should
be allocated for file-transfer. The parameters for group for-
mation are then o, 8, v = a/b, and e. In the limit of
a > f3, bandwidth consumption is minimized, while 8 > «
(but reasonable €) allows for quality of search maximization
constrained by reasonable bandwidth consumption. Small
~ corresponds to an emphasis on highly connected groups,
while large «y should tend to favor large groups.

4.1. Analysisof Summary Filters
We present a brief analysis of the probability of a false

positive for a file not in the system, or the false positive rate.
As described above, each root node in the system maintains

an up-to-date Bloom filter representing the files in its group.
In addition, root nodes acquire the aggregate filters of other
groups. Let g be the number of groups in the system, n the
number of distinct files per group, b the number of bits per
file used and k& the number of independent hash functions
used in the Bloom filter data structure. Assuming that hash
functions are perfectly random, the theoretical probability
of a false positive for a file not in the system, or the system’s
false positive rate is:

g (1= (1= 1/m0)")" ~ g (1 - exp(-k/)*

where p; = exp(—k/b) is the probability that a specific
bit in any of the aggregate bloom filters is still 0. Note
that given g, b and n, the number of hash functions & can
be optimized to minimize that false positive rate. Namely,
taking £ = b (In 2) yields an optimal false positive rate of
fs = 9(1/2)F = g (0.6185)".

The false positive rate derived above corresponds to a
theoretical upper bound on the fraction of groups contacted
per search. Since the factor (1 — ps)k decreases exponen-
tially with b, the number of bits allocated per file, for op-
timal number of hash functions &, so does the fraction of
redundant search messages between groups.

One potential source for concern in our design is whether
the root nodes will have the capacity to store and keep up-
dated filters of even a small fraction of the rest of the system.
A rough calculation shows this is possible. If we assume
that nodes on average store 100 ~ 27 files (as they do in
Gnutella[1]), and that aggregate filters are built using 8 = 23
bits per file (giving a false positive rate of ~ 2%), with 1000
nodes, storing all of the filters takes 210 x 27 x 23 = 220
bits = 128 kilobytes of storage and 1 million ~ 22° nodes
consumes 128 megabytes, still not an unreasonable amount
of storage. Of course, as has been noted above, roots are not
required to cache all or even most other groups’ filters, so
the actual amount stored is only a fraction of these values.

This hierarchical use of Bloom filters is different from
the attenuated Bloom filters used in OceanStore [17, 10]. Its
usage of using a combined filter to describe a distinct sub-
group of neighboring nodes is similar the logical OR pre-
sented here. However, OceanStore does not have the con-
cept of hierarchies of filters with increasing numbers of bits
set or of representative group filters.

4.2. Compressed Bloom Filters

Large sparse Bloom Filters can be greatly compressed.
Theoretically, an m-bit filter can be compressed to mH (p)
bits where p is the probability that a bit in the filter is 0 and
H(p) = —plogy p — (1 — p)log, 1 — pis the entropy func-
tion. For sufficiently large filters, arithmetic coding guaran-
tees close to optimal compression, so if p is small enough,
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H (p) is much smaller than 1, and significant savings in the
transmission size can be achieved[14].

The bulk of the update messages consist of sparse filters.
In particular, both filters of the nodes in the lower levels of
the tree hierarchy of a group and update filters are sparse.
Updates to filters can be sent as deltas: indices of which bits
to turn on or off, instead of sending the whole filter. For
a relatively balanced tree a node at level ¢ — 1 has approx-
imately 21°827—% ~ ¢ subnodes, therefore assuming that
each node has roughly the same number of distinct files, the
sparseness of the child filters of a node in the tree increases
exponentially with the level of the node in the tree.

We have presented a brief description of our P2P system
which uses hierarchical groups to prune searches and take
advantage of node heterogeneity to improve system stability.
Now we return to looking at reliability in Chord and in our
system.

5. Réliability in Chord

We evaluated Chord by determining how it mapped into
our three characteristics of decentralized system reliability
and by modifying a pre-existing simulator [21] to test for
these characteristics.

Chord, in its current form, supports probe (existence)
queries: if an object exists in the system, it (hopefully) re-
turns a pointer to the node storing that object. Although
the primary Chord papers [23, 6] do not explicitly discuss
node characteristics, it is designed to run on a P2P network,
inferring that the nodes exhibit the previously outlined char-
acteristics [20, 18, 1, 25], in particular, that average node
lifetime is on the order of one to several hours. As pre-
viously mentioned, the objects chosen to query are chosen
randomly from those currently existing on live nodes.

We modified a Chord simulator to count the number of
messages used for search, object relocation, and stabiliza-
tion. The stabilization process provides a mechanism for
nodes to confirm they are the predecessors of their succes-
sors and to repair their finger and successor tables. This op-
eration keeps the ring intact and the more frequently nodes
join and exit, the more frequently st abi | i ze needs to be
run to keep failure rates level.

We show the results from two sets of experiments in Fig-
ures 1 and 2. Both experiments were run with 1000 nodes
performing one search per minute on average (all average
events for the Chord simulator follow a Poisson distribu-
tion). The number of fingers was 40 and the number of suc-
cessors was 20. The average message delay for Chord and
for hierarchical groups was 50 milliseconds. Both figures
average five separate experiments (errorbars were omitted
from Figure 2 for visual clarity). Figure 1 shows the gradual
improvement in the failed lookup rate as the average life-
time increases from 15 minutes to 3 hours. The stabilize
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Figure 2. Effect of rate at which stabilizing pro-
cess is run in Chord.

procedure runs once every 30 seconds per node on average,
updating two pointers per run: the successor and a randomly
chosen other node from the successor table, with nearby suc-
cessors chosen with higher probability. This appears to be
the default used in most of the experiments in the Techni-
cal Report [23], except the one on lookup failure, where
the simulator updates all finger entries on every invocation.
Each experiment ran for 3 or more hours of virtual time; we
found that shorter experiments yielded results with higher
variability.

Figure 2 shows Chord as the rate of stabilization changes
with average lifetimes of 45 minutes and 120 minutes. In-
creasing message rates to ~ 1.25 messages per node per
second allows a reduction in failed lookups to < 0.4%.

This means from a reliability standpoint that reaching the
levels of availability expected by most file system users, say
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> 99.99%, would be difficult in Chord unless (a) all nodes
exhibit higher than previously observed levels of uptime or
(b) all nodes have the bandwidth capacity to run stabilize
many times per second. The preferential availability of some
data of others is impossible in Chord due to its DHT design;
of course, using a higher layer for redundancy would par-
tially ameliorate the availability problem (as CFS does [6]).

6. Reliability in Hierarchical Groups

We have designed and implemented a simulator proto-
type whose nodes follow the steps outlined in Sections 3
and 4 to form groups and perform searches. Although we
ran tests with larger numbers of nodes, we present results
with 1000 nodes up on average and with nodes performing
one search per minute on average. Because the parameter
space for hierarchical groups is large (there are more than
20 separate parameters once we include different possible
network configurations), we have been limited in the variety
of experiments we could examine prior to this publication.

The primary simplification made in the current simulator
is that groups are formed only virtually. That is, nodes do
not walk a branch of the tree and reach a final destination;
instead, they all exist directly under the root. The death of
a node, however, dislocates nodes following a distribution
which is based upon failure of nodes in a tree shaped topol-
ogy with log, n nodes at level n, such that approximately
half of the failures are assumed to be leaf failures, then half
of those remaining parents with one child, an so on. This has
prevented us from evaluating the effectiveness of intragroup
filters and seeing the benefits resulting from the compressed
bloom filters at the bottom of the tree.
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Figure 3. Effect of varying average lifetimes in
Hierarchical Groups.

In our simulations we set « = 0,4 = 1,and v = 1/2,
with a maximum filter-message bandwidth usage ¢ = 0.1

and no activation cost. We hope to emphasize quality of
searches over bandwidth usage beyond the hard limit of e.
In the long-lifetime limit (average node uptimes beyond ten
hours) within 10 minutes a 1000 node system stabilized to a
better than a 0.1 % search failure system rate. We also ran
four simulations per average lifetime using a uniform distri-
bution of nodes with average lifetimes between 15 minutes
and 4 hours and 56k modem-like bandwidths. Filter sizes
were set to 5 bits per file to minimize bandwidth consump-
tion for filters. One node-cacher was used, disseminating
five nodes to every joining node. These results are shown
in Figure 3. We see a much lower failure rate and higher
message rate than Chord for similar node lifetimes, doing
better than 1% even with average lifetimes of 15 minutes.
The large fluctuation of results is most likely due to digi-
tization effects from small node number near 0.1% failure
rates. Comparing to Figure 2, we see that a similar number
of messages are required for both simulators to get similar
failure rates at 45 minutes. However, the bulk of these mes-
sages are group join queries, followed by filter messages
and then all others (search, other intra-group), and that of
these the vast majority are generated by node failure lead-
ing to child nodes regrouping. In particular, a k—tree leads
to deaths creating order log,, size(g)/k times the number of
nodes disseminated by the node-cacher messages. For the
simulations with average lifetimes of 45 minutes, this corre-
sponds to ~ 600 msg/min. We expect that widening the tree
or adding grandparent to child links as discussed previously
should mitigate this cost. The extra links would require two
additional messages per join and &k additional messages per
death, which is ~ 120 msg/min for an average lifetime of
45 minutes and 1000 nodes. Then, the filter message rates
as shown in Figure 3 should dominate.

We also ran simulations with a subset of nodes with high-
bandwidth and long-uptimes, as might be expected in an ac-
tual network, to look for the effects of these nodes in the
trees. They were given 10 times the bandwidth and lifetime
of the regular nodes. However, with only 5% of nodes the
high-bandwidth type, we see little improvement at the level
of 1000 nodes, though larger systems may demonstrate this
more effectively. Furthermore, as group rearrangement and
root replacement have yet to be implemented, the benefit of
these extra nodes may be marginal.

By introducing these refinements and in addition consid-
ering sparse filter compression, we can make the limiting
factor for group overhead filter messages, and reduce the
current bandwidth consumption by filters by a factor of 80%
for groups of size 200 and 96% for groups of size 1000.
Thus we can scale from a maximum group size of 200 in
our simulation for e = 0.1 and MTTF of 45 minutes to well
beyond that for even smaller e. It seems that root node over-
usage will become the limiting factor for large numbers of
nodes. As shown earlier, this will allow for scaling the sys-
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tem to order 10% nodes.
7. Conclusion

This paper makes three contributions. First, we exam-
ine how the implicit goals and assumptions about a partic-
ular decentralized system affect measures of its reliability.
Second, we introduce a self-organizing hierarchically-based
P2P system. Third, we take the assumptions implicit in cur-
rent P2P filesharing systems and evaluate the reliability of
Chord and the hierarchical grouping system. In simulation
experiments, both systems perform adequately as long as
there exist a 0.5 — 3% tolerance for failure under normal
conditions. This failure rate is probably acceptable for a file
sharing situation but would need to be tampered by a higher-
level application that would provide redundancy in more rig-
orous file system-like scenarios. Both systems utilize self-
configuration — st abi | i ze and local-information-based
group formation — to maintain an adequate degree of reli-
ability even under high fluctuation. In particular, our model
enables the formation of local points of stability and high
bandwidth, and we show how self-configuration can create
many local foci to which the rest of the more dynamic sys-
tem can attach.

We would like to thank M. Mitzenmacher for helpful dis-
cussions.
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