
A Design of the Persistent Operating System
with Non-volatile Memory

Ren Ohmura Nobuyuki Yamasaki Yuichiro Anzai
Graduate School of

Science for Open and Environmental Systems
Keio University, Japan

fren,yamasaki,anzaig@ayu.ics.keio.ac.jp

Abstract

In today’s computing environment, novel memory de-
vices with non-volatile characteristics are increasing in
practicality when used as the main memory, due to the
persistence with no additional battery that significantly en-
hances usability of personal devices.

In our research, we have built a persistent operating sys-
tem using non-volatile main memory. This paper describes
our strategy in detail on how atomicity of execution is main-
tained for each device driver method so that the state of
peripheral devices can also recovered consistently. The
method was implemented on the Linux kernel using a UART
device driver. We have confirmed correct system recovery
through our experiments.

1 Introduction

Many computer systems today lose their application con-
text when they are faced with an unpredictable power fail-
ure. Additional power supplies (e.g. UPS or second battery)
are needed to protect the system against this problem. How-
ever, this increases the size and cost of the system especially
in personal devices such as PDAs or Set-Top-Boxes.

Past experiments onpersistent operating systemsmake
the application’s execution states and data recoverable sig-
nificantly increasing the reliability and usefulness of com-
puter systems. Based on this system, a user can continue
his/her task after an unpredictable power failure with min-
imum data loss without rebooting the OS and re-executing
each application, which takes enough time to interrupt the
user’s work. Furthermore, if persistence is achieved in a
pretty short periods, a computer system can be made to run
with an unstable power source such as solar power. How-
ever, past experiments have assumed that permanent devices
in the system are either disks or tapes, known to be “slow

devices”. It was thus difficult to preserve the system state in
a short period without decreasing system performance.

Recently, memory devices with non-volatile characteris-
tic that can operate without any batteries (e.g. FeRAM and
MRAM) are becoming more practical. As these memory
devices increase in their capacity and speed, they can be
used as the main memory.

Therefore, we are currently developing a persistent op-
erating system on a non-volatile main memory system to-
wards fine grain persistence without any additional battery.
Even on such a system, not only does the main memory
state but also the CPU and peripheral device states must be
recovered consistently after power failure. This paper de-
scribes our basic concept on how to recover the consistent
system state while ensuring atomicity of the device driver
method execution. Our experiment was implemeted the
Linux kernel.

2 Motivation

Most existing research on the persistent operating system
focus on when and how to store the main memory state with
the CPU state into the permanent storage devices such as
disks[3, 4, 5, 7].

On a system with non-volatile main memory, the CPU
automatically saves the current main memory state from
each store instruction. The CPU state can be saved in a
similar way to the context switch, by writing to the main
memory. We developed a method based on this to save both
states consistently with low overhead using explicit timing
called “checkpoints”. It copies the memory space modified
since the previous checkpoint to free space, similar to the
“side file” scheme, while arranging the memory manage-
ment structure to reduce overhead. Unfortunately, in the
worst-case scenario, this would require twice as much as
the normal memory space and needs time to save all the
changed memory space and the CPU state, which is un-
avoidable according to the side file scheme. Even if logging

149

scheme is used, the overhead increases even more because
logs have to be taken on each instruction.

Few experiments examine the peripheral devices state.
In order to continue system execution, the all states of the
main memory, CPU and peripheral devices must be recov-
ered because all are intertwined with each other.

Thus, our goals are:
² to be able to save and restore the entire consistent state

of the system including peripheral devices
² to reduce memory space and the time required to store

system states
To achieve these goals, we focused on controlling the ex-

ecution of device drivers since there are power management
schemes that make suspend/resume and hibernation possi-
ble, such as APM and ACPI [2, 1]. However, they are un-
able to handle an unpredictable power failure because they
save the state of peripheral devices during special time when
they can.

3 Design

The type of CPU determines the amount of the CPU
state that needs to be saved. The system hardware can be
designed to allow sufficient time to store the state during
power failure, which can be detected by an interrupt in a
circuit monitoring the power level, by slowing the power
attenuation with the device like capacitors. If the system
consisted of only the (non-volatile) main memory and CPU
registers (used for calculation), it would recover the exe-
cution correctly with the CPU state stored during power
failure and the memory state existing on the main memory.
Hence, only the CPU state is stored when a power failure
occurs. Existing memory state, except the devices driver
areas, is used for recovery, which reduces overhead.

However, the amount of peripheral device states required
to be saved cannot be estimated at system hardware design
time. Most systems allow users to add peripheral devices to
extend the system(e.g. PCMCIA cards). Some states of de-
vices cannot be read by the CPU, which makes it impossible
to store all of the states of peripheral devices during power
failure. Furthermore, many devices require some access to
begin and perform asynchronously, so they may act incor-
rectly or harm the system in the worst case due to the loss
of the previous access and states of peripheral devices if the
system restarts from the precise point of power failure.

Therefore, callback functions written in device drivers
like APM and ACPI are used for recovering the states of
devices at that explicit point. We defined that point as the
head of each device driver method. The state of the CPU
and the memory space used by a device driver are saved
at the beginning of each device driver method. If the CPU
context is in a device driver when a power failure occurs,
the recovery operation restores this memory state, calls the

callback function to recover the consistent device state, and
then restarts the system with the saved CPU state. This
way, the system restarts from the head of the device driver
method, and repeat it with the consistent device state as each
unit of request for the devices.

In essence, our basic concept for maintaining consis-
tency of the entire system state is to ensure atomicity of
execution of each device driver method. In the following
sections, we will describe the Linux device driver ,the im-
plementation target, and discuss in detail the design of our
strategy.

3.1 Linux device driver

Although there are many peripheral devices and meth-
ods to implement them, we observed a more simple case.
Each peripheral device is managed as a file in Linux distin-
guished by akdev t value, which is a set of major and mi-
nor numbers1. When a user application calls a device han-
dling function, such asopen , read , write , or close ,
the file operation handler looks up the appropriate device
driver and calls a suitable method in it.

Regular kernel functions used in device drivers are gen-
erally fixed. For example,wakeup and down and other
similar functions are used to wake up and put threads to
sleep;kill fasync is used for handling asynchronous
device signals; andqueue task is used for queuing the
thread of other kernel components called thebottom half
handleror tasklet, such as protocol stacks.

3.2 Basic Operations

Figure 1 shows the basic sequence of the file operation
handler extended by our scheme while entering into and re-
turning from a device driver method. When a user issues a
request to a device, shown in step (1) in Figure 1, the file op-
eration handler looks up the appropriate device driver. Be-
fore calling the method, it saves the memory of this device
driver and the CPU states to the area specified bykdev t
value, shown in step (2) and (3). Then, it calls the method
in step (4). After returning from the device driver, it de-
stroys the CPU state saved in step (3), shown in step (5),
and returns to the user level shown in step (6).

The recovery process looks for the CPU state saved in
(3) at first. Next, if there is no CPU state relating with any
device driver, the recovery process restarts the system with
the CPU state saved during power failure. If there is one
or more CPU states, the recovery operation restores the de-
vice driver’s memory state saved at (2) and then restarts the
system with the CPU states saved at (3).

Nevertheless, we have to consider following conditions:

1Although network devices are not managed as a file, we leave this
matter to next paper.

150

Device
driver

File operation handler

User

Kernel

Hardware

User
process

Open

Read

Write

callback

ISR

:

(1)

(2)Save DD’s memory
(3)Save CPU state
(4)Call DD
(5)Destroy Saved
 CPU state
(6)Return

H/W access

CPU state
(for DD)

memory state
(for DD)

Figure 1. The operations in the file handler

² context switch in a device driver
² cooperation with external components
² interrupt handling

3.3 Context switch

There are many cases that a context switch occurs in the
device driver due to the lack of required data, mutual exclu-
sion, and so on.

If a thread context switches in a device driver and a
power failure occurs while another thread is running out-
side, the CPU state saved during power failure is that of the
outside thread. In order to restart the thread inside the de-
vice driver from the start of that method, the recovery pro-
cess overwrites the CPU state of this thread on the context
table with that saved at step (3) in Figure 1. The subsequent
scheduling point of this thread is changed from the inside to
the head of the device driver by this operation.

In addition, the state of this thread (e.g.running or
blocked) has to be recovered. Therefore, the thread state
is also recorded by step (3), and the recovery process over-
writes it on the context table.

3.4 Cooperation with external components

Generally, device drivers cooperate at the user level or
with other kernel components, writing data to or reading
data from the buffers. These buffers are not required to be
restored during the recovery process.

If the device driver method reads from a buffer, the cur-
rent data at the buffer is the same before power failure.
Then, the operations of the method can re-execute with the
same data after recovery. When writing to a buffer, the re-
covered request executes the same operations and gets the

same or more appropriate data. Then external components
work correctly. Thus, the buffer concerning external com-
ponents does not need to save and recover. This observation
decreases the overhead of our scheme.

However, pointers and index variables of the buffers
need to be recovered as indicating the same position of the
buffer after recovery.

3.5 Interrupt

When a power failure occurs while handling an interrupt,
the interrupt acts as if it had not been executed.

Interrupts from peripheral devices can be roughly clas-
sified into two groups. One is the result of a request from
the device driver. The other is an active event from a device
such as a button press or a network packet arrival. In the first
case, the same interrupt is expected by repeated requests. In
the second case, it does not matter since the interrupt acts
as if it had never occurred.

A typical interrupt service routine does one or a combi-
nation of the following operations with the kernel functions
mentioned in section 3.1. The routine registers a request for
the execution of other kernel components; it sends a signal
to the corresponding thread as notification of asynchronous
I/O; and it wakes the sleeping thread waiting for an event
(data) from a device.

If a power failure occurs after they are operated, the re-
covery process invalidates the operations. For this reason,
kernel functions, such asqueue task , kill fasync
andwakeup , record these requests as a log.

4 Implementation

4.1 Kernel Function

As noted in section 3.4, it does not need to save all of the
memory in a device driver. To reduce overhead and main-
tain flexibility of device driver implementation, we added a
new kernel function that registers the memory space to save
when entering the device driver. The arguments in this func-
tion are thekdev t , the head address of the memory, and
the size. The initialization code in a device driver, which is
only executed during the first boot sequence, registers the
memory space using this function.

We also extended some kernel functions, such as
queue task , fasync kill , wakeup , et cetera, as
mentioned above.

4.2 Callback Function

The difference between the callback functions in our
scheme and the APM and ACPI is that they have the re-
sponsibility to recover complete states of peripheral devices

151

Figure 2. FeRAM board and MPC860FADS

at the head of the device driver method. In order to do that,
the device driver has to be written as storing the each change
of the device state to the registered main memory and call-
back functions reflect it after initializing the device.

For example, with the UART device, current configura-
tions, such as the baud rate, the number of stop bits, and
the number of parity bits, are kept in the registered main
memory. The callback function, called after restoring the
memory state, has to set these to the device as the current
(at the head of the method) state.

4.3 Recovery Operation

The steps for recovery operation are:
1. Recover the memory state of device drivers where the

saved CPU contexts exist
2. Call the callback functions of device drivers
3. Overwrite appropriate contexts on the context table

with the CPU state at the beginning of the device driver
method (section 3.3)

4. Change thread states which had their context switched
in device drivers (section 3.3)

5. Undo requests from the device driver based on
logs(section 3.5)

Then, if the CPU state saved during power failure is nei-
ther in the device driver nor in the interrupt handler, the
system restarts with this CPU state. Otherwise, if it is in the
device driver, the system restarts with the same thread in the
CPU state, saved at the head of the device driver method. If
it is in the interrupt handler, the scheduler restarts.

5 Experimentation

We tested our strategy on the MPC860FADS, an evalua-
tion board of the PowerPC core CPU for embedded system,
with FeRAM boards as the main memory (Figure 2). The
prototype was implemented on Linux 2.4.4 with a UART
device driver.

We ran a simple process, which incremented a counter
value and printed it on the UART, and then, shut off the
power supply. We confirmed that the system showed the
next value before power failure on the UART and continued
performing correctly. At that time, the registered memory
space was only 152 bytes and the increased execution time
ratio measured by thetime command was less than 0.5%.

6 Summary and Future Work

We illustrated our strategy of recovering an entire system
state consistently given the condition that the main memory
is non-volatile, focusing on the device driver. The basic
concept of our scheme is to ensure atomicity of the device
driver method, observing whether there is thread present in
the device driver at power failure. We implemented our pro-
totype on the Linux kernel and its UART device driver, and
confirmed the system including the actual device performed
correctly after recovery.

The experimentation we conducted was only a simple
case, assuming that only one thread is in the device driver.
However, more than one thread usually enters the same de-
vice driver simultaneously, especially in sharable devices.
Also, we did not consider some device driver method such
asmmap. We plan to solve these questions towards the com-
puter system performing with unstable power supply.

References

[1] Advanced Configuration and Power Interface Specification
Revision 2.0, July 2000. http://acpi.info/spec.htm.

[2] Advanced Power Management BIOS Inter-
face Specification Revision 1.2, February 1996.
http://www.microsoft.com/hwdev/archive/ BUS-
BIOS/amp12.asp.

[3] A. Dearle and D. Hulse. Operating system support for persis-
tent systems: past, present and future.Software – Practice-
and-Experience, 30(4):295–324, 2000.

[4] K. Elphinstone, S. Russell, G. Heiser, and J. Liedtke.
Supporting Persistent Object Systems in a Sin-
gle Address Space. In Proc.7th POS, 1996.
http://www.cse.unsw.edu.au/˜disy/papers/ index.html.

[5] A. Lindstrom, A. Dearle, R. di Bona, S. Norris, J. Rosenberg,
and F. Vaugha. Persistence in Grasshopper Kernel. InProc.
of the Eighteenth Australian Computer Science Conf., pages
329–338, 1995.

[6] A. Rubini and J. Corbet.Linux Device Drivers, 2nd Edition.
O’Reilly & Associates, Inc., June 2001.

[7] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS:a fast
capability system. In17th ACM Symposium on Operating
System Principles(SOSP ’99), pages 170–185, 1999.

152

