
An Approach for a Dependable Java Embedded Environment

Gilbert Cabillic Salam Majoul Jean-Philippe Lesot Michel Banâtre
IRISA

Campus Universitaire de Beaulieu
35042 Rennes Cedex

Gilbert.Cabillic@irisa.fr

Abstract

A Java Execution Environment (JEE) presents lots of
advantages for embedded architectures. In this paper, we
present an approach to build a dependable Java execution
environment for Wireless PDAs. It is based on a modu-
lar software architecture. Our on-going works focus on
reducing software errors, increasing the security of the soft-
ware and minimizing native software pieces of code to in-
crease the overall stability of the platform by transferring
operating system features in Java world.

1. Introduction

A Java Execution Environment (JEE) presents several
advantages for embedded architectures. First, Java appli-
cations can be dynamically downloaded. Second, as Java
bytecode is an intermediate code, the application can be
distributed everywhere. Moreover, a Java application can-
not explicitly manage memory access because Java byte-
code provides no way to express and manipulate pointers in
Java world. This increases the stability of all the Java world
by avoiding memory access errors due to software faults or
illegal intrusion. Of course, this stability depends on the
JEE (Java virtual machine (JVM), and APIs implementa-
tion), and also on the underlying operating system.

The software architecture we consider is presented in
figure 1. Our Java platform (Java virtual machine and Java
APIs), named Scratchy [3], runs on the hardware through
an operating system. Scratchy is executed in several OS
threads in one common space address. Scratchy has the a-
bility to execute several applications at the same time and a
scheduler inside Scratchy undertakes the scheduling of all
Java threads. Native code, independent of Java world like
protocol layers or driver daemons, is executed in other OS
threads thanks to the help of the operating system.

In this paper, we present an approach to build a depend-
able Java execution environment for Wireless PDAs. It is

Figure 1. Global software architecture.

organized as follows. First, we present our Scratchy mod-
ular software architecture. Then, features of our develop-
ment environment for Scratchy are mentioned as well as
some evaluations. Finally, we present our perspective works
to increase the dependability of our Java execution environ-
ment.

2. Scratchy Software Architecture

Memory volume, execution time and energy consump-
tion are critical resources for embedded systems. A flexible
Java environment providing a good tradeoff between these
resources is required for wireless PDA. Only a modular ap-
proach, whose benefits have been already proven in soft-
ware design, allows to achieve such a tradeoff. In fact,
through modularity it is possible to specialize some parts
of the JVM for a specific processor by exploiting, for in-
stance, low power features for DSP. With a monolithic-
programmed Java environment, it is difficult to change at
many levels hardware resource management without rewrit-
ing the JVM from scratch for each platform.

157



2.1 Our modular approach

To reach these goals we designed a modular approach de-
scribed in the following. A module contains services (func-
tions) and data type structures. Pre-hooks and post-hooks
can be attached to a service. The formers are called before
a service call to undertake for example resource reservation
and allocation. Post-hooks are called after a service call for
instance to free the resources and manage errors.

The Scratchy Development Environment (SDE), pre-
sented below, is designed to achieve modularity for our Java
environment.

2.2 Scratchy Development Environment

This tool is designed to optimize time or memory over-
head on the outcome source and to be the most language and
compiler independent as possible. SDE takes four inputs:

� a global specification file describes services and data
types by using an Interface Definition Language (IDL);

� a set of modules implements services and data types in
one of supported language mappings;

� an implementation file inside each module describes
the link between specification and implementation;

� target hardware descriptions indicate alignment con-
straints with their respective access cost for each target
processor.

Figure 2. Our modular approach.

SDE chooses a subset of modules according to the tar-
geted hardware criteria. It generates, as shown in figure
2, stubs for services, sets structures of data types, generates
functions to dynamically allocate and access data types, etc.
SDE works at source level, so it is the responsibility of com-
pilers or preprocessors (through in-lining for example) to
optimize a source which has potentially no overhead.

2.3 Some evaluations

The current version of SDE supports the C language as
language mapping and generates stubs for services and data
type structures in that language.

In order to evaluate memory expansion of SDE data
type structures, their memory allocation time and service
execution time, we compared the generated stubs to an
equivalent program written in C. For this purpose, we com-
pared the assembler codes obtained after optimization for
both programs. We used benchmarks when the assembler
codes were not comparable. The results obtained were very
promising as the generated stubs introduce an insignificant
overhead and in some cases no-overhead at all.

For example, the assembler codes of a C program calling
the generated stub for a service without parameter and the C
program calling directly the C function implementing that
service are identical. When the service is specified with pa-
rameters, the assembler code for the SDE program contains
only one supplementary statement relating to a shift of the
stack pointer.

We made some benchmarks to evaluate data type struc-
tures generated by SDE. We used a Pentium II processor
under Linux system and using a Gnu C compiler and op-
timizer. As an example, figure 3 shows the time required
to allocate an array generated by SDE and an equivalent C
array. The time measured to access an array element is the
same in both cases.

Array size C Program Using SDE Overhead
(cycles) (cycles) (cycles)

20 229 228 +1
80 228 228 0

280 228 228 0
400 228 228 0

Figure 3. Array allocation time comparison.

2.4 Related works

Our modular approach is close to aspect-oriented pro-
gramming (AOP) that relies on a separation phase of differ-
ent aspects of a problem and a composition phase. AspectJ
[5] is an example of AOP language. It provides some con-
structs similar to that proposed by SDE such as pre and post-
conditions that act like our pre and post-hooks. Another tool
that can be compared to SDE is Knit [8] which provides its
own language to describe linking requirements. However,
both AspectJ and Knit are too limited for our goals because
they manage only method/function calls, and not data type.
Management of data type is useful to optimize memory con-
sumption and data access performance especially on shared
memory multiprocessor hardware.

158



2.5 Implementation

Scratchy is our modular implementation of the JVM
which is written from scratch in order to validate our modu-
lar approach. It relies on a CLDC [10] specification compli-
ant. However, Scratchy is closer to CDC than to CLDC be-
cause it supports floating-point operations and Java Native
Interface. Pentium, ARM and a TI DSP TMS320C55x [11]
targets are supported by our JVM as well as a bi-processor
Pentium based architecture as mentioned in [3]. To make
the link with an operating system, we designed a module
named middleware which supports not only a Posix general
operating system (Linux, Windows 2000) but also a real-
time operating system with Posix compatibility (VxWorks).

3 Perspective works

The stability of the overall platform depends on 3 dif-
ferent points. First, Java applications may contain software
errors either deliberately introduced in case of intrusion, or
not in case of erroneous code. As all explicit memory ma-
nipulations are forbidden, only the involved application is
affected when a software error occurs. A software exception
(Java language) can be sent and in the worst case, when the
error cannot be recovered, the application is killed by the
JEE. A Java application can disrupt the global software ar-
chitecture when its requirements in terms of resources are
too important (memory, CPU, network) or when the appli-
cation uses an API containing a potential software error that
could damage devices or lead to a memory error access.
Second, the JEE itself can contains software errors in Java
or native code part. Third, the operating system and drivers
can be instable.

In order to increase the JEE stability, our perspective
work relies on two axes both different and complementary.
The first one is based on our modular approach, the second
one consists in minimizing native code part of the execution
environment by transferring it in Java language.

3.1 Exploiting modularity

Besides the ability to specialize some parts of the JEE,
the modular approach can be exploited in several ways.

3.1.1 Reducing software errors

In order to reduce software errors the JEE can contain, it
is possible to design integrity tests for each service (or a
subset) of a module, for a subset of modules and for the
whole JEE. This will increase the stability of the overall
software. We already have a test suite for Scratchy and we
are currently designing more service tests.

Thanks to the automatic generation of call stubs between
services, it is also possible to introduce tests to dynamically
check whether data pointers are correctly initialized.

At last, because SDE generates data type representation,
we can assign to each type a magic word (see figure 4) and
check dynamically whether every pointer corresponds to the
correct kind of data type (for parameter passing or when
accessing a structure). Of course a memory expansion and
an execution time overhead are introduced, but this feature
of SDE is only used to stabilize the JEE.

3.1.2 Transferring operating system code in modules

As SDE provides a good support to increase the reliability
of the Java execution environment software, we could trans-
fer some operating system code parts in modules. Of
course, some extensions to SDE need to be done because
the current version of SDE is specific to JEE generation. At
present, we are working on a small operating system de-
signed to execute Scratchy. This small OS provides basic
services for memory, file system and device management.

Figure 4. Extending SDE generation.

3.1.3 Increasing security

Several degrees of security, rights or confinement policies
can be introduced at the module level and/or at the ser-
vice level (see figure 4). Each module and/or service could
specify the security according to its need. Security policies
can be realized in several ways:

� dynamic check of rights before calling a service or
using a data type structure belonging to the module.
For example, a security policy can be introduced in
order to dynamically check rights of native method in-
vocation,

� use of an encryption protocol using keys to communi-
cate parameters between services,

� use of a private representation of data in a module. For
example all data of a module could be crypt and only

159



services belonging to this module can understand the
representation.

3.2 Minimizing native code

The second perspective of our approach consists in trans-
ferring some native code of the JEE software in Java lan-
guage aiming at exploiting the software confinement fea-
tures of Java to increase the overall stability of the platform.
At the opposite of current Java operating system projects
[2] like J-Kernel, we do not want to enable the direct use of
pointers in Java. So, our approach is to provide a java view
of low-level resources without any pointer abstraction.

To validate that point, we have exported the native
scheduler of Scratchy in Java. Hence, we designed an ab-
straction for interruption management and threads. The
interface OsInterrupt specifies an interruption handler and
provides a method called handler which is invoked when
an interruption occurs. An implementation of this interface
can be given at any interruption level. Each implementation
has to provide its running parameters through Java fields.
For example, a keyboard interruption implementation must
define a field representing the value of the pressed key. This
value is set using a minimum native interruption handler. In
this way, the access of low-level IO control ports of the de-
vice is not needed and we still guaranty that no pointer is
needed to write any interruption handler in Java side. The
class OsTimerInterrupt is designed to be associated to the
low level timer interrupt and enable the scheduler to realize
its policy.

The OsThread class abstracts a Java thread context and
provides the scheduler a setThreadActive method to execute
its elected OsThread on the CPU. The scheduler performs
a round-robin policy that manages all Java threads. It was
very easy to be implemented and we showed that it is possi-
ble to transfer native code of the JEE in Java world. Our on-
going work focuses on transferring more complex JEE na-
tive software (including drivers) like graphics native APIs,
sound APIs and also the garbage collector, in order to obtain
the smallest native operating system needed for a JEE.

4 Conclusions

Our direction to build a dependable Java execution en-
vironment relies on two approaches. First, we exploit and
extend the modular features of our JEE. Second, we mini-
mize pieces of native code. This direction is valid only if
complementary works aiming at eliminating Java software
faults by using other languages or compilation techniques
are made and if an effort to low-level design techniques like
[6] are done.

At last, transferring operating system features in Java
world is conceivable only if the JEE provides good per-

formance. Recent works made in this area [7, 1, 4, 9] are
promising on that point and it is clear that Java has a place
in embedded environments in the future.

References

[1] Ajile. Overview of ajile java processors. Technical report,
Ajile (http://www.ajile.com), 2000.

[2] G. Black, P. Tullmann, L. Stoller, W. Hsieh, and J. Lepreau.
Techniques for the design of java operating systems. In proc.
of the USENIX Annual Technical Conference, June 2000.

[3] G. Cabillic, J. Lesot, M. Banâtre, F. Parain, T. Higuera, and
V. Issarny. The Application of Programmable DSPs in mo-
bile Communications, chapter A Flexible Java Environment
for Wireless PDA Architectures based on DSP Technology,
pages 119–135. WILEY press, december 2001.

[4] Imsys. Overview of cjip processor. Technical report, Imsys
(http://www.imsys.se), 2001.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. In proc. of the
15th European Conference of Object Oriented Programming
(ECOOP), Budapest, Hungary, June 2001.

[6] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An idl for hardware programming. In
proc. of the 4th Symposium on Operating Systems Design
and Implementation (OSDI), pages 17–30, San Diego, CA,
October 2000.

[7] Nazomi. Boosting the performance of java software. Tech-
nical report, Ajile (http://www.ajile.com), 2002.

[8] A. Reid, M. Flatt, L. Soller, J. Lepreau, and E. Eide. Knit:
Component composition for system software. In proc. of
the 4th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 347–360, San Diego, CA, October
2000.

[9] T. Suganuma, T. Ogasawara, T. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the ibm java just-in-time compiler. IBM Sys-
tems Journals, 39(1), February 2000. Java Performance Is-
sue.

[10] Sun Microsystems. CLDC and the K Virtual Machine
(KVM), 2000.

[11] Texas Instruments. TMS320C5x User’s Guide.

160


