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Abstract

We present the VFiasco project, in which we apply
source-code verification to a complete operating-system
kernel written in C++. The aim of the VFiasco project is
to establish security-relevant properties of the Fiasco mi-
crokernel.

Source-code verification works by reasoning about the
semantics of the full source code of a program. Tradition-
ally it is limited to small programs written in an academic
programming language. The project’s main challenges are
to enable high-level reasoning about typed data starting
from only low-level knowledge about the hardware, and to
develop a clean semantics for the subset of C++ used by the
kernel. In this extended abstract we present our ideas for
tackling these challenges. We focus on a type-safe object
store that is based on a hardware model that closely resem-
bles the IA32 virtual-memory architecture and on guaran-
tees provided by the kernel itself. We also briefly touch on
the semantics for C++.

Please find the full version of this paper at
http://www.vfiasco.org/objstore.pdf.

1 Introduction

The VFiasco project aims at the mechanical verification
of security-relevant properties of the L4-compatible Fiasco
microkernel [2].

The goal of the project is an operating-system kernel that
providesverifiedsecurity guarantees. Such a kernel could
be used as a basis for applications with high-level security
requirements. Verification is a very expensive process (both
in man power and time); for success it is crucial to mini-
mize the size of the system. Huge bug-afflicted monolithic
kernels are outside the scope of current verification tech-
nology. On the other hand, microkernels are the smallest
kernels that provide an anchor for building secure systems:
separate protected address spaces. Therefore, they are the
best choice for constructing a verified secure system.

VFiasco is a work-in-progress. In this paper we report
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on one aspect of the project: the modeling of a type-safe
object store on top of a model of virtual-memory hardware.

To our knowledge, the VFiasco project is unique in scope
and intended thoroughness. We aim at modeling all of the
kernel’s source code in very fine grain, and we intend to
“run” this software model on a hardware model that closely
resembles real hardware. These qualities are meant to es-
tablish an as-yet unseen level of confidence in our software.
Our formal-verification approach exceeds even what is nec-
essary to fulfill the development requirements of the Com-
mon Criteria’s1 highest assurance level, EAL7.

Fiasco has been implemented in C++. For the verifica-
tion we develop a dialect of C++ with a precise semantics,
which we call “Safe C++.” The verification will be carried
out in the interactive theorem prover Isabelle/HOL [8]. This
theorem prover uses higher-order logic (HOL) as its input
language. Therefore, we translate the kernel’s source code
from Safe C++ into its semantics expressed in HOL. In our

1The “Common Criteria for information Technology Security Evalua-
tion” (CC; ISO 15408) replaces the Trusted Computer System Evaluation
Criteria (TCSEC; better known as the “Orange Book”) in the U.S.A. and
Information Technology Security Evaluation Criteria (ITSEC) in the E.U.
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approach, alogic compilerperforms this translation auto-
matically. This technique is in stark contrast to approaches
in which parts of the source code are translated manually
to a more or less abstract model. Figure 1 illustrates our
verification methodology.

The basis of the semantics of Safe C++ is a model of
the computer system, which we must provide in the theo-
rem prover. An important problem in the project is to find
the right abstraction level for this model. To facilitate the
verification, we would like to have the abstraction level of
a virtual machine that provides a type-safe object store—
a memory that supports reading and writing of typed val-
ues and that guarantees safe accessibility of these values
(as well as other properties). Such an interface would al-
low us to reason on a comfortably high level, ignoring the
complexity of contemporary virtual-memory systems and
memory allocation.

However, we cannot simply assume such an object store
before verifying the Fiasco microkernel. Fiasco executes
in a much more hostile environment—on virtual-memory
hardware. In fact, one of the kernel’s tasks is the provision
of guarantees that allow the construction of such an object
store in the first place. Therefore, the existence of an object-
store layer with strong properties should be a proof goal, not
a base assumption.

In this paper, we fill the gap between high-level pro-
gramming languages (in our case Safe C++), which pro-
vide safety by means of protecting typed memory objects
from arbitrary accesses, and contemporary hardware with
virtual memory. We develop a type-safe object store based
on a set of memory models that mimic the way a high-level–
language programmer thinks of memory, but still can be im-
plemented using a concrete CPU model. Using these mem-
ory models, it is possible to reason about the Fiasco kernel,
ignoring the current virtual-memory setup and the effects of
page faults on the program state.

2 Related work

Model checking. Model checking has been successfully
applied to several systems in the past [9]. However, this
technique can only be applied to abstract models of real sys-
tems, because the state space of the real systems is too large.
This restriction limits the conclusions that can be drawn
from model checking. For instance, in [9] Tullmann and
colleagues verify liveness properties of the Fluke kernel’s
IPC subsystem. Thereby they abstract away from the actual
data that is transmitted. While they actually proved the ab-
sence of deadlocks, it is theoretically possible that the IPC
subsystem deadlocks because it dereferences a user pointer
(which has been abstracted away in the model checker).

Proof-carrying code. Proof-carrying code [7] solves the
problem of executing untrusted (user-supplied) code in ker-
nel mode. In this approach, the kernel accepts only those

extensions that are accompanied with a valid proof for a
given security policy. In a typical application (for example,
a network filter) the involved verification is trivial and can
be automated.

In the VFiasco project, we tackle a rather different prob-
lem: proving the kernelitself correct. The problem of safely
extending this kernel is orthogonal to our work.

Static source-code checking. There are many tools in the
spirit of lint that statically analyze source code. For in-
stance the tool presented in [1] has been used to find many
bugs in the Linux kernel. Static source-code checking is
different from testing in that it analyzes the source code in-
stead of running the system. With testing it has in common
that it assists in finding programming errors. In the VFiasco
project our concern is not so much to find errors, but togive
guaranteesabout their absence.

Theorem proving. There are a few projects that apply
theorem proving at the source code level as we do.

In [6] Liu and colleagues use the theorem prover Nuprl
to verify the correctness of network-protocol stacks and to
optimize such stacks. There are two major differences to the
VFiasco project. First, to enable the verification the original
C source code was rewritten in a carefully chosen subset of
the functional language Ocaml [5]. In contrast, we plan to
develop a semantics of a subset of C++ that essentially con-
tains everything needed for kernel programming, includ-
ing abrupt termination2, longjmp’s, and pointer arithmetic.
Second, Liu and colleagues donot verify the source code.
Instead, they verify program transformations.

Our approach to a semantics of C++ is very similar to
the one used in the LOOPproject for Java [4]. We also use
coalgebras to represent statements and expressions. The
LOOP project focuses on the verification of Java applica-
tions, therefore they can use an object memory that directly
represents Java objects [10]. A central aim of the VFiasco
project is to incorporate system internals like page fault han-
dling and protection levels into the verification. Therefore
we need a more low-level view on the object memory.

3 Verification approach

This section sketches the main ideas of our semantics of
Safe C++. Please see the full version of this paper for more
details, including our approach for dealing with Fiasco’s
inline-assembler statements [3]. The semantics of Safe C++
is based on two main ideas:state transformersandunder-
specified functions.

State transformers. With State transformers (also called
coalgebras) we adapt the approach of [4] to C++. State
transformers allow us to give a relatively simple semantics

2An expression or statement terminatesabruptly if the control flow
does not reach the end of the statement or expression because, for instance,
abreak or return was executed.
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to statements likebreak, continue, and evengoto and the
library routinessetjmp/longjmp. A state transformer is a
function (in the mathematical sense) of the following type:

St // ExprResult〈St〉

HereSt stands for the set of all possible states of the sys-
tem (we elaborate more on structure ofSt in Section 4).
The typeExprResult〈St〉 is a disjoint (or tagged) union
that models the different possible results of C++ expres-
sions (or statements). For instance, if an expression does
not terminate, then its result is the distinguished element
Bug∈ ExprResult〈St〉; abreak statement in a states∈ St
yieldsBreak(s).

All C++ expressions and statements (including complex
statements) are modeled as state transformers. Composi-
tion of state transformers is defined such that the second
state transformer is skipped if the first one does not termi-
nate normally. Special statements that regulate flow control
are modeled with functions that manipulate state transform-
ers and their results. For instance, loops are wrapped into
a function that translate a result ofBreak(s) into a normal
state, thus resuming execution with the statement that fol-
lows the loop.

Underspecified functions. An underspecified function is
a function that, although some properties are known, the
precise result when applying them is not specified. Thus, in
the theorem prover one can only work with the known prop-
erties and not with the result of the application. We use un-
derspecified functions to generate the locations of variables
and to transform typed values into their byte representation.
Underspecified functions allow us to include pointer arith-
metic and unsafe type casts in Safe C++.

4 Type safety and virtual memory

In this section, we discuss what a Safe-C++ program’s
stateSt contains and which operations it supports. This
interface comprises the “architecture” for which our logic
compiler produces “code.”

It is possible to apply the state-transformer approach we
presented in Section 3 to environments with widely differ-
ing abstraction levels. For VFiasco our goal is to keep a
high-level–language programmer’s view during verification
while still enabling reasoning about low-level hardware ma-
nipulation.

Programmers of high-level languages such as Safe C++,
including kernel programmers, make many assumptions
about the environment in which their program eventually
runs. Table 1 lists a number of such assumptions, which we
call object-store properties.For example, programmers as-
sume that a program can successfully access typed objects
that have been properly allocated.

Unfortunately, a storage model that isa priori type safe
is not adequate for modeling a kernel environment for two

reasons. First, such an assumption might be wrong—
invalidating all verification results—because there is no sys-
tem component that provides type safety. In the real world,
the kernel runs on top of an untyped virtual memory and
must ensure its own type safety. Second, kernel program-
mers sometimes need to circumvent the compiler’s type
safety for low-level systems programming, for example for
manipulating CPU data structures.

Therefore, instead of assuming object-store properties
from the start, our approach is to prove them starting from
low-level knowledge. In summary, we aim for the following
design goals in modeling our object store:

Credibility. We want to start only from very basic low-
level assumptions. Therefore, the storage model should
be based on a memory model that closely resembles the
virtual-memory hardware on which the kernel executes.
Further, we must document all base assumptions3 we make
about the hardware and the Safe-C++ compiler. We de-
scribe our hardware model in Section 4.1.

Type-safe object store.Efficient interactive reasoning
about a program requires high-level knowledge of the pro-
gram’s state. Therefore, we need to create a verification en-
vironment that provides a type-safe object store with proven
object-store properties. This environment consists of a map-
ping of an object-store interface to a virtual-memory inter-
face. Section 4.2 describes our verification environment.

Direct hardware access.It must be possible to circum-
vent the object store and access virtual memory directly. We
address this requirement in the full version of this paper [3].

There are also a number of second-level design goals:
Reusability. The object-store specification needs to be

generic enough to serve as the general target language of
the logic compiler. Fiasco’s high-leveland low-level kernel
code as well as boot code should be expressible. In the fu-
ture, we also would like to use it as a target for user-program
code. Section 4.2.1 explains how we achieve this goal.

Automation. Based on the object-store properties, we
need to provide powerful theorem-rewriting rules that auto-
matically simplify logic-compiled source code without op-
erator intervention as far as possible. We briefly discuss our
rewriting rules in Section 4.2.2.

4.1 Hardware model

The hardware model provides the basis for the semantics
of Safe C++. It defines the set of system statesSt and prim-
itive operations, like reading in memory and inserting page
mappings. A complete model of the Intel IA32 architecture
is far beyond our project. Rather, we use an abstraction of
the hardware that contains just those primitive operations
that are necessary to run the Fiasco microkernel.

Currently, the model consists of four main components:
thePhysical memory, theTLB specification, Page-fault han-

3In our verification, these base assumptions play the role of axioms.
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Assumption
(object-store properties)

Reality
(low-level knowledge)

Implied system guarantee

All program code and properly allocated
data are accessible

Any memory access can fault during a
TLB or page-table access

Pinned memory, or kernel faults in “cor-
rect” memory; kernel is mapped into all
address spaces

Objects do not change value unless up-
dated explicitly

different objects might overlap; the same
object might be mapped twice

All objects are allocated such that no two
object’s virtual-address regions overlap

Program reads and writes typed objects Objects are stored in byte sequences; the
byte representation of most data types is
unknown to the programmer

There exist two inverse functions that
convert between typed values and byte se-
quences

Program operates in flat virtual address
space

Program code and data are split into
pages, some of which are stored noncon-
tiguously in physical memory, and some
of which are not memory-resident

Page-fault code and virtual address space
maintain “illusion” of flat address space

Table 1. Examples of high-level–language programmer’s assumptions and guarantees needed from
the memory subsystem. Usually, programmers assume object-store properties like those in the left column. How-
ever, these properties are not true in general. In reality, facts like those in the middle column can falsify the assumptions.
The object-store properties are valid only if the runtime system provides the guarantees in the right column.

dling, and functions forreading from and writing to virtual
memory. As the VFiasco project progresses we expect the
hardware model to become more detailed, for instance by
modeling interrupts and protection levels.

4.2 Verification environment

In this section, we construct a type-safe object store, as-
suming only a model of virtual-memory hardware.

4.2.1 Encapsulating system guarantees

System specifications. We have been able to prove the
object-store properties using system properties like those in
Table 1’s “implied system guarantee” column.

As a means for structuring the proofs, we have factored
the system guarantees into a number ofsystem specifica-
tions. The extent of these guarantees differs between low-
level and high-level parts of the kernel. For example, the
kernel’s page-fault handler can access only some parts of
the kernel’s virtual address space, and it is not allowed to
page-fault recursively. We therefore have taken care to al-
low the specifications to be parameterized with memory re-
gions that can be safely accessed. Here we discuss two of
these specifications:Plain MemoryandAllocator.

The Plain Memory specification models a flat virtual ad-
dress space in which bytes can be read or written. This spec-
ification provides the notion ofblessingmemory regions.
It asserts that reading or writing to a memory region that
is read-blessed or write-blessed respectively does not fail.
The object-store properties are valid generally only for ob-
jects residing in blessed memory. We call instances of this
specification amemory model.

Normally, these memory models must be implemented

in terms of the hardware model’s virtual-memory interface.4

Therefore, each memory model uses one particular page-
fault handler.

The Allocator specification contains operations for allo-
cating memory blocks in blessed memory. It asserts that
within blessed memory regions, each allocated block is ac-
cessible at only one virtual address. This property facili-
tates safe object reads and writes. There are a number of
instances of Allocator provided by Safe C++—in particular
the static allocator and the stack allocator; for a kernel, there
is no predefined heap allocator. However, there can be any
number of user-defined allocators written in Safe C++.

Instantiating the system specifications. For each part of
the kernel that is to be verified, we must instance all sys-
tem specifications that are to be used: one memory model
and potentially multiple Allocator instances. For the lowest-
level parts of the kernel, these instances only include ax-
iomatic knowledge about builtin Safe-C++ allocators and
about the memory state after boot-up. Higher-level parts
can use a richer set of Allocator instances and a more com-
plex memory model that uses a Safe-C++ page-fault handler
verified as a lower-level part.

Our memory models are of particular interest because
they allow us to use the object-store interface for both low-
level and high-level kernel code. In the remainder of this
section, we discuss the two memory models we use for these
two types of kernel code. We have proven that these mem-
ory models are indeed instances of Plain Memory.

The “Simple VM” memory model. This memory
model is used for verifying low-level kernel code. Its read
and write operations are based on our hardware model. In

4However, there are other memory models that are conceivable as well:
For example, during the boot process, paging may be turned off, which re-
sults in a memory model that operates directly on top of physical memory.
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this model, each invocation of the page-fault handler is con-
sidered an error. Blessings are based on the contents of the
current page table.

Based on the invariant that the kernel’s code and static
data are always mapped5 and on the precondition that there
is an accessible stack, the Simple VM model can run code
that does not rely on page-fault handling and that does
not need a custom allocator. We use this model to verify
Fiasco’s page-table insertion, low-level allocator, and page-
fault handler functions.

The “Kernel Memory” memory model. For the bulk
of Fiasco kernel code, the Simple VM model does not con-
tain enough features. In particular, it lacks dynamic mem-
ory allocation, kernel-virtual memory manipulation, and
lazy page-directory updates. Fiasco relies on these features
when it dynamically allocates data structures such as thread
descriptors from its private memory pool. In this event, it
maps new pages into a “master” virtual-address space and
lazily updates the kernel regions of user tasks’ virtual ad-
dress spaces from the master copy upon page faults. These
lazy updates are completely transparent to the kernel code;
for this code, it looks as if the allocated memory “is always
there.” We reflect this view in our memory model “Kernel
Memory.”

In this memory model, read and write operations again
are based on our hardware model (Section 4.1). The behav-
ior of these operations is similar to the Simple VM model;
however, here page-faults invoke the global page-fault han-
dler.

In addition to the Simple VM blessings, the Kernel
Memory model also regards as blessed the memory blocks
that were allocated using the low-level allocator. Based on
this low-level allocator, we can verify a hierarchy of more
complex allocators (such as Fiasco’s slab allocator).

4.2.2 The object-store layer

The object-store layer is the interface that provides the de-
sired object-store properties. It provides functions for safely
manipulating typed objects. This interface is the target lan-
guage used by our logic compiler.

This layer relies on the guarantees provided by previous
section’s system specifications. As the object-store layer is
independent from the concrete instantiation of these speci-
fications, it works with both the Simple VM model and the
Kernel Memory model.

Therefore, it is possible to logic-compileall kernel code
towards the same object-store interface. Using this inter-
face, we can verify even low-level Safe-C++ code such as
the page-fault handler, which constitutes part of the Ker-
nel Memory model. For this verification, we instantiate the
Plain Memory specification using the Simple VM model,

5This invariant needs to be set up by the boot process.

which uses only hardware features and does not rely on
other Safe-C++ code.

We were able to prove many object-store properties such
as “Writing to some allocated object does not accidently
modify any other allocated object” and “After writing to an
allocated object, reading from that object actually returns
the value written.” These properties usually take the form
of theorem-rewriting rules that allow semiautomatic simpli-
fication of and reasoning about state transformers that use
only the object-store layer. When reasoning about a se-
quence of object-store operations, these rewrite rules help
by removing uninteresting state modifications.

5 Conclusion

This extended abstract presents the main ideas for ap-
plying source-code verification to the Fiasco microkernel
in the VFiasco project. The main challenge in this project
is to enable high-level reasoning in terms of typed objects
during the verification, yet assume only low level hardware
properties. We solve this problem with several layers of
parametrized specifications.
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