
Back to the Futur e:
dependablecomputing � dependableservices

Jeffrey Chase,Amin Vahdat
�

, andJohnWilkes

Abstract

Clients are comingto rely more and more on external
servicesto meettheneedsof their users,andtheclientsare
increasinglysimplecachesof soft state– “truth” is main-
tained elsewhere. As a result, the user experienceof de-
pendabilityis betterservedby makingthoseservicesultra-
dependablethanby increasingthereliability of an individ-
ual client. Weexploreheresomeof theconsequencesof this
statement,andconcludethat developingscalable, depend-
ableservicesmaybe a more fruitful approach than an ex-
tremeemphasison “dependableOSes”. Alongthewaywe
lookatquantifying“dependability” in thisnewworld; some
of whatit takesto providedependable, large-scaleservices;
andsomeapproachesthatweare exploring to do so.

1 Back to the Future

Onceupona time, theUS spaceprogramfundedthede-
velopmentof ultra-dependablewriting instruments.There-
sultwasanastoundingpieceof technology:apenthatcould
write upsidedown, in zerogravity, underwater, etc. It was
pricedaccordingly. NASA’sextremeconditionsrequiredit.
But the restof us simply pick up a new, cheappenwhen
the onewe areusingstopsworking, andthink nothingof
discardingthe old one. We find it more economicaland
convenientto rely on a servicethatsuppliespens,not on a
super-dependablepen.

The analogyabove hints at our position on this topic:
userperceptionof “dependability”is increasinglydrivenby
thedependabilityof the underlyingservicesratherthanby
thedependabilityof anindividualclient. Why is this?

Increasingly, clientsareI/O devicesratherthancomput-
ing platforms. They arebecomingmorediverse,cheaper,
andmorespecialized.And they areall connectedto theser-
vice infrastructure.Any device thatcapturesdata(cameras,
laptops,sensors,phones)hasto preserve the datafor later
accessby otherservicesandapplications.Any device that

�

ContactAuthor: Amin Vahdat,Box 90129,Departmentof Computer
Science,DurhamNC 27708,vahdat@cs.duke.edu

presentsdatato auser(MP3players,viewers,WAP phones,
monitors)getsit from its environment.

The trendis drivenby Moore’s Law andbetterconnec-
tivity: ratherthansimply becomingmorepowerful, client
devicesaretradingsomeof thatpower for moreportability.
Further, they areincreasinglycommunication-orientedde-
vicesratherthanpurecomputingdevices– which depends
on connectivity, but connectivity is not the barrier to de-
pendabilitythatwe oncethoughtit was. In our homesand
offices,broadbandis asdependableasour phoneandelec-
trical systems,which we take for granted. On the road,
we have goodcoveragefrom cellular phonenetworks and
802.11in public places.And communicationperformance
will improve dramaticallyaswe pave over the “last mile.”
At the sametime, clientsareacquiringincreasingabilities
to cachedata,so temporarydisconnectionsare lessprob-
lematic.

Meanwhile,applicationsare increasinglyserver-based.
Thereareseveraldriversfor this, including:

1. Many servicesare intrinsically basedon sharedstate
(banking,commerce,trading,reservations,google,ya-
hoo) or communicationthroughresilient (albeit tem-
porary)state(e.g.,mail, messaging).

2. Growing numbersof servicesprovide a placeto up-
loaddataandshareit with otherpeopleor with other
devicesownedby thesameuser.

3. Sharedinformationis of intrinsicallyhighervaluethan
informationthatis usableonly by oneperson;andthat
value is in proportion to the numberof peoplewho
cometogetherto takeadvantageof it.

4. We arebecomingusedto higherlevelsof dependabil-
ity – we treatit asanunwarrantedexceptionwhenan
airline bookingsystemdoesn’t work, ratherthan the
smallmiraclethatit is whenthingsgo well.

5. Theveryportabilityof clientsmeansthatthey aresub-
jectedto a greaterrangeof threatsthanthefixedcom-
puting systemsof yore: a device that can easily get
dropped,stolen,or lost is not anidealenvironmentfor
preservingtheonly copy of valuable,long-termstate.

1

170



We believe that the computingenvironmentwill evolve
to onein which anything involving storagewill be backed
by reliableserversin controlledenvironments– andclient
devices will becomeever more interchangeable,merely
display devices and cachesfor data and software. This
will bring its own challenges,suchas consistency issues
– clients will temporarilystoredatain write-backcaches
when they becomedisconnected,pendingtransmissionto
theservice.Dealingwith this will beanimportantservice-
architecturequestion– but all our experiencewith dis-
tributedfile systemssuggeststhatit will bemanageable.

Considertheoft-usedmetaphorof theelectricitysupply,
with a small twist. Client devicesrun on batteries,which
arejust a cachefor electricity generatedby the utility and
deliveredthroughthe wall. Making the batteriesmorere-
liable andhighercapacitydoesimprove thequality of use,
but ultimatelywe dependon thatelectricutility beingthere
for us to do our work. But note that it’s not a particular
power sourcein that utility that we dependon: individual
userstypically donotcarewhichsiteactuallygeneratedthe
electricity, they just want thepower. Similarly, whenusers
accessaservice,they carelessandlessaboutwhereit runs.

This is not a new idea: thin clients,network computers,
andnow scalableutility computing.But it is happeningjust
thesame,andparticipationfrom theoperatingsystemcom-
munity is centralto achieving the vision if we areto meet
the levels of dependabilitythat peoplearecoming to take
for grantedacrossanever-wider rangeof services.

2 Utility computing as the path to depend-
ability

We believe that server-based computing and self-
organizingresourceutilities (server/network/storagefarms)
arethebasisfor dependablecomputingin thefuture. What
will it take to realizethis?At somelevel, muchof it is sim-
ply goodresourcemanagement,coupledwith development
of appropriateresourceand serviceabstractions. A few
thingscomplicatethis: the sheerscale(millions of clients,
not tensor hundreds);the rapid rateof changeof demand
levels, enabledby the any-to-any connectivity offered by
the Internet; the economicsof supportinga utility-based
infrastructure;and all the privacy, dataintegrity, security,
andservice-level predictabilitydemandsthat “dependabil-
ity” implies. We needto extendthe Internetreliability and
robustnessmodelto services:wewantto detectfailuresand
routearoundthem,astransparentlyto endusersaspossible.

Building robust servicestoday requirescluster-based
techniqueswherepotentially thousandsof individual ma-
chines deliver some higher level service (e.g., google’s
websearchscheme).Similarly, geographicreplicationand
transparentrequestredirection(e.g., using Akamai DNS
servers)areemployedto avoid network congestionandin-
dividualfailures.All thesetechniquesaretransparentto end

userswho simply requesta serviceandareagnosticas to
who actuallydelivers it. Suchseparationof servicefrom
a specificmachineoffers the promiseof eliminatingLam-
port’s Pitfall, where“A distributedsystemis onein which
thefailureof a machineI’ veneverheardof canpreventme
from gettingmy work done.”

This naturally leadsto solutionsthat enableservicesto
bedynamicallyprovisioned– andthento dynamicresource
provisioningfor network, computationalresources,storage,
memory, etc. Furthermore,we look to schemesthat al-
low business-drivenlevelsof performanceanddependabil-
ity to be specified– andfollowed. To supportthis, we are
increasinglyable to provision sufficient resources“on de-
mand”,quickly enoughto deliverdesiredservicelevelsun-
derrapidly-changingloads.

This hasbeenaccomplished,in part, by betterunder-
standingof service-level agreements(SLAs). SLAs used
in computernetworks have demonstratedthe benefitsof
usingeconomicincentivesto ensurewell-provisionedser-
vices. That is, availability of sufficient resourcesis much
more likely if delivering betterperformanceand depend-
ability resultsin morerevenue.

Fundamentalto our approachare the following tech-
niques:

� The useof SLAs, both to quantify the desiredgoals,
and to provide economic incentives for the utility
providers.

We hope that providing cost models for resources
will motivateapplicationdevelopersto deploy efficient
software for a given demandlevel. Even if this is
not the case,similar modelscan be provided at the
resource-managementlayer.

� Mechanismsto allow the resourceutility to provision
to deliver target levels of performanceandreliability.
This includesmechanismsto prioritize resourceallo-
cationsduringtemporaryoverload.

� Simultaneouslyperforming replica placement, re-
sourcerouting,andoverlay topologyconfigurationto
achieve target levels of “performance” for minimal
“cost”.

� Scalablealgorithmsfor maintainingtheutility through
the aggressive useof caching,approximateinforma-
tion, hierarchy, andaggregation.

� Achieving robustnessby deploying additional re-
sourcesandredundancy. Therearemany examplesof
this principle,andthey make server-computinginher-
ently more dependable:RAID, dynamicreplication,
redundantpaths,multipath routing, sessionrecovery,
edgecachingandstashing,dynamicserviceplacement
andmigration.

2

171



� Making all thesetechniquesself-managing,so that
peopledo not have to be involved in the systems’re-
sponseto events(loadchanges,failures,etc.).

Theabove list appliesmostlyat the resourcelayer. It is
alsofruitful to considerapplication-level adaptations:ide-
ally, they shouldbestructuredto befluid, i.e., independent
of the numberand placementof servers and how load is
divided amongthem. Applicationsshouldallow the sys-
teminfrastructure(utility) to determineserviceplacement,
replicationdegree,andbindingto peerservices(databases,
file servers)in a multi-tier structure.In this way, theutility
can monitor conditions,adaptto failure, dynamicallyad-
just placementand redundancy degree, scaleup or scale
back, and (re)allocateavailable resourcesto provide the
bestglobal service(for application-specificdefinitionsof
“best”).

Betweenthesetwo levels are frameworks that provide
for applicationdeployment,andadaptationto resourceor
applicationfailuresthatcanbeaccommodatedby reassign-
mentof resourcesto a service,andrebooting[6].

3 Examplesof serviceutilities

3.1 Opus

Opus[2] is anoverlaypeerutility service.It allows indi-
vidual applicationsto specifytheir performanceandavail-
ability requirements.Basedon this information,Opusini-
tially mapsapplicationsto individualnodesacrossthewide
area.Oncethis hasbeendone,observedaccesspatternsto
individual applicationsare usedto dynamicallyreallocate
resourcesto matchapplicationrequirements.For example,
if many accessesareobservedfor anapplicationin a given
network region, Opusmay reallocateadditionalresources
closeto thatlocation.

Onekey challengeto achieving this modelis determin-
ing the relative utility of a given candidateconfiguration.
Thatis, for eachavailableunit of resource,wemustbeable
to predict how much any given applicationwould benefit
from that resource.Existingwork in resourceallocationin
clusters[3] andreplicaplacementfor availability [10] indi-
catethatthis canbedoneefficiently in a varietyof cases.

Onekey aspectof our work is the useof ServiceLevel
Agreements(SLAs) to specifytheamounteachapplication
is willing to “pay” for a given level of performance.Opus
usesutility functionsfor this: it makesallocationanddeal-
locationdecisionsbasedon theexpectedrelative benefitof
a setof target configurations,basedon an estimateof the
marginal utility of resourcesacrossa setof applicationsat
currentlevelsof globaldemand[3].

Opusemploys a globalserviceoverlay to maintainsoft
stateaboutthe currentmappingof utility nodesto hosted
applications(groupmembership).This serviceoverlay is

key to many individual systemcomponents,suchasrout-
ing requestsfrom individual clientsto appropriatereplicas,
andperformingresourceallocationamongcompetingappli-
cations. Individual servicesrunningon Opusemploy per-
applicationoverlaysto disseminatetheir own servicedata
andmetadataamongindividual replicasites.

Clearly, a primary concernis ensuringthe scalability
andreliability of the serviceoverlay. Opusaddressesthis
throughthe aggressive useof hierarchy, aggregation,and
approximationin creatingandmaintainingscalableoverlay
structures.

3.2 The Grid

Althoughit initially beganasawayfor scientificapplica-
tionsto use“excess”computingcyclesatotherinstitutions,
theproponentsof TheGrid have recentlyembraceda more
generalmodelfor resourcemanagementandsharingacross
a federatedsetof suppliers,andrecentwork on definingan
“open grid servicearchitecture”[5] hasmadeit clear that
the eventualtarget is no longerlimited to relatively short-
livedjobs,but alsoembraceslonger-livedservices.

3.3 Planetary scalecomputing

Beginningwith theHPUtility DataCenter[4], aproduct
to enablethedeploymentof a first form of managedutility
computing,HP hasenteredon a path to develop technol-
ogy to enablewhat they call “planetaryscalecomputing,”
or “service-centriccomputing”– essentiallythe vision es-
pousedhere. Here,the datacenterrunsa “utility OS” [8],
whosedependabilityis crucialto theavailability of services
that the datacentersupports. Suchan “OS” has to deal
with all the usualissues:resourcemanagement,provision
of abstractions,client isolation... exceptthat theresources
areentireprocessornodes,or portionsof disk arrays,and
sharednetworking infrastructure,ratherthanthe moretra-
ditionalmemorypages,CPUs,andIO cards.

ExistingHPresearchwork onautomaticmanagementof
storagesystemserviceshasdemonstratedthat the “lights
out” provisioningof resourcesto meetapplicationneedsis
a viable approach[1]; the next stepis to apply theseideas
to thebroaderscopeof theentiredatacenter.

4 Defining dependability

Implicit in this wholediscussionis anunderlyingnotion
of what “dependability” means. Today’s storagevendors
andweb server hostingservicesoften usepercentageup-
time (e.g.,99.99%)to describesystemdependability. This
is a simple availability metric – “is it up?” – which, al-
thoughsomewhat useful for a single computer, suchas a
client, is inadequatewhenthe largercontext is considered,

3

172



becausefailuresoftendegradeserviceratherthanfully in-
terruptit.

A better notion is performability, which we define to
mean“what portionof the time is thesystemmeeting[the
user’s] expectedservicelevels?” Given sucha definition,
we canstartto judgealternative servicedesignsandoffer-
ings,andthengoon to designaservicedeploymentagainst
its userexpectations.

A serviceis usefulonly if a user’s requestscanbe pro-
cessedwithin their tolerance, or expectation. The toler-
ancecan includea rich combinationof aspects,including
throughput,latency, accuracy, completeness,and consis-
tency (e.g.,theservicemayreturn“slightly” inconsistent[9]
datain exchangefor improvedoverallaccessibility).

Inadequateperformancemay result from many causes:
network congestion,server overload,partial failuresof re-
sources,or partialdatainaccessibility(orevenloss);or even
simply stringentuserexpectations.A servicemaybe “un-
available” from a particularuser’s perspective even when
thesystemis up andrunning- andthis is a particularprob-
lem during timesof peakdemand,which arepreciselythe
timeswhenthesystemneedsto bemostdependable.

Interruptionsmaybefrequentandshort,or rareandlong.
Do thesehave thesame“average”dependability?This de-
pendson what the user expectationis. For example, if
theinterruptionsarefrequentenoughto preventthemcom-
pletinga transaction,thenthey areunlikely to besatisfied,
whatever the“average”mayindicate.

Our approachto building dependablesystemshasappli-
cationsspecifyingthe relative value (“utility”) of various
levels of performability and dataconsistency. A specific
exampleof thiskind of servicespecificationfor thestorage-
systemsspacecanbefoundin [7]. Explicit in this proposal
is the notion that theremay be morethanoneappropriate
servicelevel, and that the traditional “all or nothing” dis-
tinctionmaynotbesufficient– “is it anacceptableservice?”
is amoresophisticatedquestionthan“is it up?”.

In thismanner, thecomputeutility candeterminehow to
provision available resourcesto maximizeper-servicede-
pendabilityin thefaceof individual failures,changingnet-
work conditions,anddynamicclientaccesspatterns.

5 Conclusions

This papertakessomewhat of a contrarianpositionon
thequestionof how to build adependableoperatingsystem.
We believe that thetraditionaloperatingsystem,definedas
a monolithic structuremediatingall applicationaccessto
hostsoftware,is becominglessandlessimportantasa de-
terminerof dependability. Rather, the “operatingsystem”
is beingextendedto cover the gamutof managementand
deploymentissuesinvolved in executingan entireservice,
acrossthenetwork [8].

Thus, we believe that the operatingsystemresearch
agendamust addressissuesthat encompassthe concerns
raised by such global scale resource-management:how
shouldthe“operatingsystem”bestmanageglobalnetwork
resourcesto deliver reliableservicestransparentlyto mil-
lions of simultaneoususers? How should it dynamically
placefunctionalityandemploy redundancy to delivermuch
better performanceand availability than any centralized
hostor singleclient systemcould?Dependablecomputing
is not (just) aboutbuilding a more robust UNIX or Win-
dows. Rather, it is aboutthin, stateless,disposableclients
utilizing dependablecommunicationto accessglobal, de-
pendable,serviceutilities.

References

[1] Eric Anderson,Michael Hobbs, Kimberly Keeton,Susan
Spence,Mustafa Uysal, andAlistair Veitch. Hippodrome:
RunningCircles Around StorageAdministration. In Con-
ferenceon File andStorage Technology (FAST’02), January
2002.

[2] RebeccaBraynard,DejanKostíc, Adolfo Rodriguez,Jeffrey
Chase,and Amin Vahdat. Opus: an Overlay PeerUtility
Service.In Proceedingsof the5th InternationalConference
on Open Architectures and Network Programming(OPE-
NARCH), June2002.

[3] Jeffrey S. Chase,Darrell C. Anderson,PrachiN. Thakar,
Amin M. Vahdat,andRonaldP. Doyle. ManagingEnergy
andServer Resourcesin HostingCenters.In Proceedingsof
the 18th ACM Symposiumon Operating SystemPrinciples
(SOSP), October2001.

[4] Hewlett Packard Corporation. Utility Data Center.
www.hp.com/solutions1/infrastructure/
solutions/utilitydata/overview/, 2001.

[5] IanFoster, CarlKesselman,Jeffrey Nick, andStevenTuecke.
ThePhysiologyof theGrid: An OpenGrid ServicesArchi-
tecturefor DistributedSystemsIntegration,January2002.

[6] Patrick Goldsack. SmartFrog: a framework for config-
uration. In Large ScaleSystemConfiguration Workshop,
November2001.

[7] JohnWilkes. Traveling to Rome: QoS Specificationsfor
AutomatedStorageSystemManagement.In International
WorkshoponQuality of Service(IWQoS’2001), June2001.

[8] John Wilkes, Patrick Goldsack, G. (John) Janakiraman,
LanceRussell,SharadSinghal,andAndrew Thomas.eOS-
TheDawn of theResourceEconomy. Technicalreport,HP
Laboratories,May 2001. Available from http://www.
hpl.hp.com/SSP/papers.

[9] HaifengYu andAmin Vahdat. DesignandEvaluationof a
ContinuousConsistency Model for ReplicatedServices.In
Proceedingsof Operating SystemsDesignand Implementa-
tion (OSDI), October2000.

[10] Haifeng Yu and Amin Vahdat. Minimal ReplicationCost
for Availability. Technicalreport,Duke University, January
2002.Submittedfor publication.

4

173


