170

Back to the Future:
dependablecomputing = dependableservices

Jefrey Chase Amin Vahdat andJohnWilkes

Abstract

Clients are comingto rely more and more on external
servicedo meetthe needf their usess, andtheclientsare
increasinglysimplecadesof soft state— “truth” is main-
tained elsavhere. As a result, the user experienceof de-
pendabilityis betterservedby makingthoseserviceaultra-
dependableéhan by increasingthe reliability of an individ-
ual client. We explore here someof theconsequences this
statementand concludethat developingscalable depend-
able servicesmaybe a more fruitful apprac thanan ex-
tremeemphasin “dependableOSes”. Along the way we
lookat quantifying‘dependability” in thisnew world; some
of whatit takesto providedependablgarge-scaleservices;
andsomeapproadesthat weare exploring to do so.

1 Backto the Future

Onceuponatime, the US spaceprogramfundedthede-
velopmenbf ultra-dependableriting instrumentsThere-
sultwasanastoundingieceof technology:apenthatcould
write upsidedown, in zerogravity, undervatet etc. It was
pricedaccordingly NASA's extremeconditionsrequiredit.
But the restof us simply pick up a new, cheappenwhen
the onewe are using stopsworking, andthink nothing of
discardingthe old one. We find it more economicaland
corvenientto rely on a servicethat suppliespens,noton a
superdependablgen.

The analogyabove hints at our position on this topic:
userperceptiorof “dependability”is increasinglydrivenby
the dependabilityof the underlyingservicesratherthanby
thedependabilityof anindividual client. Why is this?

Increasinglyclientsarel/O devicesratherthancomput-
ing platforms. They are becomingmore diverse,cheaper
andmorespecializedAnd they areall connectedo the ser
viceinfrastructure Any device thatcapturesiata(cameras,
laptops,sensorsphones)asto presere the datafor later
accesdy otherservicesandapplications.Any device that

*ContactAuthor: Amin Vahdat,Box 90129,Departmenbf Computer
SciencePurhamNC 27708, vahdat@cs.dwedu

presentslatato auser(MP3 playersyviewers, WAP phones,
monitors)getsit from its ervironment.

Thetrendis drivenby Moore’s Law andbetterconnec-
tivity: ratherthansimply becomingmore powerful, client
devicesaretradingsomeof thatpowerfor moreportability.
Further they areincreasinglycommunication-orientede-
vicesratherthanpurecomputingdevices— which depends
on connectvity, but connectvity is not the barrierto de-
pendabilitythatwe oncethoughtit was. In our homesand
offices,broadbands asdependablasour phoneandelec-
trical systems,which we take for granted. On the road,
we have good coveragefrom cellular phonenetworks and
802.11in public places.And communicatiorperformance
will improve dramaticallyaswe pave over the “last mile”
At the sametime, clientsare acquiringincreasingabilities
to cachedata, so temporarydisconnectionsre lessprob-
lematic.

Meanwhile, applicationsare increasinglysener-based.
Thereareseveraldriversfor this, including:

1. Many servicesareintrinsically basedon sharedstate
(banking,commercetrading,resenations,google ya-
hoo) or communicationthroughresilient (albeit tem-
porary)state(e.g.,mail, messaging).

2. Growing numbersof servicesprovide a placeto up-
load dataandshareit with otherpeopleor with other
devicesownedby the sameuser

3. Sharednformationis of intrinsically highervaluethan
informationthatis usableonly by onepersonandthat
valueis in proportionto the numberof peoplewho
cometogetherto take advantageof it.

4. We arebecomingusedto higherlevelsof dependabil-
ity —we treatit asanunwarrantedexceptionwhenan
airline booking systemdoesnt work, ratherthanthe
smallmiraclethatit is whenthingsgo well.

5. Theveryportability of clientsmeanghatthey aresub-
jectedto a greaterangeof threatsthanthefixed com-
puting systemsof yore: a device that can easily get
droppedstolen,or lostis notanideal ervironmentfor
preservingheonly copy of valuable long-termstate.

171

We believe thatthe computingenvironmentwill evolve
to onein which anything involving storagewill be backed
by reliablesenersin controlledervironments— andclient
devices will becomeever more interchangeablemerely
display devices and cachesfor dataand software. This
will bring its own challengessuch as consisteng issues
— clientswill temporarily storedatain write-back caches
whenthey becomedisconnectedpendingtransmissiorto
the service.Dealingwith this will be animportantservice-
architecturequestion— but all our experiencewith dis-
tributedfile systemssuggestshatit will bemanageable.

Considetthe oft-usedmetaphoiof the electricity supply
with a smalltwist. Client devicesrun on batterieswhich
arejust a cachefor electricity generatedy the utility and
deliveredthroughthe wall. Making the batteriesmorere-
liable andhighercapacitydoesimprove the quality of use,
but ultimatelywe dependon thatelectricutility beingthere
for usto do our work. But notethatit’'s not a particular
power sourcein that utility thatwe dependon: individual
usergypically donot carewhich siteactuallygeneratedhe
electricity, they justwantthe power. Similarly, whenusers
access service they carelessandlessaboutwhereit runs.

This is not a new idea: thin clients,network computers,
andnow scalableutility computing.Butit is happeningust
the same andpatrticipationfrom the operatingsystemcom-
munity is centralto achiesing the vision if we areto meet
the levels of dependabilitythat peopleare comingto take
for grantedacrossanever-wider rangeof services.

2 Utility computing as the path to depend-
ability

We believe that sener-based computing and self-
organizingresourcautilities (sener/network/storagdarms)
arethebasisfor dependableomputingin the future. What
will it take to realizethis? At somelevel, muchof it is sim-
ply goodresourcemanagementoupledwith development
of appropriateresourceand service abstractions. A few
thingscomplicatethis: the sheerscale(millions of clients,
not tensor hundreds)the rapid rate of changeof demand
levels, enabledby the any-to-ary connectvity offered by
the Internet; the economicsof supportinga utility-based
infrastructure;and all the privacy, dataintegrity, security
andservice-l@el predictability demandshat “dependabil-
ity” implies. We needto extendthe Internetreliability and
robustnessnodelto serviceswe wantto detectfailuresand
routearoundthem,astransparentlyo endusersaspossible.

Building robust servicestoday requires clusterbased
technigueswhere potentially thousandsf individual ma-
chines deliver some higher level service (e.g., googles
web searchscheme).Similarly, geographiaeplicationand
transparentequestredirection (e.g., using Akamai DNS
seners)areemployedto avoid network congestiorandin-
dividualfailures.All thesetechniquesretransparento end

userswho simply requesta serviceand are agnosticas to
who actually deliversit. Suchseparatiorof servicefrom
a specificmachineoffers the promiseof eliminating Lam-
port’s Pitfall, where“A distributed systemis onein which
thefailure of amachinel’ ve never heardof canpreventme
from gettingmy work done”

This naturally leadsto solutionsthat enableservicesto
bedynamicallyprovisioned- andthento dynamicresource
provisioningfor network, computationatesourcesstorage,
memory etc. Furthermore,we look to schemeghat al-
low business-drienlevelsof performanceanddependabil-
ity to be specified- andfollowed. To supportthis, we are
increasinglyableto provision sufficient resourceson de-
mand”,quickly enoughto deliver desiredservicelevelsun-
derrapidly-changindoads.

This hasbeenaccomplishedjn part, by betterunder
standingof service-leel agreement¢SLAs). SLAs used
in computernetworks have demonstratedhe benefitsof
using economicincentvesto ensurewell-provisionedser
vices. Thatis, availability of sufficient resourcess much
morelikely if delivering better performanceand depend-
ability resultsin morerevenue.

Fundamentato our approachare the following tech-
nigues:

e Theuseof SLAs, bothto quantify the desiredgoals,
and to provide economicincentives for the utility
providers.

We hope that providing cost models for resources
will motivateapplicationdevelopergo deploy efficient
software for a given demandlevel. Even if this is
not the case,similar modelscan be provided at the
resource-managemeaer.

e Mechanismdo allow the resourceutility to provision
to deliver targetlevels of performanceandreliability.
This includesmechanismso prioritize resourceallo-
cationsduringtemporaryoverload.

e Simultaneously performing replica placement, re-
sourcerouting, and overlay topology configurationto
achieve tamget levels of “performance”for minimal
“cost”.

e Scalablealgorithmsfor maintainingthe utility through
the aggressie useof caching,approximateinforma-
tion, hierarchyandaggreyation.

e Achieving robustnessby deploying additional re-
sourcesandredundang. Therearemary examplesof
this principle, andthey make sener-computinginher
ently more dependable:RAID, dynamicreplication,
redundantpaths, multipath routing, sessiorrecovery;,
edgecachingandstashingdynamicserviceplacement
andmigration.

172

e Making all thesetechniquesself-managing,so that
peopledo not have to beinvolvedin the systems’re-
sponsdo events(load changesfailures,etc.).

The above list appliesmostly atthe resourcdayer. It is
alsofruitful to considerapplication-le@el adaptationside-
ally, they shouldbe structuredo befluid, i.e., independent
of the numberand placementof senersand how load is
divided amongthem. Applicationsshouldallow the sys-
teminfrastructure(utility) to determineserviceplacement,
replicationdegree,andbindingto peerserviceqdatabases,
file seners)in amulti-tier structure.In this way, the utility
can monitor conditions,adaptto failure, dynamically ad-
just placementand redundang degree, scaleup or scale
back, and (re)allocateavailable resourceso provide the
bestglobal service(for application-specifidefinitions of
“best”).

Betweenthesetwo levels are frameworks that provide
for applicationdeployment, and adaptationto resourceor
applicationfailuresthatcanbe accommodatetly reassign-
mentof resourceso a service,andrebooting[6].

3 Examplesof sewvice utilities
3.1 Opus

Opusl[2] is anoverlaypeerutility service.lt allowsindi-
vidual applicationsto specifytheir performanceandavail-
ability requirements Basedon this information, Opusini-
tially mapsapplicationgo individualnodesacrosshewide
area.Oncethis hasbeendone,obsenedaccesgatternsgo
individual applicationsare usedto dynamicallyreallocate
resource$o matchapplicationrequirementsFor example,
if mary accesseareobseredfor anapplicationin a given
network region, Opusmay reallocateadditionalresources
closeto thatlocation.

Onekey challengeto achieving this modelis determin-
ing the relative utility of a given candidateconfiguration.
Thatis, for eachavailableunit of resourceye mustbeable
to predict how muchary given applicationwould benefit
from thatresource Existingwork in resourceallocationin
clusterq3] andreplicaplacemenfor availability [10] indi-
catethatthis canbe doneefficiently in avariety of cases.

Onekey aspeciof our work is the useof ServicelLevel
AgreementgSLAS to specifythe amounteachapplication
is willing to “pay” for a givenlevel of performance Opus
usesutility functionsfor this: it makesallocationanddeal-
locationdecisionshasedon the expectedrelative benefitof
a setof tarmget configurationsbasedon an estimateof the
mauginal utility of resourcescrossa setof applicationsat
currentlevels of globaldemand3].

Opusemplgys a global serviceoverlay to maintainsoft
stateaboutthe currentmappingof utility nodesto hosted
applications(group membership). This serviceoverlay is

key to mary individual systemcomponentssuchas rout-
ing requestsrom individual clientsto appropriateeplicas,
andperformingresourceallocationamongcompetingappli-
cations. Individual servicesrunningon Opusemploy per
applicationoverlaysto disseminateheir own servicedata
andmetadatamongindividual replicasites.

Clearly, a primary concernis ensuringthe scalability
andreliability of the serviceoverlay Opusaddressethis
throughthe aggressie useof hierarchy aggreyation, and
approximatiorin creatingandmaintainingscalableoverlay
structures.

3.2 The Grid

Althoughit initially beganasaway for scientificapplica-
tionsto use“excess”"computingcyclesat otherinstitutions,
the proponentof TheGrid have recentlyembraced more
generaimodelfor resourcenanagemerdndsharingacross
afederatedsetof suppliersandrecentwork on definingan
“open grid servicearchitecture[5] hasmadeit clearthat
the eventualtargetis no longerlimited to relatively short-
livedjobs,but alsoembracesongerlivedservices.

3.3 Planetary scalecomputing

Beginningwith theHP Utility DataCenter{4], aproduct
to enablethe deploymentof a first form of managedutility
computing,HP hasenteredon a pathto develop technol-
ogy to enablewhat they call “planetaryscalecomputing)
or “service-centriccomputing”— essentiallythe vision es-
pousedhere. Here,the datacenterrunsa “utility OS” [8],
whosedependabilityis crucialto theavailability of services
that the data centersupports. Suchan “OS” hasto deal
with all the usualissues:resourcemanagementprovision
of abstractionsclientisolation... exceptthattheresources
are entire processonodes,or portionsof disk arrays,and
sharednetworking infrastructure ratherthanthe moretra-
ditionalmemorypagesCPUs,andIO cards.

ExistingHP researctwork on automationanagemerf
storagesystemserviceshas demonstratedhat the “lights
out” provisioning of resource$o meetapplicationneedss
aviable approacHt1]; the next stepis to apply theseideas
to thebroaderscopeof the entiredatacenter

4 Defining dependability

Implicit in this wholediscussioris anunderlyingnotion
of what “dependability” means. Today’s storagevendors
and web sener hostingservicesoften use percentageip-
time (e.g.,99.99%)to describesystemdependability This
is a simple availability metric — “is it up?” — which, al-
thoughsomevhat useful for a single computey suchasa
client, is inadequatevhenthe larger context is considered,

173

becausdailuresoften degradeserviceratherthanfully in-
terruptit.

A better notion is performability, which we defineto
mean“what portion of the time is the systemmeeting[the
users] expectedservicelevels?” Given sucha definition,
we canstartto judgealternatve servicedesignsand offer-
ings,andthengo onto designa servicedeploymentagainst
its userexpectations.

A serviceis usefulonly if a users requestsanbe pro-
cessedwithin their tolerance or expectation. The toler
ancecaninclude a rich combinationof aspectsjncluding
throughput,lateng, accurag, completenessand consis-
teng (e.g.,theservicemayreturn“slightly” inconsistenf9]
datain exchangefor improvedoverall accessibility).

Inadequateerformancemay resultfrom mary causes:
network congestionsener overload,partial failuresof re-
sourcesor partialdatainaccessibility(or evenloss);or even
simply stringentuserexpectations.A servicemay be “un-
available” from a particularusers perspectie even when
the systemis up andrunning- andthisis a particularprob-
lem during timesof peakdemandwhich are preciselythe
timeswhenthe systenrneedso be mostdependable.

Interruptionsmaybefrequentandshort,or rareandlong.
Do thesehave the same“average”dependability ?This de-
pendson what the user expectationis. For example, if
theinterruptionsarefrequentenoughto preventthemcom-
pleting a transactionthenthey areunlikely to be satisfied,
whateverthe“average”mayindicate.

Our approacho building dependablasystemdasappli-
cationsspecifyingthe relative value (“utility”) of various
levels of performability and dataconsisteng. A specific
exampleof thiskind of servicespecificatiorfor thestorage-
systemspacecanbefoundin [7]. Explicit in this proposal
is the notion that theremay be morethan one appropriate
servicelevel, andthatthe traditional“all or nothing” dis-
tinctionmaynotbesuficient—"“is it anacceptablservice?”
is amoresophisticatedjuestiorthan“is it up?”.

In thismanneythe computeutility candeterminenow to
provision available resourcedo maximize perservicede-
pendabilityin the faceof individual failures,changingnet-
work conditions,anddynamicclientaccesgatterns.

5 Conclusions

This papertakes somavhat of a contrarianpositionon
thequestiorof how to build adependableperatingsystem.
We believe thatthetraditionaloperatingsystem definedas
a monolithic structuremediatingall applicationaccesso
hostsoftware,is becominglessandlessimportantasa de-
terminerof dependability Rather the “operatingsystem”
is being extendedto cover the gamutof managemenand
deploymentissuesinvolved in executingan entire service,
acrosghenetwork [8].

Thus, we believe that the operating systemresearch
agendamust addressissuesthat encompasshe concerns
raised by such global scale resource-managementiow
shouldthe “operatingsystem”bestmanageglobal network
resourcego deliver reliable servicestransparentiyto mil-
lions of simultaneoususers? How shouldit dynamically
placefunctionalityandemploy redundang to deliver much
better performanceand availability than ary centralized
hostor singleclient systemcould? Dependableomputing
is not (just) aboutbuilding a more robust UNIX or Win-
dows. Rather it is aboutthin, statelessdisposableclients
utilizing dependableommunicationto accesgylobal, de-
pendableservicedutilities.

References

[1] Eric Anderson,Michael Hobbs, Kimberly Keeton, Susan
SpenceMustafa Uysal, and Alistair Veitch. Hippodrome:
Running Circles Around StorageAdministration. In Con-
ferenceon File and Stolage Technolayy (FAST'02) January
2002.

[2] Rebeccadraynard,DejanKostic, Adolfo Rodriguez Jefrey
Chase,and Amin Vahdat. Opus: an Overlay PeerUtility
Service.In Proceeding®f the 5th InternationalConfeence
on Open Architectuies and Network Programming (OPE-
NARCH) June2002.

[3] Jefrey S. Chase,Darrell C. Anderson,PrachiN. Thakar
Amin M. Vahdat,andRonaldP. Doyle. ManagingEnegy
andSener Resourcefn HostingCenters.In Proceeding®f
the 18th ACM Symposiunon Opeiating SystenPrinciples
(SOSP)October2001.

[4] Hewlett Packard Corporation. Utility Data Center
www. hp. coml sol utionsl/infrastructure/
solutions/utilitydataloverview ,2001.

[5] lanFoster CarlKesselmanjefrey Nick, andStevenTuecle.
The Physiologyof the Grid: An OpenGrid ServicesArchi-
tecturefor DistributedSystemdntegration,January2002.

[6] Patrick Goldsack. SmartFrog: a framevork for config-
uration. In Large Scale SystemConfiguation Workshop
November2001.

[7] JohnWilkes. Traveling to Rome: QoS Specificationgfor
AutomatedStorageSystemManagement.In International
Workshopon Quality of Service(IWQo0S’2001)June2001.

[8] John Wilkes, Patrick Goldsack, G. (John) Janakiraman,
LanceRussell,SharadSinghal,and Andrev Thomas.eOS-
The Dawn of the Resourceeconomy Technicalreport,HP
LaboratoriesMay 2001. Available from htt p: // wa.
hpl . hp. conf SSP/ papers.

[9] HaifengYu and Amin Vahdat. Designand Evaluationof a
ContinuousConsisteng Model for ReplicatedServices.In
Proceedingof Opemting System®esignand Implementa-
tion (OSDI), October2000.

[10] Haifeng Yu and Amin Vahdat. Minimal ReplicationCost
for Availability. Technicalreport,Duke University, January
2002. Submittedfor publication.

