
Execution Time Limitation of Interrupt Handlers in a Java Operating System

Meik Felser, Michael Golm, Christian Wawersich, Jürgen Kleinöder
University of Erlangen-Nürnberg

Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany

{felser, golm, wawersich, kleinoeder}@informatik.uni-erlangen.de

Abstract
Device drivers are a very critical part of every operating

system. They often contain code that is executed in interrupt
handlers. During the execution of interrupt handlers, the
processing of some other interrupts is usually disabled.
Thus errors in that code can compromise the whole system.

This paper describes an approach to ensure that an
interrupt handler is not allowed to use more than a specified
amount of time. Our approach is based on a Java operating
system and consists of a combination of verification at com-
pilation time and run-time checks.

1 Introduction

Modern operating systems have to support a wide range
of different hardware. To be flexible the code to access the
hardware is modularized in device drivers. Each driver is
responsible for the communication between the operating
system and the corresponding device.

The communication between hardware and software is
often realized with interrupts. Hence drivers have an excep-
tional position because they must be able to react to inter-
rupts. During the execution of an interrupt handler the pro-
cessing of new interrupts is usually disabled. Thus an error
in an interrupt handler, e.g. an endless loop, does not only
affect the functionality of the driver but can have severe
effects on the whole system.

Beside the worst case of an interrupt handler containing
an endless loop every interrupt handler, being executed
exclusively, has an influence on the response time of the sys-
tem. The scheduling, in particular real-time scheduling, is
reliant on the possibility to interrupt a running thread. In
almost every system this is realized by the timer interrupt.
But this interrupt is delayed if the processor is executing
another interrupt handler.

A common approach to minimize the execution time of
an interrupt handler is to split it into two parts. A first-level
handler is activated directly by the interrupt. This handler
performs only time-critical actions and unblocks a second-
level handler which performs all other tasks. However a

faulty first-level handler can still compromise the whole
system.

In this paper we introduce an approach to ensure an
upper bound execution time for first-level interrupt han-
dlers. We describe a Java bytecode verifier that is part of our
Java operating system JX [GFW+02]. All device drivers for
this system, including their interrupt handlers, are com-
pletely written in Java. The verifier can either predict an
upper bound execution time for a method when the byte-
code is translated into machine code or it extends the
method to execute run-time checks.

In the next section we classify the possible errors of
device drivers. After that we introduce our verifier in sec-
tions 3. In section 4 we describe the execution time analysis.
Section 5 concludes the paper.

2 Classification of Errors

To estimate the probability of faulty device drivers, we
take a look at the Linux kernel. More than 77% of the source
code lines are device drivers (Linux 2.4.18). The large
amount of supported devices implies that not every possible
combination of drivers was tested. Beside implementation
errors, side effects can cause unpredictable errors. Other
studies e.g. [CY01] circumstantiate that most errors are
found in device drivers.

For the further analysis we divide the errors in device
drivers into three classes, according to the effect of their
misconduct:
• Errors causing an instant system crash.
• Errors causing an instant crash of the device driver.
• Errors that do not crash the driver but lead to unexpectedly

long execution.
The first class of behavior can be caused by faulty DMA

transfers, for example, due to a wrong initialization of the
device’s DMA engine. It is very hard to counteract these
effects in general, without any knowledge of the individual
device. In the scope of this paper we trust the DMA initial-
ization sequence of the driver ([GKB01]) and focus on the
other classes of errors.

190



Implementation errors, such as buffer overflows or
invalid pointers often lead to segmentation violations (or
similar faults) and characterize the second class of errors.
Using Java makes many of these bugs impossible because of
the typesafety and the boundary checks at array accesses.
But even without a typesafe language, an appropriate pro-
tection mechanism can delimit the effect of these errors,
such that only the driver is compromised. After removing
the driver, a new instance can be started, assuming that the
error does not occur again, at least not immediately.

Errors of the third class are mainly based on wrong pre-
conditions or caused by unexpected side effects from other
device drivers. But also simple implementation faults can
provoke these effects. If we do not fully trust our device
drivers we must be able to handle such errors.

3 The Bytecode Verifier

When a Java class is loaded by our system, it’s bytecode
is analyzed by a verifier and translated into machine code.
The verifier performs several tasks:
• It checks whether the byte code complies with the JVM

specification.
• It tries to analyze the worst-case execution time.
• It checks the applicability of some optimizations. The null

pointer analysis, for example, checks whether a reference
can never become null. In this case the compiler does not
need to insert a run-time check.

To prevent erroneous drivers especially the first two
steps are important. In the first step the verifier checks
whether the bytecode fulfills the Java virtual machine spec-
ification [LY99]. This type of verification is performed by
most Java run-time systems. The major task is to ensure
pointer safety. It must be guaranteed that no numeric value
is interpreted as reference. This is mainly realized by testing
whether the number and types of operands on the stack is
correct for each operation. Besides this, the access restric-
tions of variables and methods are checked. The compliance
to the JVM specification guarantees typesafety and thus
eliminates all errors related to invalid pointers. The second
step is described in the next section.

4 Execution Time Limitation

In this section we describe the worst-case execution time
analysis of our bytecode verifier. In contrast to other papers
(e.g. [OS97], [EE00]) we are not interested in the tightest
possible worst-case execution time or the exact program
flow. We only want to ensure that a specified amount of time
is not exceeded.

4.1 Worst-case execution time analysis

To analyze the worst-case execution time for a method
the verifier builds up a flow graph of the respective method.

In [Sha89] an additive rule is proposed to evaluate the
worst-case execution time of a program based on the worst-
case execution time of parts e.g. single instructions. With
the prerequisite, that the worst-case execution time of every
Java bytecode is known, we only have to find the longest
path through the flow graph.

One problem is, that the run-time estimation of some
bytecodes is very hard, for example the allocation of a new
object can lead to an GC run of unpredictable duration.
Therefore we prohibit the GC to run in an interrupt handler
and have reserved a little amount of the heap for object allo-
cation in interrupt handlers.

The second problem is, that the program flow is rarely
linear. A conditional jump (e.g. caused by an if statement)
splits the program flow into two branches. In the case of an
if statement we have to estimate the execution time for each
branch separately and use the maximum. It is more complex
if the flow graph contains backward jumps leading to cycles
(e.g. caused by loops). The execution time of simple loops
with known length is calculated by multiplying the execu-
tion time of the body by the number of iterations. Therefore
the problem is to determine the number of iterations for
each loop.

We distinguish three types of loops:
• simple loops with fixed length,
• simple loops with simple condition function, and
• complex loops.

The first type is the easiest, but very few loops are of that
type. The second type can be managed in an analytical
approach [Bli94]. If the loop condition depends on a mono-
tonic function, a fixed upper bound can be evaluated. But
the number of iterations mostly depend on relatively com-
plex loop conditions. A general approach to analyze the exe-
cution time of every kind of loop is impossible without fur-
ther information from the user [Par93] or basic restrictions
concerning the kind of loop conditions [PK89].

Since our goal is not to evaluate the worst-case execu-
tion time, but to limit it, we do not use an analytical
approach to handle loops. Instead we use an approach of
partial execution. If statements are handled as described
above. But if we recognize a loop we execute its condition
function to determine whether another iteration is executed.

4.2 Partial execution

On Java bytecode level loops are realized with condi-
tional jumps as in most machine languages. Therefore the
first task is to determine which conditional jump leads to a
loop and which is only caused by an if statement. The cor-

191



relation between the parameters of the loop condition and
the number of iterations needs not to be analyzed. We only
have to determine which parameters, more precisely which
bytecodes, influence the number of iterations. These byte-
codes are recognized in a recursive application of simplifi-
cation rules [Alt01] which try to identify typical constructs,
such as if conditions or simple loops. In the context of this
paper we are not interested in the details of this process. We
concentrate on the results. The analysis supplies us with a
list of bytecodes which have to be executed to determine the
length of loops. This splits the bytecodes into two catego-
ries. Those which have to be executed and those we only
need to simulate.

To simulate a bytecode means that we only have to add
the execution time of the operation to our sum. Whereas we
need to evaluate a result for each bytecode which was
marked for execution because it is needed by another oper-
ation, for example, a conditional jump. Special attention
must be paid to the invoke bytecodes. These instructions
are used to call another method. If these bytecodes are used,
the verifier analyzes the called method and begins the partial
execution of that method unless there already exists valid
execution time information for that method (e.g. due to a
prior analysis of the method).

If the execution of a bytecode depends on parameters
which were defined outside the scope of the analysis, a start
value for each parameter must be provided at the beginning
of the partial execution. If we do not trust the source of these
parameters we have to insert checks that verify the given
values at run time and ensure that they match the expected
values or are within an expected range of values.

The approach of partial execution is not able to estimate
the worst-case execution time for all methods. For example
if the method contains an endless loop, the partial execution
loops infinitely. But this is not a problem since we are only
interested, whether a method is executed within a specified
amount of time. By checking the elapsed time during the
partial execution this can be evaluated for almost every
method. Thus this procedure is sufficient for our intention.

4.3 Checks at run time

Some situations prohibit the use of the partial execution
approach. First it is not always possible to supply a suitable
set of start values. Second the Java bytecode allows loop
constructs which can not be handled by our simplification
rules (e.g. if a basic block is shared by two loops), therefore
the flow graph can not be reduced. Although bytecode of
such complexity is never created by a Java to bytecode com-
piler, handwritten bytecode can contain such complex loop
constructions and, anyhow, comply to the JVM specifica-
tion.

In relation to interrupt handlers this is almost no prob-
lem. Most interrupt handlers are only dispatchers. Thus they
have a linear control structure and the verifier can determine
the worst-case execution time at compile time. Alternatively
complex non-linear interrupt handlers can be split into a lin-
ear first-level handler and a more complex second-level
handler. This would justify the alternative policy to only
accept drivers which pass the execution time analysis at
compilation time. But we do not want to be that restrictive.

Thus our verifier can handle these cases as well. It can
analyze the worst-case execution time of one loop iteration
and insert run-time checks into the method’s bytecode. The
checks monitor the number of iterations and can terminate
the method with an exception if the specified time limit is
exceeded. Alternatively the run-time checks can be created
by our bytecode to native code compiler. Then the verifier
supplies the native code compiler with hints, where to add
those checks. The advantage is, that hardware clocks can be
used to measure the exact time used by the method, whereas
the bytecode variant is based on estimated data.

4.4 Terminating drivers

When an interrupt handler is terminated, the corre-
sponding driver is uninstalled. This is reasonable, because
next time this interrupt occurs, the handler may exceed it’s
time limit again. The termination of a driver leads to the fol-
lowing other problems:
• The data structures of a driver could be inconsistent.
• The device still generates interrupts, stressing the system.

To handle these problems a device driver must imple-
ment a terminated method. This method is called when
the interrupt handler of the device is aborted. The task of
this method is to clean up internal data structures and to
reset the device.

The design of this method has to fulfill special require-
ments, because it is executed while interrupts are disabled.
The verifier must be able to estimate the worst-case execu-
tion time of the method at compile time. If this is not possi-
ble, the driver is not allowed to be installed at all.

To fulfill these requirements the method can only con-
tain loops where the number of iterations can be checked at
compile time. In general, it should be possible to build a lin-
ear terminatemethod, so that this is not a serious restric-
tion. If it is not possible, the terminatemethod can wake
up another thread, which runs later with enabled interrupts
and thus does not need to accomplish the strict require-
ments.

After cleanup, the system should be in an appropriate
condition for installing another (or may be the same) driver
for the device, so that applications which rely on the service
of that specific device can still run.

192



5 Conclusion and future work

We can assure an upper bound execution time for every
interrupt handler. This is done either at compile time or with
checks at run time.

At compile time the verifier uses an approach of partial
execution to determine the execution time. As a precondi-
tion a start value must be provided for each parameter. Up
to now the result of our verifier is a table which contains the
number of executions for each bytecode. To get a time infor-
mation from this abstract data we need a mapping from the
bytecodes to the worst-case execution time of each byte-
code (cp. [PG01]). The simplest way to do this is a table of
execution time information for each bytecode. This data
depends on the target architecture and must be obtained in a
calibration step.

If it is not possible to evaluate the worst-case execution
time at compile time, we extend the critical methods with
additional code. This code checks the elapsed time at run
time and terminates the method if a specified amount of
time is exceeded.

Thus our system is less vulnerable to erroneous interrupt
handlers. In combination with the protection provided by
the typesafe language Java, the occurrence of system
crashes due to faulty device drivers is drastically reduced.

A side effect of the execution time limitation is that the
system delay, due to the execution of interrupt handlers, is
within certain limits. This may be profitable for real-time
applications.

6 References

Alt01 M.Alt.EinBytecode-VerifierzurVerifikationvonBetriebssys-
temkomponenten. Diplomarbeit (master thesis), University of
Erlangen, Dept. of Comp. Science 4, July 2001.

Bli94 J. Blieberger. Discrete Loops And Worst Case Performance.
Computer Languages, 20(3):193-212, 1994.

CY01 A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
Empirical Study of Operating Systems Errors. In: Symposium
on Operating System Principles 01’, 2001.

EE00 J. Engblom and A. Ermedahl. Modeling Complex Flows for
Worst-Case Execution Time Analysis. In: Proc. of the 21st
IEEE Real-Time Systems Symposium (RTSS 2000), Orlando,
December 2000.

GFW+02 M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. The JX
Operating System. In: Proc. of the Usenix Annual Technical
Conference, Monterey, June 2002.

GKB01 M. Golm, J. Kleinoeder, F. Bellosa. Beyond Address Spaces -
Flexibility, Performance, Protection, and Resource Manage-
ment in the Type-Safe JX Operating System. In: Proc. of the
8th Workshop on Hot Topics in Operating Systems, May 2001.

LY99 T.LindholmandF.Yellin.TheJavaVirtualMachineSpecifica-
tion. Second Edition, Addison-Wesley, Reading/Massachu-
setts, 1999

OS97 G.OttossonandM.Sjödin.Worst-CaseExecutionTimeAnal-
ysis for Modern Hardware Architectures. In: Proc. of SIG-
PLAN1997WorkshoponLanguages,CompilersandToolsfor
Real-Time Systems (LCT-RTS’97), June 1997.

Par93 C. Y. Park. Predicting program execution times by analyzing
static and dynamic program paths. Real-Time Systems,
5(1):31-62, March 1993.

PG01 P. Puschner, G. Bernat. WCET Analysis of Reusable Portable
Code. In: Proc. of the 13th International Euromicro Confer-
ence on Real-Time Systems, June 2001.

PK89 P.PuschnerandC.Koza.CalculatingtheMaximumExecution
Time of Real-Time Programs. Journal of Real-Time Systems,
1(2):159-176, September 1989.

Sha89 A. Shaw. Reasoning about Time in Higher-Level Language
Software. IEEE Transactions on Software Engineering,
15(7):875-889, July 1989.

193


