
Extensible Distributed Operating System for Reliable Control Systems

Katsumi Maruyama, Kazuya Kodama, Soichiro Hidaka, Hiromichi Hashizume
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Email:{maruyama,kazuya,hidaka,has}@nii.ac.jp

Abstract

Since most control systems software is hardware-related,
real-time-oriented and complex, adaptable OSs which help
program productivity and maintainability improvement are
in strong demand.

We are developing an adaptable and extensible OS based
on micro-kernel and multi-server scheme: each server runs
in a protected mode interacting only via messages, and
could be added/extended/deleted easily. Since this OS is
highly modularized, inter-process messaging overhead is a
concern. Our implementation proved good efficiency and
maintainability.

1. Introduction

Most systems, from large scale public telephone switch-
ing systems to home electronics, are controlled by software,
and improvement of control program development produc-
tivity is necessary .

To facilitate the program development , suitable OSs are
required . The followings are required to OSs for control
systems.

• Required features largely depend on target fields. Ex-
tensible and adaptable OS is required .

• Control systems, such as telephone switching systems,
require very severe multi and realtime processing ca-
pabilities. Very efficient multi-threading must be sup-
ported.

• Hardware controls are essential.

In most OSs, driver programs run in kernel mode, and
their program development is very difficult.

• Control programs should be maintained for a very long
time, adding new functions. Maintainability is of great
importance .

General purpose OSs are not sufficient for these require-
ments. Therefore, in large and severe systems, specially
designed OSs are used. In economical embedded systems,

small monitor-like OSs are used. However, these monitor-
like OSs lack program protection mechanisms, and program
development is difficult.

Therefore, an extensible/adaptable OS for control sys-
tems is required . We are developing a new OS character-
ized by:

• Use of an efficient and flexible micro-kernel (L4-ka).
• Multi-server based modular OS. (Each OS service is

implemented as individual user-level process.)
• Robustness. Only the micro-kernel runs in kernel

mode and in kernel space. Other modules run in a pro-
tected user space and mode.

• Hardware driver programs in user-level process.
• Flexible distributed processing by global message

passing.

This OS structure proved to enhance OS modularity and
ease of programming. However, inter-process messaging
overhead should be considered . We measured the overhead,
and the overhead was proved to be small enough.

2. Structure of this OS

2.1. The outline of this OS

Fig. 1 shows the structure of this OS. Thick square boxes
represent independent logical spaces.

Micro kernel manages logical spaces (processes), multi
threads, message passing (IPC) and interrupts. Only the mi-
cro kernel is executed in the kernel mode.

OS services, such as process management, file service,
network service, are implemented by user-level processes,
not by the kernel. They have their own logical space and are
executed in user mode. Even hardware drivers are located in
user-level processes. Processes interact only via messages.

2.2. L4 Micro kernel

We adopted L4-ka micro kernel [2] implemented at Uni-
versity of Karlsruhe, because it is very efficient and flexible.
L4-ka is characterized by:

194

L4 micro-kernel Kernel-Space, Kernel-Mode

User-Space, User-ModeAPL

Library

APL

Library

Process
Manager

File
Server

NW
Server

Pager User-Space, User-Mode

DP
Server

Shell

Figure 1. Multi server OS.

1. Efficient thread facilities.
2. Efficient and flexible message passing facilities: mes-

sages are sent synchronously to the destined threads by
either value copy, buffer copy or page mapping.

3. Flexible memory management.

2.3. Logical space and pager

Pager is a user-level process to assign page frames when
pagefault occurs . By rewriting the pager, a user can provide
his own mapping algorithm. When a pagefault occurs , the
kernel sends pagefault message to the pager. Pager assigns
appropriate page frame, and reply message lets the kernel
map new pages.

2.4. Service servers

Process manager manages allocation/freeing of logical
space and processes. File server and Network server are
implemented by rewriting those of Minix-OS [5] .

2.5. Driver program

Fig. 2 shows the driver program structure. Each device
driver has a driver thread which waits for request mes-
sages, and an IRQ thread which waits for interrupt mes-
sages. Drivers are executed in user mode. This helps facili-
tating their development. When the L4 kernel notices hard-
ware interrupt, it sends an interrupt message to the driver,
and driver action is activated.

In our implementation, HDD driver and ETH driver are
included in File server and INET server, respectively. They
can be separate processes, because drivers interact only by
messages.

3. IPC overhead and file server

In this OS structure, IPC efficiency determines the sys-
tem efficiency. IPC overhead lies in system calls and block

IRQ_THREAD

IRQ_Message

IRQ_handler()

Device

Device
registers
in I/O space.

Driver
Thread

InterruptL4 micro-kernel

Driver task
in user mode

Drive Request
Message

Figure 2. Driver program.

data transfers.
Prof. Liedtke et al. reported [1] a simple L4 message

(inter address space, round trip) costs about 500 machine
cycles, whereas the shortest Linux system call getpid()
costs about 220 machine cycles, and that overall overhead
will be several percent in comparison with monolithic OSs.

To evaluate the block data transfer overhead, we mea-
sured it in the case of file service. In monolithic OSs, file
subsystem is included in the OS kernel; it accesses APL
space directly and transfers data from/to APL by an efficient
string copy operation.

In our OS, the file server is a user-level process, and it
cannot access APL space directly. Data must be transferred
using IPC, which may result in performance degradation.
We measured the overhead and proved it small enough.

3.1. Buffer cache in file server

File server adopts buffer caches to improve file access
speed (Fig. 3). Data blocks in HDD are identified by device
number and block number. Recently accessed data blocks
are cached in buffer caches, size of which is 1KB each.
Buffer caches are located using hash table whose keys are
device and block numbers. Data is transferred between an
APL buffer and one or more buffer cache entries in FS.

3.2. IPC in L4 micro kernel

To transfer large volume data between processes, L4 pro-
vides an efficient buffer copy mechanism using temporal
page mapping, and the following schemes can be used.

1. Straight transfer

Fig. 4 shows the program to transfer data block “a1”
of process-A to buffer “b1” of process-B. The sender

195

File Server

HDD Driver

 HDD
HDD is accessed only when
target blocks are not found
in buffer caches.

Buffer caches

Hash
Table

Buffer
Cache

Buffer
Header

Figure 3. UNIX file subprogram.

sendDesc

ipc_send(dest, &sendDesc ,,,);

size=s1

s1

Data to be sent

Send-side

a1

1

recvDesc

ipc_receive(src, &recvDesc ,,,);

size=r1

r1

Receive buffer

Recv-side

b1

1

Figure 4. Straight buffer transfer.

prepares the send descriptor “sendDesc” and invokes
ipc_send(). The receiver prepares the receive de-
scriptor “recvDesc” and invokes ipc_receive().

2. Scatter/gather transfer

Sender and receiver can specify multiple buffers to
send/receive data. Data is transferred in one IPC, au-
tomatically scattering and gathering data according to
the send/recv descriptors. In Fig. 5, data blocks “a1”,
“a2” and “a3” of process-A are transfered to the buffer
“b1” of process-B.

3.3. File server and data transfer

Let’s assume that APL is requesting to read block data of
2.5KB. As each buffer cache is 1KB in size, requested data
is cached in 3 buffer caches. Therefore 3 IPCs are required
in a straight transfer.

In the scatter/gather transfer, data in multiple buffer
caches can be transferred in one IPC. Fig. 6 shows this
scheme.

sendDesc

ipc_send(dest, &sendDesc ,,,);

size=s1

s1

Data to be sent

Send-side

s2

s3 size=s2

size=s3

3

a1

a2

a3

recvDesc

ipc_receive(src, &recvDesc ,,,);

size=r1

r1

Receive buffer

Recv-side

1

b1

Figure 5. Scatter/gather buffer transfer.

n = read(fd, buf, sz);

 bufApplication program

File Server
Buffer caches

(Block size = 1 KB)

(2
)

R
eq

ue
st

 m
es

sa
ge

(5
)

C
om

pl
et

e

(4) Data gather copy
 Single IPC

(1) Prepare gather message
 reception. ipc_receive(....);.

Gather

Figure 6. File read using scatter/gather trans-
fer.

3.4. Evaluation

To evaluate the file-read IPC overhead, the following test
program is used:

for (i = 0; i < 100000; i++) {
lseek(fd, 0, 0);
read(fd, buf, size);

}

This measures the time to transfer data from file server
buffer caches to APL space (CPU=800MHz Pentium-3, L2
cache size= 512KB). At the first access, all data are copied
on buffer caches from HDD, so that HDD access time are
amortized.

Fig. 7 shows the results. The same program is tested on
Minix-OS (Version 2.0) and Linux (Kernel version 2.2.12),
and results are shown as Minix(3) and Linux(5), respectively.

196

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

T
im

e
(s

ec
/1

00
00

0-
cy

cl
es

)

Data size (KB)

(1)Straight
(3)Minix

(4)Memcpy
(2)Scatter/gather

(5)Linux

Figure 7. Inter-process communication over-
head.

In Minix, file server delegates copy to system task who has
direct access to resident physical address space of APLs and
servers, so no IPC is used for data transfer per se. On the
other hand, Linux is a highly optimized monolithic OS.

Memcpy(4) shows the string copy using ANSI memcpy
function (in the same logical space) for reference.

This test shows that:

• Straight transfer and Minix are comparable in transfer
speed.

• Scatter/gather transfer improves speed significantly.
• Inter-process scatter/gather transfer is faster than intra-

process memcpy(). This is because the former copies
data word by word using temporary page mapping, and
the latter copies data byte by byte.

• Linux is highly optimized and very fast.

Therefore, block data transfer overhead in concern was
small enough in the scatter/gather transfer scheme.

4. Distributed processing

In this OS, all APLs and OS servers interact only via
messages. We are now designing a distributed process-
ing server, which delivers messages globally according to
global thread IDs. This server would enable file server to
reside on remote hosts without redesigning it. Fig. 8 com-
pares this OS and NFS architecture.

In control systems, remote resource control is important.
In this way, remote resources are easily controlled.

5. Conclusion

We are implementing this OS on IBM-PC. Through this
OS implementation, the followings are confirmed:

(A) NFS: Network File System

(B) This System

NFS Server

 HDD

Client File System

Buffer caches

Hash
Table

Application Program

Message

(Stateless)

 HDD

Application
Program

Library
cache

Message

File Server

Buffer caches

Hash
Table

Figure 8. Distributed File Server.

Modularity and Extensibility New functions, which re-
quire kernel modification in monolithic OSs, can be
easily extended only by adding user-level process in
independent address space.

Robustness Most functions are implemented by protected
user-level processes.

Ease of program development OS services, even a hard-
ware driver, can be implemented by user-level process.
Compared to kernel programs, user-level programs are
easy to develop.

Hardware control Hardware control drivers are also user-
level, and their development is facilitated.

Distributed processing We are now trying to extend the
message passing to global scope. With global messag-
ing, resources located in remote hosts can be accessed
as local resources. This distributed processing is useful
in control systems.

Acknowledgments We would like to thank Dr. Akira
Nakamura at the International Christian University, Dr.
Yusheng Ji, Dr. Ichiro Ide for their valuable discussions and
suggestions.

References

[1] Jochen Liedtke. Improving IPC by kernel design. In Proc.
of SOSP’93

[2] Jochen Liedtke. On µ-Kernel Construction. Operating Sys-
tems Review, Vol. 29, No. 5, pp. 237–250, December 1995.

[3] IBM Watson Research Center. SawMill home page
http://www.research.ibm.com/sawmill/

[4] Hermann Härtig, et al. The performance of µ-Kernel-based
systems. In SOSP97.

[5] Andrew S. Tanenbaum and Albert S. Woodhull. Operating
Systems: Design and Implementation. Prentice-Hall

197

