201

Gaining and Maintaining Confidence in Operating Systems
Security

Trent Jaeger Antony Edwards Xiaolan Zhang
IBM T. J. Watson Research Center
19 Syline Drive, Hawthorne, NY 10532 USA
Contact Email: {jaegert} @us.ibm.com

March 15, 2002

1 Introduction

Recently, there has been a lot of work in the verifica-
tion of security properties in programs. Engler et al.
use static analysis to find flaws in the implementation
of Linux device drivers, such as the failure to release
locks [4]. Edwards et al. use static and dynamic analysis
to verify that the authorization hooks of the Linux Se-
curity Modules (LSM) framework are placed such that
all the necessary authorizations are performed [2, 12].
In addition, Shankar et al. and Larochelle et al. show
how to use static analysis tools to find program vulner-
abilities, such as buffer overflows and printf vulnerabil-
ities [7, 10, 11]. Lastly, Necula et al. show that we use
detect and leverage the cases in which C is used in a
type-safe manner in order to detect memory errors [9].
Runtime verification can be used to detect errors in other
cases.

While these tools demonstrate that we can use auto-
mated tools to gain some level of assurance for our pro-
grams, these tools are aimed at individual errors (e.g.,
static analysis buffer overflows), require significant skill
to use properly (e.g., require ad hoc analysis code to
find particular driver errors or to write exploits that iden-
tify real problems), and are limited to finding only some
types of errors in their class (e.g., static analysis is lim-
ited by the type safety of C). Ultimately, the goal is
to gain a satisfactory level of assurance of the security
of the entire program and maintain that level of assur-
ance over the program’s evolution (ideally, to improve
its level of assurance). Given the breadth and depth of
verification approaches, we believe that it is time to ex-
amine how they can be put together into a coherent ap-
proach for program security assurance.

We contrast the approach of performing assurance by a
concerted application of verification tools with the tra-
ditional approach to establishing operating system secu-

rity assurance. The Orange Book and its successor, the
Common Criteria, achieve assurance by requiring de-
tailed documentation and design for security from the
onset of the project [8, 6]. This security focus is to then
guide the transformation of these specifications into an
implementation. Some testing and code review is done,
but these are ad hoc processes. Further, significant mod-
ifications to an assured system are not permitted because
they would demand a new labor-intensive assurance, and
this approach cannot be applied to already-constructed
systems. Not surprisingly given the effort and cost of
this form of assurance, very few systems have been built
to the higher levels of assurance.

In this paper, we examine some of these verification ap-
proaches and develop an approach to operating system
security assurance based on automated verification tools.
The aim of the approach to enable: (1) practical verifi-
cation of key security properties; (2) extension in both
the types and number of verification tools to improve
the breadth and quality of verification over time; and (3)
management of verification state to enable maintenance
of assurance as the system evolves. We first examine
some verification problems in Section 2 to identify the
types of tasks that need to be performed in verification.
We then examine how individual verification tasks are
performed now in Section 3. Then, we propose an ap-
proach for performing the necessary analyses and dis-
cuss how current analyses may be extended to make this
approach work in Section 4.

2 Security Verification Problem

The history of program correctness verification does not
generally have a good reputation, but a significant set of
program analysis have been constructed that yield prac-
tical results. In general, these tools typically perform
focused analysis for particular program properties (e.g.,
Y2K bugs [3], null pointers [5], etc.).



202

As a result of this experience, we do not believe that
security verification is a single process, but rather, a se-
ries of analyses that yield greater confidence in the secu-
rity offered by a program. Also, as new vulnerabilities
are discovered, new analyses must be added to the ver-
ification toolset in order to maintain confidence in the
program. Further, such verification tools should enable
practical regression testing of security properties as the
program evolves.

For verification that the Linux kernel enforces a system
access control policy correctly (i.e., is a correct reference
monitor), we identify the following criteria:

e Verify code integrity: Detect vulnerabilities that
would enable an attacker to run their attack code in-
stead of program code (e.g., buffer overflows, printf
vulnerabilities, etc.).

e Verify complete authorization: Verify that all
controlled operations are executed only after all the
necessary authorization requirements are checked.
Note that whether permissions to perform these op-
erations are granted to a principal is a policy ques-
tion, so policy verification is a separate, necessary
task that we do not discuss further here.

o Verify access using authorized object only: De-
tect vulnerabilities where an attacker can switch the
object used in controlled operations between the
authorization and use (i.e., time-of-check-to-time-
of-use or TOCTTOU attacks [1]).

e Detect permission leakage: Verify enforcement of
system invariants necessary to prevent permission
leakage, such as closing the necessary descriptors
onan exec.

If these four criteria are verified effectively, then only the
operations authorized by the system’s access control pol-
icy can be performed. The kernel integrity is protected,
all operations are correctly authorized, all accesses use
authorized objects, and there are no errors that leak per-
missions. Thus, relative to the confidence we have in the
verification of these criteria, the Linux kernel is assured
to enforce the system security policy.

The problem then is to define and implement the analy-
ses that verify these criteria with a reasonable degree of
confidence. While perfect static verification of a kernel
is impossible given that it is written in C and assembler,
a variety of approaches can be employed in unison to
improve confidence in the assurance. For example, we
use static analysis to detect possible TOCTTOU vulner-
abilities [1] by identifying any variable used in a con-
trolled operation that has not been authorized since it

was last assigned. This analysis identifies variables as
potential vulnerabilities even if they are extracted from
an authorized object. While this analysis is conserva-
tive in a type safe language, it is possible to modify the
value of the variable through non-type safe program-
ming. At present, we assume that the kernel develop-
ers are trusted, but ultimately, identification of non-type
safe code and verification that this code does not access
the stack (for local variables) is necessary to assure this
property fully. Necula et al.’s work can find where type
safety is not preserved, so other analyses can be built to
better verify that such an attack is not possible or only
possible in places where runtime checks can be inserted.

Further, a conservative analysis means that several false
positives may be identified. Currently, these are exam-
ined manually, but many of these are really the same
situation, such as extraction of inodes from authorized
dentries. Some secondary analyses can make such ver-
ification practical. Lastly, since such analyses can be
rerun as the kernel evolves, the assurance of the kernel
is maintained even as the kernel changes.

3 \Verification Experiences

In this section, we outline two example analyses to
demonstrate the types of verification tasks that can be
done and their effectiveness *.

3.1 Linux Security Module Verification

The goal of Linux Security Modules (LSM) verification
is to ensure that any security-sensitive operation in the
Linux kernel is authorized for its proper requirements
via the LSM authorization hooks. Since access to such
operations involves access to high-level kernel data ob-
jects (e.g., inodes, sockets, etc.), we identify any access
to these data structures as a mediation point to be autho-
rized (i.e., a controlled operation).

We use a runtime analysis tool to identify authorization
requirements for the controlled operations and anoma-
lies to those requirements []. To start, we assume that
LSM is largely correct, so we can express invariants that
indicate an anomaly in the authorization. An example of
an anomaly is a controlled operation that has different
authorizations for different runs of the same system call.
The other controlled operations are classified as consis-
tent, but since we may be missing an authorization en-
tirely there can still be an error. Since all controlled op-
erations usually require the same authorizations, these

1we would expect to expand this section for the full paper, so more
experiences can be analyzed.



203

errors are easy to identify. For each anomaly, we must
determine if there is an exploitable situation. At present,
we have found 5 significant anomalies, where the LSM
community agreed that 4 are truly errors and the other
case works under the limited circumstances intended.

Runtime analysis is limited by the statement coverage
and input value coverage provided by the benchmarks.
In the first case, we have found that performance bench-
marks only execute 20% of the Linux kernel statements.
Further, the ability to leverage a possible TOCTTOU
situation requires active attacks to provide the inputs
necessary for the analysis to see the changed value.
Therefore, we also use static analysis techniques to find
cases where controlled operations are performed using
variables that are not authorized as expected. Most
of these cases turn out to be possible TOCTTOU vul-
nerabilities where a variable is authorized, but it is re-
computed from higher-level objects rather than used di-
rectly. Again, exploits must be written to determine
whether such situations are vulnerabilities or not.

When the kernel is modified, we can verify that the au-
thorization requirements and no TOCTTOU vulnerabil-
ities have been added. Modifications to files and func-
tions indicate the scope of regression testing. In general,
all the system calls that have code paths that intersect
the modified code may need to be tested, although some
optimization are possible for static analysis. For exam-
ple, when no new controlled operation variables or code
paths are introduced and we can see that the order be-
tween the authorization and the operation is maintained
then verification is not necessary.

3.2 Buffer Overflow Detection

Wagner, et al. have developed a static analysis tool to
detect potential buffer overflow vulnerabilities in C code
[11].

In their approach, C strings (character arrays) are mod-
eled as an abstract data type manipulated via the stan-
dard C library functions (e.g. strcpy, strcat, sprintf).
Therefore, buffer overflows caused by manipulating
strings directly cannot be detected, however, they claim
that this represents only a small portion of the vulnera-
bilities.

Each string in the program is associated with two ranges.
One range stores the number of bytes allocated to the
string, the other stores the number of bytes in use. C
string functions are modeled by their effect on these
ranges. Each integer variable in the program is also as-
sociated with a range of possible values. The tool then
performs a, flow-insensitive, integer range analysis that

maintains these ranges, and checks for violations of the
safety property: i n_.use(s) < alloc(s).

Flow-insensitivity was chosen to allow efficient analy-
sis of large programs. Unfortunately, it also leads to a
large number of false-positives that must be manually in-
spected by a human. Several vulnerabilities were found,
and they also identified some that were found not to be
exploitable.

4 Verification Approach

Assurance consists of running analyses to verify the four
types of security properties. The first and fourth security
properties are ad hoc, so multiple analyses may be per-
formed for each. For example, buffer overflow and printf
vulnerabilities involve different analyses.

In general, each analysis consists of the following:

e Scope: Each analysis works under a possibly null
set of assumptions (e.g., type safety). Obviously,
the fewer assumptions an analysis depends on, the
broader its scope.

e Scope verification: Therefore, other analyses may
be necessary to maximize the likelihood that all as-
sumptions hold.

e Classifications: Each analysis classifies the rele-
vant cases (e.g., positive and negative). Most anal-
yses have some false positives, but a good analysis
will have a manageable set of false positives and no
false negatives.

e Classification analysis: Subsequent analyses may
be necessary to verify that a classification is cor-
rect with respect to the security requirements (e.g.,
deriving and running potential exploit programs for
positive cases).

e Case dependencies: Each analysis result depends
on some conditions that, if unchanged, do not re-
quire the regression testing of a case upon system
modification.

First, each analysis may depend on certain assumptions.
For LSM verification, we assume that all controlled op-
erations are performed on variables of controlled data
types. Thus, the analysis can handle a variety of bizarre
type castings, but cannot detect accesses through other
data types, such as char *. Initially, we assume that
kernel developers are trusted not to do such things, but
we would ultimately like to leverage Necula et al.’s ap-
proach to protect against non-type safe code [9]. These



204

analyses will likely have some probabilistic nature and
be highly domain-dependent. For example, for a partic-
ular function that is not type-safe, we may want to detect
whether it can ever access particular controlled data ob-
jects.

The main goal of each analysis is to classify its cases
into positive (i.e., likely errors) and negative (i.e., likely
correct) cases. For all but the simplest analyses, false
classifications are possible. In LSM verification, we are
conservative about our static identification of positives
and do not generate any false negatives (under our anal-
ysis scope). This is not the case with the buffer overflow
detection where a small number of false negatives are
permitted. Then, we have to perform subsequent anal-
yses on positives. Currently, such analyses consist of
manual inspection and exploit generation in both tools.
For LSM verification, some manual inspections, such
as initialization functions and extraction of inodes from
checked dentries, should be automated easily. Further,
we envision moving to templates for exploit generation,
similar to using templates to describe attacks [1]. We
would identify system calls that enable modification of
relationships (e.g., descriptor to file via dup) and means
for triggering reschedules (e.g., forcing page faults) to
implement TOCTTOU attacks.

Thus, the analysis results in classifications into positives,
negatives, and false cases of each. As the kernel is mod-
ified, we would like to enable system regression testing
commensurate with the extent of the changes. Minimiz-
ing the effort involves eliminating the cases where the
factors that determined its classification are not changed.
There are two sets of factors. First, all classifications de-
pend on the execution context in which the case is run.
For LSM verification, each controlled operation is run
in a system call path and is authorized by certain LSM
hooks, so as long as these remain fixed re-verification
is not necessary. Second, the reasons that cases are
falsely classified determine whether they will be again.
For LSM verification, initialization cases can be easily
identified, and we can verify that an association between
dentries and inodes is still permanent (e.g., because the
inode field in the dentry is never reset).

5 Conclusions

We develop an approach for operating system assur-
ance, in particular the Linux kernel’s ability to serve
as a correct reference monitor, extrapolated from cur-
rent research in security property verification. We find
such analyses currently enable identification of vulnera-
bilities, but work under a variety of assumptions and re-
quire significant effort to use. We propose an approach

whereby assumptions are justified, a sequence of analy-
ses enable complete classification of cases, and regres-
sion testing is possible. The approach enables further
development of analyses into a coherent framework, so
the system’s assurance can be determined with confi-
dence, this confidence can be enhanced with improved
analyses, and this confidence can be maintained when
the system evolves.

References

[1] M. Bishop and M. Dilger. Checking for race conditions
in file accesses. Technical Report CSE-95-10, University
of California at Davis, September 1995.

[2] A. Edwards, T. Jaeger, and X. Zhang. Verifying autho-
rization hook placement for the Linux Security Modules
framework. TR 22254, IBM, December 2001.

[3] M. Elsman, J. S. Foster, and A. Aiken. Carillon — a sys-
tem to find Y2K problems in C programs, user manual.
www.cs.berkeley.edu/carillon, 1999.

[4] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the 4th Sympo-
sium on Operation System Design and Implementation
(ODI), October 2000.

[5] D. Evans. Static detection of dynamic memory errors.
In SSGPLAN Conference on Programming Language De-
sign and Implementation, 1996.

[6] ITSEC.
Technology Evaluation.
www.commoncriteria.org.

Common Criteria for Information Security
ITSEC, 1998. Available at

[7] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proceedings of the
Tenth USENI X Security Symposium, 2001.

[8] NCSC. Trusted Computer Security Evaluation Criteria.
National Computer Security Center, 1985. DoD 5200.28-
STD, also known as the Orange Book.

[9] G. Necula, S. McPeak, and W.. Weimer. CCured: Type-
safe retrofitting of legacy code. In Proceedings of the
Principles of Programming Languages, 2002.

[10] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers.
In Proceedings of the Tenth USENIX Security Sympo-
sium, 2001.

[11] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vul-
nerabilities. In NDSS Network and Distributed System
Security Symposium, 2000.

[12] X. Zhang, A. Edwards, and T. Jaeger. Using CQual for
static analysis of authorization hook placement, February
2002. Submitted for conference publication.



