219

Model Checking System Software with CMC

Madanlal Musuvathi*
Stanford University
madan@cs.stanford.edu

Andy Chou

Abstract

Complex systems have errors that involve mishandled cor-
ner cases in intricate sequences of events. Conventional test-
ing techniques usually miss these errors. In recent years,
formal verification techniques such as [5] have gained pop-
ularity in checking a property in all possible behaviors of a
system. However, such techniques involve generating an ab-
stract model of the system. Such an abstraction process is
unreliable, difficult and miss a lot of implementation errors.

CMC is a framework for model checking a broad class of
software written in the C programming language. CMC runs
the software implementation directly without deriving an ab-
stract model of the code. We used CMC to model check an
existing implementation of AODV (Ad Hoc On Demand Dis-
tance Vector) routing protocol and found a total of 29 bugs
in two implementations [7],[6] of the protocol. One of them
is a bug in the actual specification of the AODV protocol [3].
We also used CMC on the IP Fragmentation module in the
Linux TCP/IPv4 stack and verified its correctness for up to 4
fragments per packet.

1 Introduction

The reliability of system software is particularly impor-
tant in areas such as communication protocols, security-
sensitive applications, and embedded software. In these ap-
plications, failures may affect many machines, compromise
the integrity or privacy of user data, subvert the ability of an
administrator to control the system, or totally cripple the ap-
plication. On the other hand, errors in these systems are dif-
ficult to find as they usually involve mishandled corner cases
triggered by intricate sequences of events. Conventional test-
ing techniques are not able to detect these errors for two key
reasons. Firstly, traditional coverage techniques [1] do not
guarantee coverage across all sequences of events. Secondly,
the occurrence of systemic events such as packet loss, link
failure or disk crashes are not easily controlled in a test en-
vironment. Thus, even a rigorously tested system contains
a residue of errors that either cause the system to crash after

*Partially supported by GSRC/MARCO Grant No: SA3276JB

Stanford University

David L. Dill
Stanford University

Dawson Engler
Stanford University

long periods of execution, or present a potential security hole
to a malicious user.

In recent years model checking [2] has gained popularity
as an automatic verification technique that enumerates, either
explicitly or implicitly, all possible states of a finite state sys-
tem. Conventional model checkers [5] usually assume that
the design is described at a high level that abstracts away
many implementation details. \erifying actual code using
such a tool requires reconstructing this abstract description
from the code. This process requires a great deal of man-
ual effort. Moreover, human errors in the manual abstrac-
tion result in missing bugs and causing false alarms during
the verification process. A final, serious problem is that the
models are usually written in a special-purpose description
language that do not support the low level semantics of C,
the preferred language for system implementations. As a re-
sult the models are often so abstract that there is a significant
semantic gap between such a model and an implementation.
For these reasons, it is a notable curiosity when software is
model checked, rather than an everyday occurrence.

This paper describes CMC, a C Model Checker. CMC
is a framework for model checking broad range of software
implementations directly. Given an implementation of the
system, a set of events that affect the system, and the event
handlers in the implementation that handle each event, CMC
explores the state space of the system by systematically ex-
ecuting all possible sequences of events. After each event
execution, it calls the pickle function provided by the user
to extract the state of the system and stores the state in a
hashtable. By remembering the states visited, CMC explores
each state of the system only once. The primary advantages
of this approach follow from the ability to model check an
implementation directly. No model of the code needs to be
constructed, refined, or debugged. In addition, we can lever-
age existing dynamic techniques for debugging code, such as
memory leak and stack overflow detectors. These tools have
exhaustive coverage when run in the CMC framework.

To our knowledge, Verisoft[4] is the only other tool that is
able to model check the implementation directly. However,
Verisoft does not store states. As a result, states that have
been explored before are redundantly checked, and systems
can not be exhaustively verified if cycles exist in the state
space. Interesting systems almost always have state spaces

220

with cycles because otherwise only a finite number of events
(e.g. message sends) can be handled before stopping.

2 Designof CMC

CMC models the system being verified as one or more
processes. These processes execute the native code of the im-
plementation in the context of the model checker. Processes
can be separate implementations or different instances of the
same implementation (e.g. multiple nodes running the same
routing protocol).

Each process has a private internal state and uses a shared
global state to communicate with other processes. At any
instant, the system state is the aggregate of the internal states
of the processes and the shared global state. A transition
of the system is defined as the execution of a deterministic,
atomic procedure by a process that modifies its internal state
and the global state. The set of transitions for a process are
exposed to CMC via a standard interface.

Figure 1 shows a stripped-down implementation of a rout-
ing protocol. A process is a node running the protocol in
a network. The internal state of each process is its IP ad-
dress and its routing table. The routing table is simply a
linked list containing the next hop for each destination IP ad-
dress. Each process has two transitions, r ecv_packet ()
and on_l i nk_fail ure(), which modify the route table
in response to network events. The global state of the system
is the state of the network, which is not shown in the figure.
The system state is the aggregate of the internal states of all
of the processes in the network and the global state.

CMC model checks software using explicit state enumer-
ation. From each system state, it executes all transitions of
all processes to determine the set of successor states. Apply-
ing this recursively from the initial state, CMC explores the
entire set of reachable states of the system. CMC maintains
a hash table of visited states and never explores a state more
than once. We use hash compaction [10] to guarantee negli-
gibly small probability of collisions. For each visited state, a
set of invariants are checked to determine the correctness of
the system.

CMC requires that processes provide two functions,
pickle and unpickle. A pickle function gathers the internal
state of a process, consisting of global variables and heap
data, and produces a concise representation of the state. An
unpickle function inverts the pickle function, taking the state
and restoring the global variables and heap data. These two
functions provide access to the internal state of the processes
and make state space enumeration possible.

Given these two functions, CMC executes a transition as
follows. It unpickles the current state of the process and ex-
ecutes the transition by running the implementation. This is
the only time the implementation has control of the proces-
sor. When the transition function returns, CMC pickles the

state of the process to determine the next system state. The
current implementation of CMC requires that processes ex-
ecute events “atomically” in the sense that they run to com-
pletion without blocking. This restriction also eliminates the
state of the stack from a process” internal state.

In Figure 1, the pi ckl e() function takes the IP address
and route table entries for a process and copies them into a
state buffer. The unpi ckl e() function does the inverse,
taking a state buffer and restoring the IP address and route
table entries.

Real systems pose two key challenges. First, the state
space might be infinite. However, the state space can be ef-
fectively pruned using techniques such as limiting the num-
ber of processes, constraining state variables to a subrange,
and limiting the size of the heap. Even after applying these
techniques, the state space might still be too large to com-
plete search the entire space. We are currently investigating
various heuristic search techniques to direct the search.

Second, internal state of a process may contain complex
data structures, and implementing pickle and unpickle may
be difficult. However, as these functions involve a traver-
sal of the data structures, skeleton of such functions could
be generated automatically using the type definitions. We
are currently exploring this possibility. In our case studies
(83.1), we wrote the pickle and unpickle functions by hand.
However, we used the accessor functions in the implementa-
tion itself, which greatly simplified the process.

CMC is particularly suited to systems where the behavior
of interleaving executions of multiple processes gives rise to
complex, emergent behavior. As long as the state space of
the model is kept small enough, CMC can be very effective
at detecting unexpected behaviors. On the other hand, using
CMC requires a nontrivial amount of work, which makes it
difficult to apply to large amounts of code. As described
above, the system also imposes restrictions that may preclude
its use on certain programs.

3 Mode Checking Case Studies

In this section we discuss our experience with CMC
on two case studies: AODV (Ad-hoc On-demand Distance
Vector)[3] routing protocol, and the IP fragmentation mod-
ule in the Linux kernel (Version 2.4.18).

3.1 Verifying AODV

AODV is a loop-free distance vector protocol for ad-hoc
networks [3]. We applied CMC on two implementations of
the protocol. The first implementation, mad-hoc [7], was re-
leased two years ago and has been under active development
since. It runs as a user-space module and contains approxi-
mately 5500 lines of code. The second implementation, Ker-
nel AODV [6], which descends from mad-hoc was released a

221

/* internal state of process */
| PAddress ny_i p;
struct RouteEntry {
| PAddr ess dest _i p;
| PAddr ess next _hop;
struct RouteEntry* next;
} *route_table;

/* transition functions */
recv_packet (buffer, len) {
parse buffer;
update route_table;

on_l i nk_fail ure(nei ghbor) {
for each entry in route_table
if entry->next_hop == nei ghbor
renove entry fromroute_table;

}

/* pickling code */
pi ckl e(state){
copy ny_ip into state;
for each entry in route_table
copy dest_ip, next_hop into state;

unpi ckl e(state){
copy ny_ip fromstate;
for each entry in state
insert entry into route_table

Figure 1. A skeleton routing protocol imple-
mentation.

bit less than a year ago. It contains 7500 lines of code and
runs as a loadable kernel module in Linux and ARM based
PDAs.

We modeled up to 4 AODV processes, each running an in-
stance of the same implementation. The state of the process
consisted of several global variables and the routing table,
implemented as a link list. The pickle and unpickle func-
tions traverse the entries in the routing table, using the acces-
sor functions present in the implementation. The pickle and
unpickle functions were straightforward to write and are 50
lines of code each. The AODV model, including the pickle
and unpickle functions were shared between the two imple-
mentations, with minor modifications.

Table 1 summarizes the set of bugs found using CMC in
both AODV implementations. The bugs range from simple
memory errors to protocol invariant violations. We found a
total of 29 unique bugs in the two implementations. The Ker-
nel AODV implementation has 5 bugs (shown in parenthesis
in the table) that are instances of the same bug in the mad-
hoc implementation. The AODV specification bug is one of
them, since both implement the same specification.

We describe the bugs below at a high level to give a feel
for the breadth of coverage provided by CMC.

Memory errors. The first three error classes were vari-
ous ways to mishandle dynamically allocated memory: not
checking for allocation failure (10 errors), not freeing allo-
cated memory (8 errors), or using memory after freeing it
(2 errors). These were all detected by the built-in memory

manager in CMC.

Both implementations carefully checked the pointer re-
turned by malloc was not null. However, functions that call
malloc indirectly can also return null pointers when the al-
location fails. The code only erratically checked such cases.
Since CMC directly executes the implementation, such er-
rors were manifested in segmentation faults.

Most of the memory leaks were similarly caused by mis-
handled allocation failures. Commonly, code would attempt
to do two memory allocations and, if the first allocation suc-
ceeded but the second failed, would return with an error,
leaking the first pointer.

Unexpected messages. CMC detected two places where
unexpected messages would cause mad-hoc to crash with a
segmentation violation. This occured when the system lost
its state, either due to a reboot, or due to a timeout between
a request response cycle. When the system received the re-
sponse in its altered state, it resulted in a segmentation vi-
olation. This a serious security violation as an attacker can
maliciously send a bogus response.

Invalid messages. There were 5 cases of invalid packets
being created, 3 cases of using uninitialized variables (these
could not be detected by gcc -Wall), and 2 cases where in-
valid routes were used to send routing updates, violating the
AODV specification; CMC also detected 2 instances of in-
teger overflow which resulted in program assertion failures.
Both implementations use an 8 bit integer to store the hop
counts and use 255 to represent a hopcount of infinity. In
the two error cases, an infinite hopcount was erroneously in-
cremented to 0. This also accounted for a program assertion
failure, as it resulted in an invalid routing table.

Routing loops. As AODV is a loop-free routing protocol,
any routing loop produced during the execution of the im-
plementation is a bug. We found three instances of routing
loops, one of which is a bug in the AODV specification [3].
The two routing loop errors resulting due to implementation
error are discussed here. In one, the implementation per-
forms a sequence number comparison before a subsequent
increment, while the AODV specification requires the com-
parison to be done after the increment: In the second case, the
implementation fails to increment a sequence number while
processing specific protocol message, viz. the RERR mes-
sage of AODV.

The specification bug. This bug involved the handling
of “route-error” (RERR) messages. In AODV, every route
has a sequence number that determines the “freshness” of the
route. AODV guarantees loop-freeness by appropriately ma-
nipulating these sequence numbers. When a node receives
an RERR from its next hop, it sets the sequence number of
its route to the sequence number in an RERR message. Un-
der normal conditions this is the right thing to do. How-
ever, when the underlying link layer can reorder messages,
the RERR message might have an outdated sequence num-

222

I | mad-hoc AODV | Kernel AODV ||

Mishandling malloc failures 4 6
Memory Leaks 5 3
Use after free 1 1
Unexpected Message 2 0
Generating Invalid Packets 3 0(2)
Program Assertion Failures 1 0(1)
Routing Loops 2 1(2)
Total 18 11 (16)

Table 1. Summary of bugs found in the two implementations of AODV

ber resulting in the node setting its sequence number to an
older version. This can ultimately result in a routing loop.
This bug was mentioned to the authors of the protocol with a
suggested fix. Both the bug and the fix were accepted by the
protocol authors[8].

The specification bug was found by running 4 AODV
nodes using a depth-first search of the state space. CMC
came up with an error trace of length 93. By using a best-
first search we were able to find traces as short as 27. Per-
forming a breadth-first search of the state space would give
the shortest trace. However, breadth-first search on AODV
ran out of resources without finding the bug. A careful hand
crafted simulation of the bug required at least 25 transitions.
An error of this complexity would be very difficult to catch
using conventional testing means.

3.2 Verifying | P Fragmentation

We verified the IPv4 Fragmentation[9] module in the
Linux Kernel (Version 2.4.18). This module assembles all
fragments of an IP packet before sending it to the higher
layer. This module, along with the skbuff library it uses, con-
tains 1850 lines of code. In order for these kernel modules to
run in user space, we provided stub functions, most of which
were automatically generated. There are 21 stub functions
with a total of 150 lines of code.

We verified the IP Fragmentation module with all se-
quences of 4 or less fragments of an IP packet. We did not
find any bugs in this module. We did find a known bug in a
previous version of this module, though. This case study is a
proof of concept that its possible to model check kernel code
using CMC.

4 Future Work

CMC is still in its preliminary stage and the results we
have achieved till now are encouraging. We believe that
CMC will be applicable to a wide variety of implementa-
tions. Currently we are looking into verifying properties in
TCP stack implementations, filesystems, kernel schedulers,
and security-sensitive applications such as root programs.

We are also looking into techniques to automate some of
the steps needed to use CMC with an existing implementa-
tion. For example, compiler support might be used to help
the user write the pickle and unpickle functions. Finally, we
are evaluating different heuristic search techniques to guide
our model checking.

5 Acknowledgments

We like to thank Satyaki Das and David Park for the nu-
merous discussions on this topic. We also thank David Park
for providing the implementation of hash compaction. We
also would like to thank the blind reviewers who provided
valuable suggestions to the first draft of this paper.

References

[1] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.

[2] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, 1999.

[3] C.Perkins, E. Royer, and S. Das. Ad Hoc On Demand Distance
Vector (AODV) Routing. |IETF Draft, http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-10.txt, January 2002.

[4] P. Godefroid. Model Checking for Programming Languages using
VeriSoft. In Proceedings of the 24th ACM Symposium on Principles
of Programming Languages, 1997.

[5] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279-295, 1997.

[6] Luke Klein-Berndt and et.al. Kernel AODV Implementation.
http://w3.antd.nist.gov/wctg/aodv_kernel/.

[7] F. Lilieblad and et.al. Mad-hoc AODV Implementation. http://mad-
hoc.flyinglinux.net/.

[8] Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das. Private
Email Communication.

[9] J. Postel. Internet Protocol. RFC 791, USC/Information Sciences
Institute, September 1981.

[10] U. Stern and D. L. Dill. A New Scheme for Memory-Efficient Prob-
abilistic Verification. In IFIP TC6/WG6.1 Joint International Confer-
ence on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specifi cation, Testing, and
Verifi cation, 1996.

