239

Secur e Coprocessor-based Intrusion Detection

XiaolanZhang LeendertvanDoorn TrentJagier RonaldPerez ReinerSailer
IBM T. J. WatsonReseath Center
Hawthorne NY 10532USA
Email: {cxzhangeendert,jagert,ronpz,ailer} @usibm.com

1 Introduction

Thegoalof anintrusiondetectiorsystem(IDS) is to rec-
ogrize attackssuchthattheir exploitation canbe prevented.
Sincecompuer systemsarecomple, therearea variety of
placeswheredetectionis possible. For example analysis
of network traffic may indicatean attackin progress[11],
a compomiseddaemonmay be detectedby its abnamal
beravior [14, 12, 5, 10, 15], and subsequdnattacksmay
be prevented by the detectionof backdmrs and stepping
stoneq16, 17].

Themostpopular arctitecturefor IDSsis host-baedin-
trusion detection wherethe IDS runs asa monita on its
hostand collectsinformationusedto identify possiblein-
trusiors on thathost. Sincethe compomiseof ary system
servicegeneally resultsin the conpromiseof the operat-
ing systems trustedcomputing base(TCB), the DS is also
susceptibléo compomise,andthuscannotbetrusted.

In this paper we examire the effectivenessof secue-
copocessothasedntrusiondetection In thiscasethelDS
is run on a coprocessorratherthan on the host. Thus, a
compomiseof thehostdoesnotaffed thecopraessorand
self-piotectionof the IDS monita is achieved Sincea co-
processorcan seethe memoy of the host, a copiocessor
IDS canverify thatthe host’s stateis correct. However, a
copocessoilDS canna interpcse the hosts execution the
way that a hostIDS can. Theiefore, we needto identify
a new apprachthat enableseffective detectiongiven the
extemal nature of thecopiocessar

The remairder of the pager is structuredasfollows. In
Section2, we definecoprocessoasedintrusiondetection.
In Section3, we discussa seriesof applicatims possible
with this apprach,anddescribeexperimentshatshow the
kinds of attacksthatcanbe successfullydetectedoy a co-
processor In Section4, we discusslimitations of this ap-
proachandhow it canbe extencedto take preventive steps
whenanomaliesredetectedSection5 conclules.

2 Coprocessor-based Intrusion Detection

Coprocessebasedintrusion detectim meansthat host
datais collectedand processedy software ruming on a
coplocessoratherthanthe hostitself [4]. Typically, a co-
proessorsharesnterfaceswith the hostprocessothaten-
ablesit to examineandpertapsmodfy thestateof thehost.
Thenunberandchoiceof interfacesdeterninesthedegree
towhichintrusian detectioris possible We usea secureco-
proessomecausét offers additiond securityfeatureghat
aredesirabldor anIDS (seeSection2.2).

2.1 Secure Coprocessors

A secue coprocessoris a tampefresistantcompuing
device designé to perfomm critical tasksin anernvironment
in which physicalattacksarepossible Suchadevice canbe
usedto securelybod the hostsysteminto aknown state.

In the contet of this paper, we examire useof the IBM
4738 PCI CryptogaphicCopraessoll, 7, 13. The473
consistsof a CPU, volatile and nonrvolatile memay, and
cryptographic acceleratss. It is wrapped insidea tamper
respomling securebowndary The device communicates
with the hostvia the PCI bus, wherebyit canissuecom-
mand to opeateon systemmemoy.

The softwarearchite¢ure of theIBM 4758device is de-
signedto suppot generc security applicatiors [8]. The
softwareinsureghatthedevice bootssecurelyandthatonly
authaizedprogramscanexecuteonthedevice. Thedevice
alsocomeswith factoryinstalledcertificateghatallow it to
autheticateitself to exterral entities.

2.2 Advantages
Comparedo host-basethtrusiondetectionthe useof a
securecoprocessofor intrusiondetectiorhasthefollowing

adwartages:

1. Independence from the host OS. The securecopio-
cessofis an autoromots subsystenthat hasits own

240

opeatingsystemandapplicationsoftware. Its tamper
resistancelsoprovidesstrongintegrity protectia for
thelDS.

2. Narrow interface. The interfaceusedfor communi-
catingbetweenhe hostandthe securecopiocessoiis
simplisticandwell-definal. It is therefae muchmore
difficult to exploit theinterfaceandlaunchattacks.

3. Secure boot. The securecopraessorcanbe usedto
boa the hostinto a known statein which invariants
canbedefined

4. Trusted observer. Sincethe securecoprocessois de-
signedto pratectits auttenticationkeys agairstalmost
ary attack,any authemicatedstatementsnadeby the
securecopraessorcanbe fully trusted. This is very
usefd in a scenariovheremultiple copraessorsol-
laborate on a task or the IDS datais consumd by a
remde entity.

2.3 Monitoring

In addition to self-protetion, an effective IDS mustbe
ableto mornitor the contrdled opeationsthat may leadto
an intrusion In a host-lasedIDS, systemcalls and key
kerrel operatios are often interpcsedsuchthat IDS data
canbecollectedandanalyzedIn acopraessotbasedDS,
moritoring canna be dore by interpaition. The hostwill
cortinueto exeaute,sothe DS paradign mustbealteredto
suitthis ervironmer.

Insteadof interpcsing opegtions, we propce that the
coprocessofDS basdts analysison systeminvarants. The
hostsystemas a whole maintairs certainintegrity proper
ties (invariants)whenit is functioning correctly(i.e. it has
notyetbeencompomised) Sinceit canboa thehostinto a
known state the coprocessoilDS canbe expectedto know
certainhostOS state,suchasthe locationandvalueof key
datastructurs. Givenkey datastructuesandinvariantson
their valuesand the way in which values are allowed to
charge, the copro@ssorcan samplethe host OS to verify
thattheinvarantsarestill held.

3 Applications

In this sectionwe discussseveral moritoring applica-
tionsthatcanbeimplemenedonthe securecopraessor

3.1 Checking Kerne Data StructuresInvariants

Thefirst setof invariants we will examire conernin-
memay kerné datastructures.We canview the OS asa
statemachinewhosestatesare storedin a collectionof in-
ternaldatastructures Exampes of suchdatastructuresn-
cludetask struct, thedatastructurethatabstractshe notion

of processandinode, the datastructurefor represeting a

file 1. Theoperatimg systenmreactsto extemal events(such
as systemcalls or network paclet arrivals) by perfaming

appopriate modfications on thesekerrel datastructures.
Assumingthat, when the systemis in a securestate,the
valuesof thesekernel data structues are consistentand
exhibit a setof invariarts, but when the systemis com-
promised theseinvariants no longe hold, the moritoring

systemcandetectbreakins (or breakin attempts)y con-

tinuowsly checkingfor consistenciesf crucial kerneldata
structues.

Our apprachis to be distinguishedrom previous ap-
proahes[12, 14], which focus onthe eventsthatcausethe
kernd to enteranillegalstate ratherthanonthestategshem-
seles.For exanple,in Forrests appoach,onefirst prdfiles
the targetapplicationand collectsa databasef legitimate
systemcall sequencg(signatues)madeby theapplicatian.
In the productionsystemthe OS monitois systemcalls ex-
ecutedby theseapplicatiors, andissuesa warnirg if a se-
quercedoesnotmatchary in thedatatase.Sinceeventsare
progamdepadent,e.g.,differentprogamstypicdly have
different signaturespne thus need to maintainan exten-
sive databasef signatuescovering all programs.Frequent
softwareupgradedurther complicatethis problem Our ap-
proach, on the otherhand tries to abstractthe validity of
statesnto invarians. Becausave useabstractionsye keep
lessinformation. In additian, the invaiantsdescribeprop-
ertiesof thekerrel only, andthusaremuchmorestable.

3.11 Determining Kernel Invariants

To find out whattheinvarians are,we implementeda ker
nelmodue thatinterceps systemcallsandrecord the val-
uesof crucial datastructuresat the entry of eachsystem
call. We thencomprethe valuetraceof a correct OS with
thatof acompomisedOSfor a givenattacktakenfrom an
databasef known exploit progiams,andsearctor system-
atic differencesbetweerthe pair of values. The systematic
differencespoterially highlight the invariantsthatarevio-
lated.

We definetwo typesof invaiiants: global invariants and
apdication-speific invariants. Global invaiiants are in-
variarts that apgy acrossthe entire opeating system,in-
depemlentof the progamsrunning on top of the OS. Ex-
amplesof globalinvariantsinclude immutablity of theker-
nelimageandimagesof crucial systemprogams,andim-
mutablity of kerrel datastructuressuchassystemcall ta-
bles. Application-specificinvaiants,on the otherhand de-
pendonthespecificnatureof theapplicationrepresentedby
the kerrel datastructuesin question For examge, a nor
mal userprogram’s uid shouldnever chang to root. This

1Unless otherwise explicitly stated we baseour discussionon the
Linux operding system.

241

invariantcertainlydoesnotapplyto programssuchassu

3.1.2 Detecting Violations

Oncethe invariantsare determired, it is relatively easyto
detectviolations agairst theseinvariants. For global in-

variants suchasimmutabhlity of kernelimage,the monitor
computesa checlsumover theimageat (securepoottime,
andperiodcally recomputesthe checksm andcompaesit

with the storedvalue. For applicationspecificinvariants,
themonita determiresthe type of applicatio by its nare
(i.e. thecommandline field of thetaskstructure)andloads
appopriateinvariantsaccordirg to the application type. It

thenperiodcally sampleghe valuesof relevart datastruc-
turesandcheckghevaluesagairst theinvariants.

3.1.3 An Example

Let'slook atanexanpleinvariantthatwe derive by runring
alocal-root exploit program[2] andcomparingthechangs
in the taskstruct valuesbetweena successfuattemptand
those of a nomal user progam. The attack progam,
ptrace24, works by exploiting the racebetweenpt r ace
andexecve andinjectingarbitray cocke into a setuidpro-
gram Table 3.1.3shaws the fields of the task struct data
structue that exhibit differert chang patterrs depenthg
onwhethertheattacksucceedsr not.

We derive the following invariants for nomal user
programsfrom theabove data.

1. uid shoud remainthe samethroughaut execution.

2. euid, suid and fsuid shouldnot be different from the
original uid for anextended periodof time.

To checkthe invariants, the monita periodcally scans
thevaluesof therelevant fields of the taskstructurefor ac-
tive processesand validatesthe valuesaganst the invari-
ants. Note thatthe moritor needso storethe old value of
uid for eachproeess.

This simpleexanpleillustratesthatit is possibleto infer
invariantsby profiling known exploits andusetheinvariants
to detectill-behaved processes.

To testthe geneality of this invariant, we examinal an-
otherexploit progiam [3] thatusesa differert techniqie to
gain contol of the system. A bugin thetraceroute
program causesbuffer overflow andallows arbitrary code
to be executedon the stack. The invariantsare essentially
the sameasthe ptraceexploit. Thisis not particdarly sur
prising becase both exploits attackthe systemby becom-
ing theroat, whichrequiresachang of theuid field to root
However, it demastrateghattheinvariants areapplicale
to exploits of thesamenatue (in this caseJocalroat exploit

through setuidprogams),andthusonly onesetof invari-
antsare neededor theseexploits even thowh they differ
dramatically in the methoalogy of attacking

3.2 Filelntegrity Checking

Anotherimportant correctressproperty of a systemis
the integrity of systemfiles on disk. The moritoring sys-
temcanindepeadentlyscanthedisk, computecheclsumsof
systenfiles,andcompmrestheresultsagairstthosestoredn
adatabae. Thisis similar to the Tripwire [9] comnercial
product. The differencebeingthat the monitoting system
andthe checksundatabae resideon the securecopioces-
sor, insteadof onthe hostsystemandarethusnotvulnera-
ble to attacks.

3.3 VirusDetection

Themoritoring systemcanalsoscanthe entirememay
for known viruses. Again becase the monita resideson
the copraessorit is muchlessintrusive thana tool like
NortonUtilities.

4 Discussion

Sincethemoritoring systemis basedn sampling there
iS no guaanteethat the attackis detectedn time. How-
ever, we canreducethis likelihood throwgh contiol of the
placemat of samplesthe nunberof samplesthesampling
periad, and the period distribution. Sampleplacemenis
driven by the numter of attacksthat can be detectedand
theaccuagy of thedetection.Obviously, asinglepointthat
detectsall errorswith perfectaccuray would be the best
case. Sincethis is unlikely, we canincreasethe numter
of sampleauntil we have sufficient coverage.However, the
numberof sampless limited by thecompuing speedf the
coprocessar

Oneway to redwce this costis to identify depenéncies
betweensamplingpoints. Only whenone sampleis trig-
geredareits deperentssamplesandothersaredelayedor
removedtempaarily. Anotherway is to adaptvely change
thesamplingfrequeny basedntheactualstateof the sys-
tem. For instance we could raisethe samplingrate when
suspiciouseverts are detected suchaswhena processs
runring with roat or setuidprivilege, and slowv down the
rate once suspicios everts ceaseto exist. This way, the
time window for anundetectedattackis smallerat timesof
higherrisk. Finally, we canvary theperiadic distribution of
thesamplingto rediceits predctability.

Another limitation of our currert monitor is that it is
basedon the PCI bus which providesonly limited control
over the host. Ideally, we would like to be ableto usethe
hostJTAG bus[6]. TheJTAG busis ahardvaredehugfacil-
ity thatcanbe usedto controlperipheralsin the host. That

242

SampleSequencef SampleSequencef

A Successfulttack A NormalProcess

Field 1] 2374 1] 23714
flags 64 0 | 256 | 256 || 64 0 0 0
uid 500 | 500 | O 0 500 | 500 | 500 | 500
euid 500 0 0 0 500 0 500 | 500
suid 500| O 0 0 500(O | 500 | 500
fsuid 500 0 0 0 500 0 500 | 500
capeffective 0 X X X 0 X 0 0
cappermitted|| O X X X 0 X 0 0
user X X y y X X X X

Table 1. Sampled values of fields of taskstructfor a successful

attack and a normal user process.

Shown above are a sequence of 4 sample points taken at 4 diff erent system call entry points. For
simplicity reasons, only a subset of sample points are presented here. For the flags field, 64 means
forked but not exec, 256 means used privileg es. For the cap _effective , cap _permitted, and user fields,
X means non-zero value, and y means a non-z ero value other than x.

is, stopthe CPU, inspectits state andresumesxecution,or
inspect/clngethe stateof memoy or ary othercortroller
attachedo the bus. The JTAG apgoachcanthustake pre-
vertative/remely stepsvhenananomalyis detectedThere
is however atradedf betweercostandeffectiveness JTAG
is chip-depenéntandthusmuchmoreexpersive thenthe
gereric PCl-basedsolution However, if the PClapprach
is promisingwe may explore the JTAG appoachsowe can
assergreatercortrol overthehost.

5 Conclusion

In this paperwe proposedbuilding intrusion detection
systemsusing extemal securecopiocessors. Becausehe
copocessorunsindepenentof the host,a compomiseof
thehostdoesnotaffec thefuncionality of theIDS. Thead-
ditional securityfeaturesof the copiocessoensurehatthe
hoststartsfrom asecurestate andthatmessagesentby the
copocessocanbeauthenticated andtrusted.We discussed
a seriesof possiblemonitaing applicdions, andour early
resultsdemorstratecthe viability of this appoach.

References

[1] IBM PCI Cryptografic Coprocesso General In-
formation Manual, May 2002 Available at
http://wwwibm.com/security/cryptocards.

[2] Ptrace2.4.Availableat http://pacletstormsecuritprg/0203-
exploits/ptrace-dark.c.

[3] Tracerouteexploit + story Available at http://security-
archive.merton.ox.ackibugtrag-20000/0084html.

[4] 3. M. A. Mishra and W. Arbaugh. The co-
processor as an indepadent auditor Available at

http://wwwmisslcs.umd.edtkomokudocuments/cauditotps.

[5] S.N. ChariandP. Cheng. Bluebox A policy driven, host-
basedntrusiondetectionsystem.In Proceeding®f the 2002

Networkand DistributedSystenSecuity, February2002
[6] IEEE. IEEE standardestaccesgortandboundary-scarar-

chitecture|EEE std11491b-1994

[71 R.P R.S.L. v. D. S.W. S.J. Dyer, M. Lindemannand
S.Weingart.Building theibm 4758securecopro@ssor|EEE
Computer34(10:57-66,2001

[8] S.W. S.J.Dyer, R. PerezandM. Lindemann. Application
suppat architecturefor a high-performae, programmale
securecoprocesso In 22nd National Information Systems

SecurityConfeence(NISSC) October1999.

[9] G.H.Kim andE.H. Spaford. Experiencesvith tripwire: Us-
ing integrity checlersfor intrusiondetection.In SystenAd-
ministration, Networkingand SecurityConfeencelll, 1994.

[10] E. G. M. BernaschiandL. V. Mancini. Operatingsystem
enhanementgo preventthe misuseof systemcalls. In Pro-
ceedingf the 7th ACM confeence on Computerand com-
municationssecurity pagesl74—-183, 2000.

[11] V. Paxson.Bro: asystemfor detectingnetwork intrudersin

real-time.ComputeNetworks 31(23-24):285-2453, 1999.
[12] A. S.S.Forrest,S.Hofmeyr andT. Longstaf. A sensef self

for unix processedn Proceedingd 996 EEE Symposiunon
Securityand Privacy, 1996.

[13] S.W. S. Smith, R. PerezandV. Austel. Validatinga high-
performance programnable securecopracessor In 22nd
National Information System$Secuity Confeence(NISSC)
October1999

[14] D.WagnerandD. Dean.Intrusiondetectionvia staticanaly-
sis. In Proceeding®f the 2001IEEE Sympaiumon Security
and Privacy, 2001.

[15] D. Zamboni. Usinginternalsensordor computerintrusion
detection,2001 CERIAS TechnicalReport2001-2, CE-
RIAS, PurdueUniversity.

[16] Y. ZhangandV. Paxson. Detectingbackdoors. In Proceed-
ingsof 9th USENIXSecuritySymposiumAugust 2000.

[17] Y. ZhangandV. Paxson.Detectingsteppingstones.In Pro-
ceedingof 9th USENIXSecuritySymposiumAugust2000.

