SESSION 1. INSTRUMENTATION

24

The Casefor Transient Authentication

Brian D. Noble and Mark D. Corner
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Ml
{bnoble,mcorner } @umich.edu

Abstract

How does a machine know who is using it? Currently,
systems assume that the user typing now is the same person
who supplied a password days ago. Such persistent authen-
tication isinappropriate for mobile and ubiquitous systems,
because associations between people and devices are fleet-
ing. To address this, we propose transient authentication.
In this model, a user wears a small hardware token that
authenticates the user to other devices over a short-range,
wireless link. This paper presents the four principles of
transient authentication, our experience applying the model
to a cryptographic file system, and our plans for extending
the model to other services and applications.

1 Introduction

How does a device know that the person using it is the
right person? Unfortunately, authentication between people
and their devices is both infrequent and persistent. Should
adevicefall into the wrong hands, the imposter has the full
rights of the legitimate user while authentication holds.

To see why, first consider how two computational prin-
cipals authenticate one another's messages. Each princi-
pa knows some shared secret, a session key. The sender
uses this key to compute a message authentication code, or
MAC, which is embedded in each sent message [11]. The
receiver recomputes the MAC to verify that the presumed
sender did in fact send that particular message. Each mes-
sage isinseparably bound with the proof of its authenticity;
authentication is atomic.

Unfortunately, it is infeasible to ask users to provide au-
thentication for each request made of a device. Imagine a
system that required the user to manually compute a MAC
for each command. Instead, users authenticate infrequently
to devices. User authentication holds until it is explicitly
revoked, though some systems further limit its duration to
hours or days—it is persistent.

Persistent authentication has been acceptable for per-
sonal computing because PCs have relatively strong phys-
ical security. For example, it is likely that the person typ-
ing at the keyboard of my office workstation is someone
that | trust. However, mobile devices are easily carried, and
therefore easily lost or stolen; if someone steals your |aptop
while you are logged in, they have full access to your data.
Likewise, ubiquitous computing elements are often public,
accessible to trusted and untrusted users alike.

One way to limit the vulnerabilities of persistent authen-
tication is to limit its duration. This increases the user's
burden, encouraging him to disable security entirely. By
default, Windows 2000 asks users to reauthenticate when-
ever a laptop awakens from suspension. Anecdotally, we
find that many people disable this feature, forfeiting its pro-
tection for ease of use.

Persistent authentication creates tension between protec-
tion and usability. To maximize protection, a device must
constantly reauthenticate its user. To be usable, authentica-
tion must be long-lived. We resolve this tension with anew
model, called transient authentication.

In this model of authentication, a user wears a small
token, such as the IBM Linux watch [9], equipped with
a short-range wireless link and modest computational re-
sources. Thistoken is ableto authenticate constantly on the
user’s behalf. It also acts as a proximity cue to applications
and services, if the token does not respond to an authentica-
tion request, the device can take steps to secure itself.

At first glance, transient authentication merely seems to
shift the problem of authentication to the token. However,
mobile and ubiquitous devices are not physically bound to
any particular user; either they are carried or they are part of
the surrounding infrastructure. Aslong as the token can be
unobtrusively worn, it affords a greater degree of physical
security.

We first enumerate the principles underlying transient
authentication. We then briefly describe a proof-of-concept
cryptographic file system that uses this authentication
model, and our plans for developing an API to support a
broad range of services and applications.
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2 Transient Authentication Principles

Transient authentication consists of four properties.
First, users must hold the sole means to access resources on
the device. Second, the system must impose no additional
usability burdens. Third, the mechanismsto secure and re-
store sensitive data on a mobile device need be no faster
than the people using it. Fourth, users must give explicit
consent to later actions performed on their behalf.

2.1 TieCapabilitiesto Users

The ability to perform sensitive operations must reside
with the user rather than his devices. For example, the keys
to decrypt private data must reside on the user’s token, and
not on some other device. Each protected application and
service must be structured in such a way as to depend on
capabilities that reside on the token.

At the same time, it is unlikely that the token—a small,
embedded device—can perform large computations such as
bulk decryption. Furthermore, requiring the token to per-
form cryptographic operations in the critical path of com-
mon actions will lead to unacceptable latency. In such
cases, it may be necessary to cache capabilities on a de-
vice for performance. Most often, cached capabilities are
obtai ned through a cryptographic operation using keys only
on the token. The decrypted capabilities must be destroyed
when the user (and histoken) leave, and the master capabil-
ity should not be exposed beyond the token.

Thetoken and device exchange capabilitiesusing awire-
less link. The system must provide confidentiality and in-
tegrity for these messages. Thisis ensured by a session key
shared by the token and device, used to encrypt each packet,
and to generate aMAC.

One could instead imagine asimpl e token that responded
to authentication challenges. This gives evidence of the
user’s presence, but does not supply a cryptographic capa-
bility. An operating system could use this evidence to gov-
ern access to resources, data, and services. Unfortunately,
thismodel is insufficient. If the device is capable of acting
without the token, then an attacker with physical possession
can potentially forceit to do so. As asimple example, con-
sider file system access control. An unencrypted disk can
be removed and inspected on a machine that does not check
for the token’s presence. An encrypted disk, with the keys
stored only on the token, is not subject to the same attack.

2.2 DoNoHarm

Investing capabilities with usersincreases the security of
the system. However, increases in security cannot impose
increased user burdens. When faced with inconvenience,
however small, users are quick to disable or work around

security mechanisms. Not only must the performance of the
machine remain unaffected, but additional usability burdens
are unacceptable.

Users already accept infrequent tasks required for secu-
rity. For instance, passwords are used occasionally, usually
on the order of once aday. Morefrequent requests for pass-
words are perceived as burdensome; a transparent authenti-
cation system should impose no more usability constraints
than current systems.

Transient authentication must also preserve perfor-
mance, despite the additional computation increased secu-
rity requires. Aslong as this computation is imperceptible
to the user, it is an acceptable burden. For example, the Se-
cure Socket Layer (SSL) [5] protocol requires processing
time for encryption and authentication. This cost is easily
masked by the latency of loading web pages.

2.3 Secureand Restore on People Time

Cached capabilities—and the data they protect—can
only remain while the token is present; when the token is
out of range, sensitive items must be protected. This pro-
cess must happen before an attacker gains access to the ma-
chine. One might think that this must happen as quickly as
possible. However, since people are slow, thelimit ison the
order of seconds, not milliseconds.

Rather than simply erasing sensitive information, one
might prefer to encrypt and retain it. This additional work
can save time on restoration: when the user returns, one can
obtain the proper key from the token and decrypt the data
in place, restoring the machineto pre-departure state. Since
the restoration process begins when the user re-entersradio
range, it can complete before the user resumes work.

2.4 EnsureExplicit Consent

Tokens and devices must interact securely, and with the
user’'s knowledge. In a wireless environment, it is partic-
ularly dangerous to carry a token that could provide capa-
bilities to unknown devices autonomously. A “tailgating”
attacker could force a users token to provide secret keys,
nullifying the security of the system. Instead, the user must
authorize individual requests from devices or create trust
agreements between individual devices and the token.

On one hand, users could confirm every capability re-
quested by the device. However, usability is paramount,
thus the granularity of authorization must be much larger.
Instead of an action by action basis, user consent can be
givenon adeviceby devicebasis. If thisgranularity is made
smaller, more usability demands would be placed on the
user with no corresponding gain in security. For instance,
once a sensitive key has been given to a laptop, other pro-
grams on the machine can access that key by corrupting the
operating system.
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This figure shows the process for authenticating and inter-
acting with the token. Once an unlocked token isbound to a
device, it negotiates session keys and can detect the depar-
ture of the token.

Figure 1. Token Authentication System

To ensure explicit consent, our model provides for the
binding of tokens to devices. Binding is a many-to-many
relationship; | might interact with any number of devices,
and any number of users might share a device. Binding
requires the user’s assent but can be long-lived. Thislimits
the usability burden. The binding process requires mutual
authenti cati on between device and token; thisintroducesthe
question of device and token naming, which we have not yet
addressed.

Unfortunately it is possible for a user to lose a token.
Token loss is a serious threat, as tokens hold authenticat-
ing material; anyone holding a token can act as that user.
To guard against this, users must periodically authenticate
to the token. This authentication can be persistent, on the
order of days. Nominaly, any authenticating material in
the token is encrypted by a user-supplied password; when
the authentication period expires, the token flushes any de-
crypted material, and will no longer be able to authenticate
ontheuser’sbehalf. Placing authentication material in PIN-
protected, tamper-resistant hardware [15] further strength-
ens the token in the event of loss or theft. The transient
authentication process, illustrating all of these principles, is
shownin Figure 1.
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Thisfigureillustratesthe process of file key acquisition. En-
crypted file keys are read from disk and shipped to the to-
ken. The token decrypts it and returns the file key. All
laptop/token communication is protected by a session key,
negotiated at bind time.

Figure 2. Decrypting File Encrypting Keys

3 Example: Protecting File Systems

To validate this approach, we have built ZIA, a cryp-
tographic file system employing transient authentication.
This prototype demonstrates that transient authentication
can protect resources against theft or loss without compro-
mising performance or hampering usability. It is explained
in detail elsewhere [3]; we summarize it here. ZIA isim-
plemented as a stackable file system layer [6], utilizing the
FiST framework [17].

Tie Capabilitiesto Users Each on-disk object in ZIA
is encrypted with some particular file key, K. File keys
are assigned per-directory. Since the token cannot provide
bulk decryption services, the file key is aso stored on disk
encrypted by some key-encrypting key, K. A filethat is
shared has its corresponding K ; encrypted by more than
one K. Tokens hold each applicable K; they are never
revealed. Key exchangesareillustrated in Figure 2.

Do NoHarm When ZIA receives aread request for a
file block, it must decrypt it with the corresponding K ;. If
itis not aready cached, the encrypted version, K (K), is
sent to the token, which decrypts and returns it. Key ac-
quisition is overlapped with reads, and decrypted keys are
cached for later reuse. With these optimizations, ZIA adds
an overhead of under 10% for a modified Andrew Bench-
mark, and just over afactor of two for bulk data transfer. In
both cases, the overheadsimposed by ZIA areindistinguish-
able from those of Cryptfs[16], a cryptographic file system
with a single key in effect for al files. In other words, the
overheads are limited by cryptography, not key acquisition.

Secure and Recover on People Time On token de-
parture, ZIA encrypts each cached file block, and flushes
each cached K;. ZIA does not evict encrypted, cached
file blocks, but the OS may later evict them of its own ac-
cord. On the largest buffer cache we can observe on our
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typedef int32_t ta appid_t;

enum lifetinme {TA LI FE SESSI ON, TA LI FE_PERM;

typedef struct ta_keyname_t {

char* user nane;

char* appnane;

char* keynane;

enumlifetinme life;
} ta_keynane_t;

int ta_initialize();

voi d ta_shutdown ();

/* Registers an application with the library */
ta_appid_t ta_application_reg(lIN char* appnane,

IN char* usernane);

Figure 3. Library Management Functions

hardware—an IBM ThinkPad 570 with 128 MB of mem-
ory, running Linux 2.4.10—this process takes less than five
seconds. Thewindow of vulnerability is short enoughtofoil
physical possession attacks. As soon as the token entersra-
diorange, ZIA re-fetches each K ; and decrypts all cached,
encrypted file blocks. On our hardware, this process takes
less than six seconds. ZIA imposes minimal overhead and
preserves usability, giving the user no reason to disableiit.

Ensure Explicit Consent Tokensonly decrypt file keys
for laptops to which they have been bound. When a newly-
encountered laptop first asks the token for a key, the token
passes this request up to its wearer. The user then decides
whether this is a request from a legitimate device. If it is
not, the laptop will be ignored thereafter. If it islegitimate,
the token and laptop use the Station-to-Station protocol [4]
to provide both mutual authentication and session key ex-
change. This session key is used to protect file key traffic
between the two devices until the user departs. When the
user departs, the session key is dropped. On return, the prior
binding remains in force, so Station-to-Station can negoti-
ate a new key without user involvement. Bindings have a
long but finite lifetime, on the order of days.

4 Protecting Services and Applications

It is straightforward to provide transient authentication
services to afile system; the semantics of identity and priv-
ilege are well-defined, and the implementation is controlled
by the operating system. Most applications inherit these
same notions of user identity from the operating system.
Transient authentication can be extended to applications by
protecting the virtual memory space of each process.

By default, the system protects every process on the ma-
chine, except essential kernel threads and processes related
to token communications. During the boot process, the to-
ken and machine agree upon an encryption key. Upon user
departure, the operating system suspends each processes
and masks arriving signals. The OS then encrypts each in-
memory page belonging to the process and erases the key.

When the user returns, the system fetches the decryption
key from the token and restores each page. The processes
are restarted and the system continues without loss in per-
formance. Combined with swap space protection [13], this
mechanism fully protects virtual memory. We are currently
implementing address-space protection.

There are two reasons why this brute-force approach
may not be desirable. First, completely suspending all
applications—even those without sensitive data—is effec-
tive but indiscriminate. Second, not all applications inherit
their notions of identity and authentication from the oper-
ating system. For example, a user browsing the web may
interact with dozens of different services, each with its own
user name.

We are developing an API for applications to make use
of transient authentication services directly. This API in-
cludes management functions, shown in Figure 3 and token
interaction functions, shown in Figure 4. The initiaization
and shutdown functions are used to initiate connectionsto a
per-machine service. The registration functions inform this
service of the application’s use of the token. This service
can then control application requests, including logging and
caching of results.

Applicationsthat cache keys—or the decrypted informa-
tion that they protect—must be informed whenever the user
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/* Regi sters/Unregisters call back functions */

int ta_auth_loss_reg(INta auth_hdlr_t hd,
IN void *data);

int ta_auth_loss_unreg(INta_auth_hdlr_t hd,
IN void *data);

int ta_auth_gain_reg(INta_ auth_hdlr_t hd,
IN void *data);

int ta_auth_loss_unreg(INta_ auth_hdlr_t hd,
IN void *data);

/* Decrypt a key with the token */
int ta_decr_buf (IN ta_keynane_t *key_nane,
IN const void *in_key,

IN size_t

len, QUT void ** out_key);

Figure 4. Token Interaction Functions

departs or returns. To do so, the application registers a call-
back: the name of the function to call in the event of depar-
ture or return. The transient authentication system pollsthe
user token, and calls each registered callback in the event
of achange. To access sensitive resources, the application
must first acquire a decryption key. Applications store an
encrypted version of the key and then use the token to de-
crypt it. When the application needs to create a new key, a
random encrypted key can be created and “ decrypted” using
the token.

Unfortunately, many applications assume that authenti-
cation need only be checked once or, at best, infrequently.
For example, SSH authenticates users only when initiating
aremotelogin; the connection remainsin force until explic-
itly closed. There must also be a mechanism to ensure that
applications respond to departure notifications in a timely
way; those that do not will be subject to the more drastic
step of full address-space protection.

One example application that we have modified is the
open-source, Mozillaweb browser; we are currently work-
ing on extending support to other applications. Mozilla, and
web browsers in general, store sensitive information is nu-
merous places. So far we have identified the browser cache,
password manager, SSL key store, certificate store, and the
cookie store as the most critical. The use of programming
languagetoolsto find such sensitive material isanimportant
open problem.

After registration with the API, Mozilla uses the token
to generate fresh keys for each of these resources. Al-
though the actual implementation for each of the secretsis
dightly different, each remains encrypted when the user is

not present. While the user is present, the browser has the
capability to decrypt thisinformation and use it. Otherwise,
requests return an error message to the user interface.

5 Related Work

Several efforts have used proximity-based hardware
tokens to detect the presence of an authorized user.
Landwehr [7] proposes disabling hardware access to the
keyboard and mouse when the trusted user is away. This
system does not fully defend against physical possession
attacks. At the very least, the contents of disk and possibly
memory may be inspected at the attackers leisure. Similar
systems have reached the commercial world. For example,
the XyLoc system [14] could serve as the hardware plat-
form for our authentication token. Our contribution is not
the use of ahardwaretoken for proximity detection. Rather,
it isthe principle of transient authentication and the way in
which it affects system and application design.

We have rejected the use of smartcardsfor authentication
services [2]. There are two ways to use smartcards, inser-
tion and swiping. Inserted cards are likely to be left in the
machine when the user is away. Swiping must be done fre-
quently, or employ long timeout periods. In either method,
smartcards have the same weaknesses as passwords.

One could imagine using biometric authentication rather
than aworn, wireless token to provide proximity cues. Un-
fortunately, biometrics suffer from several usability prob-
lems. They have a large false negative rate [12], and
are not easily revocable—if someone has a copy of your
thumbprint, you cannot easily change it. Furthermore, bio-
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metric authentication often requires some conscious action
on the part of the user. The one exception is iris recogni-
tion [10Q], but this scheme requires three separate cameras, a
bulky and expensive proposition for mobile devices.

There are anumber of file systems that provide transpar-
ent encryption: Blaze's CFS[1], Zadok’s Cryptfs[16], and
Microsoft’'s EFS [8]. None of these tie user authentication
to the encryption process properly. Some systems, such as
EFS, requirethe user to reauthenticate after certain eventsto
bound the window of vulnerability. This increases security,
but decreases usability.

6 Conclusion

Computing systems currently depend on persistent au-
thentication, in which user authentication is assumed to
hold for a long, perhaps unbounded, time. Given the poor
physical security afforded by mobile or ubiquitous devices,
this is untenable. Instead, we propose the use of transient
authentication, in which a user wears a small token that
constantly authenticates on his behalf. Transient authenti-
cation secures systems against physical possession attacks
without compromising performance or usability. We have
constructed a cryptographicfile system using this approach,
and are currently constructing an API to provide support for
abroad number of applications and services.
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