
Timing Fault Detection for Safety-Critical Real-Time Embedded Systems

Sébastien Faucou, Anne-Marie Dplanche and Yvon Trinquet
Institut de Recherche en Communications et Cybernétique de Nantes

1, rue de la Nöe, BP92101 44321 Nantes Cedex 3, France
{faucou|deplanche|trinquet}@irccyn.ec-nantes.fr

Abstract

On the one hand, a major aspect of dependability for
real-time embedded systems is the respect of timing require-
ments. On the other hand, the complexity of modern real-
time embedded system implies the need for new design pro-
cess focusing on high-level features, such as architecture-
based design. In this paper, we show how to integrate a
timing fault detection technique in such a design process.
Our approach is based upon the CLARAADL (Architecture
Description Language). This language allows to describe
applications which can be easily implemented thanks to a
distributed middleware designed on top of the OSEK/VDX
real-time kernel.

1 Introduction

The reliability and the low-cost of today electronic com-
ponents have led many industries to increase the part of
embedded systems in their field. A representative exam-
ple is the automotive industry which integrates more and
more in-vehicle embedded “Electronic Control Unit” to in-
crease safety and comfort by providing new features. For
these embedded real-time control systems, one of the ma-
jor dependability requirements is safety (the system must
not damage its environment). In this paper, we focus on a
special kind of safety-related faults: timing faults. For a
real-time system, its service is correct not only if the results
it delivers have good values but if the dates where they are
produced are also good. Actually, in such a context, the vi-
olation of a timing constraint can be safety critical to the
environment.

Because these systems become more and more complex,
they now exhibit more “classical” requirements: flexibil-
ity, reuse, interoperability, etc. One way to handle these
requirements is to adopt an architecture-based design pro-
cess, which makes it possible to reason about the architec-
ture level of design [10]. Our goal is to investigate the rela-
tions between the architectural design of a real-time appli-

cation and the verification of its timing requirements, and
we show how a timing analysis can be conducted at this
level. Such an approach, while not requiring a detailed algo-
rithmic knowledge of the application enables to detect and
thus to correct design mistakes early in the life cycle. This
timing fault detection step is based on a behavioral analysis.
Obviously, it does not preclude other means for dependabil-
ity and particulary fault-tolerance mechanisms.

To perform a timing analysis, the whole system has
to be taken into account: application software, execution
platform and environment. Our work being based on the
CLARA ADL, we explore in a first time the implementation
of CLARA descriptions. To facilitate this process, we have
developed a dedicated distributed middleware on top of the
OSEK/VDX real-time platform. In a second time, we build
a fine grain model of this implementation, which takes into
account details of the low level software. The simulation
of this model allows to observe the timing behavior of the
candidate architecture and to validate it w.r.t. the specified
timing constraints, that is to detect timing fault occurrences
and locate their sources so as to design a new candidate.

2 Context

2.1 In-vehicle embedded systems

Today, vehicles include more and more electronic sys-
tems and features. Some of these new functionalities run
across different sub-systems which have to communicate.
Moreover, this kind of systems is developed for a wide
range of products. As a consequence the software and hard-
ware requirements have evolved and include now flexibility,
portability, reuse, hardware/software independence, etc.

For the software aspects, one can cite as an illustra-
tion the OSEK/VDX architecture [9]. It is a joint project
of European car industries the aim of which is to pro-
pose a standard platform for in-vehicle embedded applica-
tions. It is made up of different specifications: OSEK OS
(scalable kernel for real-time embedded systems), OSEK

247

operative
implementation

operative architecture

system soft.
physical

components
strucutral
reactive

software architecture hardware architecture

(a)

middleware tasks
(implementation of CLARA

connectors and links)

application tasks
(implementation of

CLARA components)

node2

4

2

OSEK/VDX platform

3

1

CLARA :
. components
. connectors

1

2

3

4

implementation view

hardware view

operative view

software architecture

node1

OSEK/VDX platform

node2node1

CAN

(b)

Figure 1. Design process of an operative architecture with CLARA.

COM (application-level communication protocol), OSEK
NM (network management), etc.

For the hardware aspects, one of the major require-
ments is to provide a flexible way to interconnect sub-
systems. To address this requirement, network protocols
have been developed in order to build distributed systems
around multiplexed bus that offer an acceptable QoS. These
protocols include Controller Area Network (CAN, based
on CSMA/CR), Time Triggered Protocol (TTP, based on
TDMA), Local Interconnect Network (LIN, master/slaves),
etc. To experiment our approach, we will consider systems
composed of OSEK/VDX nodes interconnected through a
CAN bus.

2.2 Architecture description of real-time applica-
tions

Software architecture is a field of interest for scientist
since the mid 90’s [10]. It is the domain of software engi-
neering dedicated to high-level design. Part of the work on
software architecture has been carried out on ADL, which
aims at describing a software architecture as the intercon-
nection ofcomponents(processing entities) andconnectors
(communication entities). Being formally defined, an ADL
provides with the possibility to perform architecture-level
analysis: liveness [2], reliability [12], etc.

The CLARA ADL, which is dedicated to real-time appli-
cations, has been defined in our team [6]. CLARA compo-
nents are active objects (they own an execution flow) and
the set of predefined connectors covers synchronous and
asynchronous event signalling and message passing mech-
anisms. The semantics of CLARA is defined with (time)
Petri nets and dedicated static verification techniques allow
to perform formal analysis of architecture descriptions. Ex-
haustive timing analysis techniques are also used, but they
do not allow to take into account most of the implementa-
tion aspects. As the timing behavior of a system relies heav-
ily on its implementation, this is a severe restriction. We

propose in this paper a simulation-based technique for the
timing analysis of CLARA architecture description which
takes into account the effective implementation of the sys-
tem, including hardware and system software details.

CLARA offers different views of software, hardware and
operative architectures (resp. SA, HA and OA), each one
being relevant for a specific aspect: component (compo-
nent specification), structural (component interconnection)
and reactive views (interface of the environment and com-
ponents activation mechanisms) for the SA; physical view
(description of the physical architecture) and system soft-
ware description for the HA; implementation and operative
views for the OA. The implementation view is the mapping
of the SA onto the execution platform native objects and
services, whereas the operative view is the mapping of the
implementation view onto the physical view. A summary of
this organisation is given fig. 1.

To allow a straightforward design of the implementation
view, we have defined a set of mapping rules from CLARA
high-level artefacts onto OSEK/VDX native objects (e.g.
components are mapped onto OSEK OS tasks). Together
with these rules, we have designed a middleware which of-
fers high-level services to the application layer for the map-
ping of connectors and links. To preserve the benefits of the
software architecture approach w.r.t. software evolution and
reuse, only four services can be used:Send andReceive
for data transmission andSignal andWait for event sig-
nalling. The knowledge of the architecture allows the mid-
dleware to use the mechanisms and data structures corre-
sponding to the specified connector instance. As embedded
real-time systems are static (i.e. all objects are known be-
fore runtime), the middleware uses static routing tables to
perform its services.

For each node in the system, a task is in charge of han-
dling intra-node interactions, delivering incoming messages
and sending outcoming messages. It communicates with
application tasks using OSEK OS event notification mecha-
nisms and OSEK COM messages (middleware services are

248

macros based on OS services and behave as transactions).
The connectors of the CLARA description are “inlined” in
the middleware. This organization is illustrated in fig. 1(b).
A prototype has been developed in C.

3 Architecture-level timing analysis

3.1 Related works

Architecture level timing analysis does not come as a re-
placement for lower-level timing analysis that can be per-
formed once the detailed design step is achieved. It aims
at validating early high level design: application partition-
ing and structure, activation mechanisms, allocation and
scheduling of tasks and frames, etc. To perform such an
analysis, a narrow approximation of the internal behavior
of the components must be known (including estimation
of computing times, which can be obtained from a WCET
analysis for pre-existing components and by a priori evalu-
ation for other ones).

There is not a lot of architecture-based tool-set dedicated
to the design of real-time applications. One can cite the
BASEMENT framework [7] for in-vehicle embedded sys-
tems and the MetaH ADL [3] for avionics embedded sys-
tems. For the timing analysis, BASEMENT comes with an
off-line scheduler and a discrete event system level simula-
tor tool. The simulator uses an emulator of the BASEMENT
platform which executes the effective code of the compo-
nents on a modified BASEMENT kernel. Hence, it can only
be used after the completion of the detailed design step and
is not adapted to early validation of the high level design. To
handle timing requirements at high level, the MetaH tool-set
includes a schedulability analyzer, which works on analyti-
cal models of the tasks and messages sets. These models are
refined along the design process but are constrained by the
analytical method used. In order to handle more complex
task model and to formally verify critical application com-
ponents (e.g. scheduler, bus driver, etc.) the MetaH team
has also been working on linear hybrid automata models.
This technology is unfortunately not mature enough to be
applied to a whole architecture.

Our goal is to validate the architecture of a system w.r.t.
its timing requirements (e.g. basic and end-to-end dead-
lines, cadence, etc.). It is common that a time-constrained
functionality is performed through the cooperation of sev-
eral tasks, eventually distributed over different nodes. Thus,
the middleware, OS services and eventually the networks
are involved in its achievement. As the use of OS or mid-
dleware services is of high influence with the application
(time overhead, rescheduling, update of the status of system
objects, etc.), it must be taken into account when analyzing
the (timing) behavior of the system. In order to fulfill this
goal we adopt a method based on the simulation of a model

of the system built from detailed models of COTS compo-
nents (e.g. the execution platform) and high level model of
application components which are not fully defined. This
approach is similar to [5] but can handle a broader range of
task behaviors, in order to cover the possibilities of CLARA .

3.2 System modeling

For the modeling and simulation step, we have selected
the ObjectGEODE framework from Telelogic1, which is
based upon the SDL formal description technique. SDL
uses jointly Asynchronous Communicating Finite State Ma-
chines and Abstract Data Types paradigms for system mod-
eling, so as to handle concurrency as well as data modeling.
It is known to being unadapted to real-time system speci-
fication [4] but we use it as a system description language
and we are not penalized by its limitations. Moreover, the
ObjectGEODE simulator tool [11] offers some extensions,
especially a semantics which makes it possible to control
time progression.

In order to automate the translation of the OA to an ana-
lyzable model, we have developed a set of predefined SDL
process types: CPU, CAN stack and network, OSEK OS,
OSEK COM, interupt service routine, middleware task, etc.
These models include both functional and timing charac-
teristics. To build the system model, they are instantiated
and connected following predefined rules. The remaining
work resides in the injection of components behavior and
low level software configuration in this skeleton. Finally,
the system model must be closed by a model of the environ-
ment so as to facilitate the simulation.

3.3 Analysis technique and results

For the verification step,ObjectGEODEcomes with a
model-checker. Unfortunately, it does not allow to verify
quantitative timing properties (although ongoing works ad-
dress this [8]). Moreover, model-checking techniques are
confronted with the state-space explosion problem when
the number of variables in the model is huge. As a con-
sequence, we use presently the tool in simulation mode.

CLARA allows to express the timing constraints of the
system on the architecture views. These constraints are
translated into observer automata [1] which are merged to
the SDL model. When an observed event occurs during the
simulation run, the concerned observers change their states
and it is thus possible to detect wrong sequences.

As an output, the simulator generates the trace of signals
exchanged during the run. From this trace, Message Se-
quence Charts (MSC) can be generated at different levels of
details by selecting the SDL entities of interest. At the high-
est level, it is possible to isolate only the signals exchanged

1Telelogic web site:http://www.telelogic.com .

249

(a) (b)

Figure 2. Two MSC generated from the same run at different detail levels.

between a node (seen as a black box) and the environment
for a particular functionality. At the lowest level, it is pos-
sible to include OS-level signals, especially scheduling sig-
nals resulting from middleware and OS service execution:
preemption, release, etc.

Figure 2 shows two MSC obtained after a simulation of
a factory control system case study. The first (2(a)) is the
highest level one: the two entities are node 1 of the con-
trol system and the environment. Signals are filtered so as
to see only the ones implied in the constrained function-
ality under study (here the control of valveva bp). This
high level MSC underlines a violation of a timing require-
ment (deadline violation between irq 4 andresetva bp),
detected during the run by the observer associated to this
constraint. The second (2(b)) is (a small part of) the low-
est level one, the study of which allows to find the source
of the timing fault (a priority allocation mistake, allowing
a time consuming sampling task to be active for a too long
time). To correct this mistake, there are many options the
consequences of which have to be analysed by running new
simulations: changing the priority assignement, changing
the allocation of tasks to node, changing activation mecha-
nisms so as to suppress the conflict, using a simple interrupt
service routine to handle the valve, etc.

4 Conclusion

We have exposed an architecture-level timing analysis
technique which is usefull to perform early validation of
high level design w.r.t. timing constraints. It is based on
simulation at system level. For the results to be accurate, the
model must be close to the effective system and we adress
this issue (i) by offering a middleware and a set of rule for
the implementation of architectural artefacts and (ii) by tak-
ing into account in the models the knowledge of the runtime
platform (hardware architecture, OS, network, middleware,
etc.). Aiming at being applied to high level design, it is flex-
ible enough to cover a wide range of real-time application
style.

In order to provide with a comprehensive architecture
design process, a complementary work should investigate
the mapping of event traces collected during the simulation
onto the architecture elements. This work should also be
directed towards the identification of “good” and “bad” de-
sign practices (w.r.t. timing requirements) in order to assist
the architect in his corrective work.

References

[1] B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL : Observ-
ing SDL behaviors with GEODE. InProc. of SDL Forum
95. Elsevier, 1995.

[2] R. Allen. A Formal Approach to Software Architecture. PhD
thesis, School of Computer Science, Carnegie Mellon Uni-
versity, 1997.

[3] P. Binns and S. Vestal. Formalizing software architectures
for embedded systems. InProc. of EMSOFT 2001. Springer,
2001.

[4] M. Bozga, S. Graf, L. Mounier, I. Ober, and D. Vincent.
SDL for real-time: what is missing. InProc. of SAM’2000,
2000.

[5] P. Castelpietra, Y. Song, F. Simonot, and O. Cayrol. Perfor-
mance evaluation of multiple networked in-vehicle embed-
ded architecture. InProc. of WFCS’2000. IEEE IES, 2000.

[6] E. Durand and A. D́eplanche. CLARA - An Architecture
Description Language for Real-Time Applications. Techni-
cal report, IRCCyN, Nantes, March 1999. (in french).

[7] H. Hansson, H. Lawson, M. Strömberg, and S. Larsson.
BASEMENT: a Distributed Real-Time Architecture for Ve-
hicle Applications.Real-Time Systems, 11(3), 1996.

[8] I. Ober and A. Kerbrat. Verification of Quantitative Tempo-
ral Properties of SDL Specifications. InProc. of SDL Forum
2001. Springer, 2001.

[9] OSEK Group. OSEK/VDX OS 2.2, COM 2.2.2, OIL 2.3,
NM 2.5.1. http://www.osek-vdx.org , 2001.

[10] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[11] Verilog. ObjectGEODE SDL Simulator - Version 4.0, 1999.
[12] A. Zarras and V. Issarny. Assessing Software Reliability at

the Architectural Level. InProc. of ISAW 2000, 2000.

250

