
������������	
���
��	�����������	�������	
�
����� �
��������������� ���
�! "$#&%('*)&+ ,&)&-

. /10 24365*718:9 2;/*7</1=?>�245A@<B18 C;3�D<EF9 C;/GEHC;I
JK/L9 MNC;3 OP9 8 QR2<0S>K7LT 9 0 2&36/<9 7LIL. 3 MP9 /UC
>�VXWZYZ[<WZ\;] ^<_ZYZ`;I&J
DZV"<aS)S+ ,�)S-Gbdc�eZ f #S,Sc

gh eiaP)i#j+ikj- )PlFm
. /10 2;3n5A718:9 2;/*7</1=o>�2;5A@<B18 C;3�DZEP9 C;/1EHC4I
JK/L9 MHC&3 OP9 8 Qp2L0S>K7<T 9 0 2;36/L9 7<Iq. 3 MP9 /UC
>SVXW<YZ[<WZ\4] ^Z_<YZ`;I&J
DZVr -s)�l�m;btc�eL f #�,�c

uwvyx;zy{wu}|wz
~;�1������� � �G�����G��� ���K�s�!� �1���K�G�s�����G�G�1���K���G� �������1� � �&��� ��� ���1�����s�
� � ��� �1��� � ��� � �����y���G�K�1�G� ���&���G��� ���K�;�:� �K�N�G� �N�6� �G�N��� ��� �1�������G���A�1�H��G�N�6��� � ���N� �q�p� �G�N����� �G� �����������1�o� �1�R� �G� ����� � �G�¡� � �N�d� �*� �1���p�H�n�N¢�1�����s�p�G�*� ���G�G�G���G��¢6�G�������?����� ��� �w���G�A�������G��� � �£�K�����G���1� ���K�(�H�1�� �����1��� �¤�1�����X� �G�G�G�����¥� �¦� �G�¤���G�1� ��§1���1�w�G�G������� � �G���:�N�:� �U�
�H�¨ �U��� �K� �*�y� ����©ª�1�
«p¬�­�®1¯G°Z± ­�¯Z²j­�®$¬�­�³q± °G´£µ ¶w·�¯s¶N¬�¸ ¹*ºF»Hµ ºK¬n»H¸ ± ¬n·¼ �G�1� �(���P���1�K�G� � ��¢
���G�A���G�1¢�� � �K��½
���j�&��� �P���j�j��� ���j���&�1��©����G�ª��K�����1���1� ����� �1�&��§G�G��������� �G�G�j��������� �o� �6�¡�G���N�G�6� � �G�d���1�ª�U�N�6�H�6�U� �N����1�����1�6�1�G����� � ���G�4~&�U�K���G� �N� � �N�h� �*� �?� � � ��� ���1�(� �U�N�N�N�¡�N�U¢6�N�U���¡��K�����1���1� ���K�¾�1����� � ������� �G�(� �1��� �6���G� � � �N�G���p�6�¡� �¡� � �N�G���N� �¤�1�&�G�N�¡�6¢��� � �1�y���1��� ���K�¾���1� �G���G�1�6���
�K� �G��� ���G�G�G���G���A¿y� �K�G� ���K���G�K�G�N�¡�6¢��� � �G� ���G��� ���À�6�G�N��� � �G�N��� � � �Á�1�w� �1���1�&�j�G��� � ���G� �X����� �*���G�ª���¡¢���G���
� ���G�1�G���G�
���1�!� � �¾���1�G� � �j�Â��� � � ���1�G�K���1�$� �G�s� �����!�1�S� �1�A�N� �H�U��;���R� �G�1�1�<�¡Ãw�j�1���1�1�1���j� �R� � � �������1�j� �1�����j�j�����1���1� �s�K�s���j���1�A�i��&�G� ���
�1� � �!�1�����A�G� � ��� �G�G���ª� �*� �1�����G�G� ��§G�K�1�&�K�G�1� � �*���1�G�!� �i¢�������s� ���1��� �G�������p� �?�1�G� � �¦�s�����1� �¤���1��� ���K��� � �1�Ä� �1�Á�1�6�1�G�G���H�P�Å��1���ª�y���G��� ���Ä�;�1�1� ���1�*�j�1���*�s�����1�����¾��� ��§G� �G� �Æ���1�¦���¡�¡� �¡�N� ����1�K�G�������A� �A��§1� ��� � �G�A���G��� ���K�G�
ÇNÈ£ÉNÊ}z�{}ËªÌ}Í}|}zyÉGËªÊ
¨ �U�K� ���¡�G� � � �G�G��� � � ���Á�1�&���1�K�G�1� ���A���G��� ���K��¿(� �1���!� �*���6������1�6� � ��� ���G�j� �G�G���(¿y� �Â� �G���!�1�Â��� �G�G������� � �G�X�s�G��� ���Ä�U�N�:� �n�¡�U� � �N��:�&�:�}�1�����U�;��� �*�G��� ��� � �ª���1�?�G�6� � � �G� �G�h�1���s� ������� � � ���������G�����1��1���G������� �j���1���G���K���G� �Â�j���K�1�����K���G���G���K���1�}��� �i�&�;� �y�¡�N�N� � �¡�¡¢� � �G�G�A��� �
�1�G� � �Â�G�*� �1�¤�1�R� �1���G�G������� � �G�X���1��� ���j�R�G� � � � Î�� �G�d���H������ � � �����¾� �Z�G��� � � �G���G�1Ïi��� �G���G�4� �1�Â�j�G�s�$��� � � � �����4�1�&� �1�����Ð�¡�N�N� � �¡�¡¢� � �G�G�A� �R� �G�����1�K�1� � �����Â�;�1� ���ª� �����G��� ��� �������1�j� �1� �1��� � � ���p� �U�N¢�1�G���G�Â� ���G��� � � �Â��§G�����G� ���G� �Â���G�1�Ñ�¨ �U�K����� � � �G���1�&� �G� �Ð�K�1�G���4� �R� �1���!� � ���ª�K�1�G�����o�H�H�¡�s�¡� � �N��s�G�s� ���K�&��� �j�;��� � � ���R� �R�1�1�������j� ���1�G�1���1���&���1���R���&ÒK�ÑÓF�U��� ���&� � �¡�6¢���1�G�}���1�?��� ����©o���K�����G� �G�X�:� �Ð��� � � �A�G�ª� �:�
� �G�¤�K�1���}�¡�N�Â�
�N������1�����¾�1���������1��� � �!�1���������1���4� �!�j�G�1��� �!���1��� ���j�GÔ�Õ1Ö�×�� ¨ � �G�s�S� �w�U��G�G������� � �G�ª���1��� ���À� �R����� ���G� � ���G�¡���&� � �A� � �K���$���y�j�1� �*���1�ª�
�G����1���G�1� �?��� �Ð���1� ��� �ª�G�s� � �Â�;� � �G�G�1�A�j� Ø��1�!�G���G�G� ���K�(���1�ª�
�G����1�1�1�S��� �¾�1� �s��� � �������Â���1�Â�;�����1���
�G�1�s��Ù;�1�&� � �����P� �1�����!� �Â�G�*�¡�H�N¢�����1�Z�1�F�K�����1���1� ����� � �p�1��� �G�p���1� �
� �}���1����©A� �1���1�G���6��� � �1�?�:�H�:� �U����1�F���1�K�1� � ���G���y�;� � �*�j�������G��� � �(�G�G� � ���Z� ¨ �1�1�Â� �S� �R�1�G�4�i�H�������H� �� �*�j��©1�Â���1�*�������G��� � �(��� ��� �K�R���G�G�1�K�j�G�1�����}�G�1���6��� � �G�ª�:�H�:� �U�Â��1� �G����� �1���!Ú�� � Û �4�G�����p�G�1�;� �1��� �!���1�&� �&�y�1�������G���p���1�*� �S�������K�
�s��&�1� ©1Üi� ¨ �1� �A�G���1�G� ����� �*��� ����©G� ���G� �N�G� � �N�G� �¡���&�1��� �¡�H� �H�
�¡� �¡�� �G�1� �K���1���(���jÝ<�1�G� ��� Û �p�
��� �¡¢����G�
�G� � ��� � �G�ZÔ ÞG×y��������� �G�}�H�H�H�H�s�U�H��1�S�G�1�G�¾� �!�G�1������� � �G�}���G��� ���K�Ð� �1���4�1� � �!�1�����A� �*�;� �1�Â�G�s��� �1�&�� �1�1�p� � �K�K���G�p�&�����j�G��� � � � ���p� �p�1�K����� ��� � � ��� �p�G�1�1¢��������i��&�i� �1�;�s���j�&� � �K���Z� ���G�G�1�¡�G��¢��G�������o� �����G�G� ßG�G���w�����y�1�U�Á�¡§N¢�1�����s�p���1�*���1����©A�j�1�G�j�G���K�1�&�G� �G�G¢�� � � ���R��������� �}�G���1�G����� � ���G�$ÝL§1¢���K�1� ���w�1�R���1�����G���G�G���6� � ���ª��� �iàPÚ�����ß1�G� �����¤� �1��©G�Á�K�G�s���1�?� ��¢� �����s���<Ô Þ1×�Ü��S� �G���G�6�K��� � �G�¦��� �G�RÔ áGÞ1×y���1�?Ú��s�1�K���G�G�����¡� � �G�G�?�R�i����1�¾�G�1�1��� �w�j����� � ��� �w�1���1����Ô á<Õ�× ÜÑ�Ñ�;� ���1�$� ���s���������Ð� �*�K�G�1� � �*�¡�H�N��1���K�G� � ��� �1�G���y� �����G�1� ßG�G���K� ��·�¯s¶N¬�² ¹o¸ »�¯H°H· ºjµ:»i¸<� �G�����Ð�N�n�N�H�¡�n� � �¡����¾�G�����$�G�S���1�K�Â� �1� �����K���G� ��� �Â�����G���������1� ��� � �1�Z�â �y���1� � �w�1�&�j���G�A�G�6�G�K� ��� �G�o�������G� � �Ð� �*� ���G�G�1���G�w� � � ���;�¡�N¢�1���G�����G���j� ���������G��� � �G�Z� �����1� � � �1�G���P���1��� ���K�j�1�G� �y�1�������&� �1�G���*�����¡�N¢

� � � �Â��� � ���1� ���1���&� ���1�¤� �1�jÚ�~pÅ¾�1�1�;��� �G�sÜ��F�G�������1���y� �1��~KÅ¾� �Â�����6���� �w�j���G�G�G���
���G� �¡� � �?�G�1�s��� ���F�;����©1� ��� �1�G���Á� ���G�G�G���G� ¼ � �H�H� �U�U� � �Ò$½:� ¨ �1�4�����s�Ñ�1�Z� �1�4�1���1���Z� �K��� ���G��� �G���������j�6�1� � �G�;�GàF��� � ���&�Ñ� � ���i�� � �����A�G� �G���}� �N� �6�G�G�N��� � �N�£� �*� ���G�G�G���G��¢6�G�������¦�������G��� � �£� �?������¢� � �G�pá1�L�;�K�1���������G�<�1�G�F�1���G�1�1�����p���1��� ���¥� �w������� � �G��Þ<�LÅ������ � �G��ã�1�����s���1� �¾����� ��� ���!�;�1��©G�<���G�!������� � �G�!ä����G�1��� �1�1���G�
å$È£æ!u*Ê*ç�Í*u*ç(è!é�v!u*x&è!Ì¥x&è!|*Í*{*ÉUz!ê�u*Ê*Ì
ë Ë(v!É1æ!èÆ|wË(Ìwè

ì ���1�G�G���1��¢��G�������(� ���¡�G�G� ßG�G���w���1�S��§G�G�6������� �G�Æ���1�?�¡�H�¡�U©H� �N��������G��� � �(�G���G�G����� � ���A�1� � ���1�����A�G��� �G� �G�o� �K�G�1��� ���G���*���y� � � �U�H� ����1�*����������� � � ���&�:�p� �*�&��� � �Â�s�����1���p�G���1�1�����j�G� ¨ �U�Ð�����s�*���1�Â� �¡�H¢�1�G���G��¢��G���������������G��� � �(�1���Â�1�����*�j���1�R��� �����;�1�����ÑÔ�ÕsäG×�Ô�ÕsíG×Â¿��G�¡����&�j��� �j�G� �R�1� � ���j�1���G���}� � ��� � � ���¦�1�&� �1���K� Ø��1�4� �����G�G� ßG�G���w�1�H����1�K�K����� Î��R� � �¾�K��Ø��G�S��� � ���1� ���G���G�� ·�¯�¶N¬4�1���1�G�����K�K� �G�!� ���1�G�1���1�Â�G��� � � �1���¾������� ��� �}�N�N�¡�n�¡�G� �¡�¡����G�G�1�¥� �G�î��§G�����G� � �G�ï�1�¦�1���G�1�����K�ð�&��� � � ���ñ� �ï� �G���î� �¡�H¢�1�G���G�ÑÔ�ÕsòG×�Ô6ÕsóG×�� ¨ �1���s�Â� �G��� �1�G�����j� �������p� �1���6�G� � �G�4� �G�Zà
«R¬ «Rµs»s¹·�¯�¶N¬¡¸ ¹�¿(� �1� �1���1�1�����ô� �����1�A���1�?�;� � � ���Ð�K���K�1� �ª���G� ������� � �1�Â� ��¢���G����� � �G�?� �1�G�����;�G�G�G�G�G�}���1�?���������s�A�6����� �6� ��� � �N�G�GõR­Ñµ�°Z¸ »NµG²&¶i² µ�ö·�¯�¶N¬�¸ ¹Â¿R� �1�j�G� �G�1�����Á�1�G���&�G�1�LØ��1�K�}� �*�����1� � �������}� �G����� � �G�G� ¼ �H� �<��
� �1����� � �1�!� �G���Z�G�1���4�1�G�Z���1�1� ��� �!���G�1��½�õN���G�*¸ ¹�º;¬S·�¯s¶G¬�¸ ¹Ð÷A�G�G�¡���¡¢� � �1�1�¾���G�!���1�G��� � �G�!����� � �4��������� � �
�����G�1�K���G� �4�G��� �1�Â���G� �������$� �1�G�i�â �y�j�G�1��� �}�G���G�1�6���
�K� �G��� ���1�G�G���1��������������� �o� �w�G�N�¡�n�¡�N� �¡�¡��1�?�y���G�K�N� �G�¡� � �G�t�1�R��� ��� � �X���1�X�G�1�G���K� �¦���1����©1�G�!ø�¹ º;¬*·:¹¡·:ù¸ ¬ «;·HÔ Õsò1×<��� �R���y��§G� �����K��� �}����� ����� � � ���K��� �G�1�(� �w� �1� ���1�G�4�j� �¡�6�N��1�1�K�1���K�1�&���1�G¢�� � �K�A����� �1���
�G��� �1�?�j�K��� �1�G� � �G���4� �Â�;��� �j�N�N�N�¡�n¢��� �G�1�G�¾�1���Â�j���G� � �ª� �G���G����� � �����K�6�G�G�N�G��� � �G�¤���1�*�&�U��� �A�¡�H�¡�U©H� �N�� �4������� ��� ���1�$� �!�1������� � ���Ñ�ì �:��©o�1�w�s������� �Æ� �X�G���G�G�����K�K� �1��� ���G�G�G���G���X� �¦�Á�
�6Ø��N��s�G�1�����
�G���������G��� � � � � �G� ��� � �G�1�¾� �!���1�K�G�1� �������G�s� ���K�1�1�t���G� � ��� �i�� ����� �1�G�j�;��� � ¢�©1�G�1�;�y�1�G��� �6����©G� �G�(�������1�G�������!�s�G�1�;�p� �G���4�U� �Â�H�:�®N¯$² ¶p�G�;��� �F��§G�G� �G� � ��� � �1� �1�������G� � � � � ���y� �*���1� � �&��� �p�����y�1�R�N� �U�
�¡��1�Ð�G�1�������;� � �������G�G�GÔ�Õ1Ö�×��¨ �U�¤² ¯H°N´$ú:¯N´$¬nù6ûH¯N·H¬6üFÔ6Õ�ä1×¡Ô�Õ�íG×¤���G�1���G�����d� �ý�������1��� � ���H�1��1����� � ���6� �G�G��� �o�1����� �G��� ���jÚ:�K�s���S�1�&� �¡���G�G� ßG�G���w�G�������o�1�?�H�n�N¢�1�����K�j� �1��� ���G�G�1���G�o� �G���1���Á���1�ª� �
�N� ���
�¡�G� �¡� � �N�ZþÐ�N�6�G�N�G�N���s��1�����*�1�À� �1�d�������G��� � �ôßG�G����� � �G�GÜ��£���1�ÀÚ�� � � �������G� �G���G�n�G�N�6�¡����G��� �G��� �*���1�*�G� �G�1�����¥�����;��� � � �G�}� �?���1���1� ���}�������1�6� � �£�N�N� � �¡� �¡��ÜL�¨ �1���s�R� ���¡�G�G� ßG�G���w�����y�1�R� �N�G�G�G�G���1�&���j����� � � �G��� �G� ��� �;���
�6Ø��N������ ���G�1��� ���¾¿��1���1�G�����X���1��� �G�s� �¾���1���G� �G�1�����X�����;��� � � �G�<�ÿ »1µ�´1»�¯1« ¯G°G¯Z² ¹�·N± ·d��� � �����o� � ����� ��� �d�1�*� �����G�G� ßG�G���¦� �i�1���� ��� � ����� � �o� � �*� �*���1����©A�j�G� �G�1������� �p���1�G���1���K���G���Ð� �?�y���U�U�N�n� � ��1�G� � ���Z�1Ý<§1���K�1� ���!�:� �
� �G�G����¢6�G�������?���1�G���G�����G����� �*�������G��� � �(���i�U����4� �1�1���p���������K�1� �p� ���G�1�1���1� ¼ ¨ � ì ½�Ô á��G×��ÿ »1µ�´1»�¯1«¦»N¬�ö�»G± ¸ ± °G´¤� �R�j���G�K�G� ���K���1� ���6� �����&�1�&� �U�U�N�H� ßN�H�U�� �1���4���1���1� ���!�������G��� � �£�G�G� � ��� ���?�1�?�����;��� � � �G���G���1�G�����K��� �?�¡�N�H¢� �G���£� �p� �1���Ð� â �G� � �G� �1�w�������G��� � �(�K�G�G� � �G���NÔ áZÕ�×Ð� �Â���y��§G���K�1� �y�i�� �1� �G�;�;�1�1� �G���y��§1���K�1� �£� �?�1�6�1�G�6¢����������G� �G�����1�1� ¼ ÏiÒFÒP½�Ô Õsã1×}�s��&�1� ���ª� �1� ���G�j�G� � �����Â��� �1�G�Á�;� � �ª�1��Ø������(���1�1�¤���1�*� �G�6�G�G�6���
����K� � �p�!­q¬6»N¸ ± ¶H± ­¡¯$¸ ¬y�1�Â�G���1�1�Ð���1�Â���1�G� �G���j���1�����&� � �ª�y���U�U�N�n� � ��1�1� � ���<� ¨ �G�1�1�G�p���1���p�1���G�1���;�K� �1�G�Z�1�
�1��� �!� �p�1���1������� ���&� �1���}��� �
� �����p�����s�p� � � ��� � ���<�

251



Each approach has its advantages and disadvantages, and
a comprehensive, flexible, expressive and powerful security
architecture would need to combine all three elements in a
thoughtful manner.

The primary advantage of language-based security is that
it is flexible and can easily express very fine-grained policies.
For example, the memory protection policy of a type-safe pro-
gram is very fine-grained compared to the coarse page-level
protection that modern operating systems typically provide.
Also, since the programmer deals with language-level seman-
tics while writing a program, it is much more useful and intui-
tive to raise security concerns to the language-level rather than
leave them in other parts of the system.

To transport secure code between machines, we need to
encode programs in a portable, safe, and tamper-proof manner;
these goals are identical to those of mobile code infrastruc-
tures. Mobile code has been an extremely active area of re-
search spurned by the ubiquity of the Internet and the conse-
quent need for running third-party untrusted code. One out-
come of this research has been a range of techniques for ensur-
ing the security of mobile code, especially by using special-
ized mobile code formats. These mobile code formats are ame-
nable to security checks. Thereafter, they could be interpreted
or compiled to native code for execution. Examples are the
popular bytecode-based Java format[24], as well as other
higher level representations such as abstract syntax trees[25]

Note that even though secure mobile code formats were
developed in the context of running untrusted code over the
Internet, their security advantages are just as attractive for
running any code. In fact, we propose that in order to have a
truly trusted system, we should do away with native code alto-
gether, and all code in the system should be in some secure
format. Native code would only be generated when needed.

3. A WHOLE SYSTEM BUILT ON SECURE

CODE
Our goal is to build a practical system about which we can

make security guarantees from the ground up, and not just
from the operating system up. We assume that all hardware (or
at least the CPU) is part of the trusted computing base, and
start from there. We propose making use of language-based
security to build a trusted system from the level of hardware
and above.

We propose to do this by essentially inverting the roles
of compiler and operating system in the traditional view of
computer systems. Instead of the compiler and other applica-
tions being conceptually built on top of the operating system,
we now have the compiler as the first layer above hardware.
The function of this compiler is to translate some secure, type
safe intermediate representation (IR) to native code. The whole
system, including the operating system, is now built on top of
this compiler. It remains to be investigated what intermediate
representations are suitable for this, and whether it would be
best to have one intermediate representation or support a
number of them. It also remains to be investigated what the
right mix of static and dynamic checks is.

The proposed system would utilize a compiler to compile
high-level programs down into a secure type-safe intermediate
representation. A second compiler, which essentially sits in
the place that traditionally would be occupied by the operat-
ing system, would translate this intermediate representation
code to native machine code at the time of execution. Note that
that for most secure intermediate representations only the sec-

ond compiler (from IR to native code) needs to be part of the
trusted computing base.

The advantage of this approach is that it enables us to
leverage all the existing research on language based security
and apply it to the design of a secure system from the hardware
up. When the whole system is built on top of a secure type-safe
IR, it is possible to reduce most security concerns to the lan-
guage level, where the compiler can automatically check them.
A pleasant by-product of this is portability since all code is in
some machine-independent intermediate representation.

One challenge here is to build this system with the abso-
lute minimum of unchecked code that has to be trusted, while
retaining acceptable performance.

3.1 A Typed View of Hardware
We also propose to carry types down to the level of hard-

ware by exposing the hardware to the upper layers of the sys-
tem in a strongly typed manner. We call this a typed hardware
abstraction layer or typed-HAL. This is in keeping with our
philosophy of using language-level security mechanisms to
the fullest. By exposing hardware only as a typed interface,
and disallowing arbitrary operations on it, it becomes all the
more difficult to subvert the system. Moreover, it does away
with a large number of potential bugs in systems that deal with
hardware in a raw, untyped manner.

For example, consider the common activity of handing
down a network packet for transmission to the network card in
a PC. The network card essentially views this packet as a raw
sequence of bytes. However, note that this packet is not just a
raw sequence of bytes Ð it is required to have a very particular
structure, as dictated by the particular network protocol being
used, say TCP/IP. In modern operating systems, no check is
done to make sure the packet has this particular structure.
The fact that the packet is well formed is taken for granted be-
cause it was formed by another part of the operating system,
which is trusted1. Packets that are intentionally constructed to
be malicious may exploit loopholes. One conspicuous exam-
ple of this was the Ping Internet exploit (also called ``The Ping
of Death''[13]) that could crash a remote machine simply by
sending a specially constructed packet to it. There are no
automatic mechanical checks. Essentially, we trust the pro-
grammer who implemented the network protocol stack of the
operating system.

Such problems would vanish in a system that took a
typed view of hardware and the data that is sent in and out of
it. In the example given above, had the operating system and
network protocol stack been written in a strongly typed lan-
guage, it would be possible to define the structure of the
packet as a type. Combined with a typed-HAL, that would only
expose the network card as a typed interface, we would be able
to easily do away with bugs in the structure of network packets
by virtue of strong type checking that is automatically done
by the compiler.

For another example, consider the problem of buffer over-
runs, which is by far the most common cause of security
breaches. Strongly typed language runtimes would prevent
such exploits. Strong typing would not prevent a programmer
from indexing an array outside bounds, but it would catch the
illegal access at runtime.

If we ask the question Ð what is the basis for insecurity in
a system? Ð The answer is deceptively simple. Fundamentally,

1 The problem is even more severe when third party modules
are inserted into the kernel to extend it.

252



insecurity arises from doing operations that are not supposed
to be done. Then ask the question Ð what are types used for?
Ð And the answer is: making sure that only allowed opera-
tions are performed on data items of the correct type. From
these two observations it is easy to see the motivation for pro-
posing a typed hardware abstraction layer. By exposing the
hardware only as a typed interface, we seek to disallow arbi-
trary operations and limit the operations possible by using
hardware to only the legal ones. This does away with a major
source of security breaches in one clean swoop. In essence, the
programmer sees only a typed view of the machine. This model
of the machine is already familiar to programmers using typed
high-level languages such as Java.

4. RELATED WORK
Our approach is similar in spirit to a number of operating

system projects that built entire operating systems using type
safe languages.

SPIN[1] is an operating system written in Modula-3. It
uses Modula's type safety and encapsulation properties to
enforce safety, modularity and protection between applica-
tions. Extensions to the OS are also written in Modula. This
makes it possible to add extensions to the operating system in
a safe manner, because they are type checked at compile-time,
which implies their safety. Type safety and encapsulation are
also used to enforce separation between logical domains by
using separate namespaces, a language-level feature. However,
the main objective of the designers of SPIN was to create an
operating system that could be safely extended to meet the
specialized requirements of applications. As such, the use of
Modula's safety features is relied upon only for extensions
within the kernel, and not for the system as a whole.

The Oberon system[2][10] is an entire system written in
the language of the same name. Its main emphasis was on ex-
tensibility of the system. Safety was guaranteed by the fact
that everything in the system was written in Oberon, a strongly
typed language. The Oberon system turned out to be surpris-
ingly portable and was implemented on a large variety of
hardware platforms.

In current mainstream operating systems such extensibil-
ity is usually through some sort of module or device driver
mechanism that can add new functionality to the kernel or
support a new hardware device. But these modules are not
checked for safety and are essentially trusted by the operating
system. Since these modules run inside the kernel in privi-
leged mode they can access any data in the system. A mali-
cious module has free reign in the system. A bug in the module
affects the entire system. If a module crashes it takes the entire
system with it.

In the Oberon and SPIN systems, safety is attained by vir-
tue of using a type-safe language. This is what makes it safe to
insert extensions into the operating system. However, this has
the disadvantage of adding the compiler for that language to
the trusted computing base, because we must trust the com-
piler to emit code that conforms to the type system of the lan-
guage and has been checked properly.

A number of systems, such as JavaOS[26] and JX[27],
have implemented a Java virtual machine on bare hardware,
with some OS-like functionality such as processes.

Our approach is much broader, since we propose using the
full gamut of static as well as dynamic checks to express and
enforce high-level safety and security properties, and not just
those expressible in the Java bytecode model. We would also
like to explore the design space for mobile code representa-
tions beyond bytecode.

In another approach, safety of extensions is ensured not
by type-safety of a language but by a combination of software
fault isolation[9] and transaction monitoring. An example of
this is the Vino system[6][7], which uses software fault isola-
tion to enforce safety of memory accesses. In order to prevent
an extension (which in the Vino system is called a graft) from
unduly holding resources their execution is treated as a se-
quence of transactions that the kernel keeps track of. When-
ever an extension oversteps its bounds, (be it holding the CPU
for too long, or allocating too much memory) the kernel termi-
nates its execution and simply unwinds to the state at the time
of the last transaction. This technique has a considerable over-
head and slowdowns of up to 200% have been reported[7].

Note that the checks that are done by software fault isola-
tion become unnecessary in a strongly typed language. As the
system designers of Vino themselves concede, using a typed
language would have saved them much implementation effort
and would probably have resulted in a more efficient system.

The Exokernel project[4] is based on the assumption that
operating system abstractions get in the way of efficient im-
plementation of applications. This is because operating sys-
tem abstractions are designed to be general and more often
than not are not a good match with the specialized require-
ments of a particular application. This can lead to poor per-
formance. The aim of an exokernel is to provide a very thin,
minimal abstraction of hardware, as devoid of policy as possi-
ble. The operating system is then simply reduced to a user-
level library. The major performance gain comes from eliminat-
ing most of the overhead of context switches between user and
kernel mode, and improvements of up to four times have been
reported for typical applications.

Our proposal would share the advantages of the exokernel
approach, since we also propose exporting a very thin, mini-
mal interface of hardware to the rest of the system. But in addi-
tion, one of our primary goals is security, and unlike the exok-
ernel project, we propose exporting a typed view of hardware.

The Flux research group at the University of Utah has
built a modular, component-based toolkit for building operat-
ing system, called OSKIT [5]. Many language researchers have
used OSKIT to port implementations of various high level
languages to run directly on hardware, as opposed to running
them on top of an existing operating system. Their primary
goal, however, is to explore how high level language level
mechanisms (such as continuations [8]) can be efficiently im-
plemented on hardware, without a policy-laden operating sys-
tem getting in the way. Also, since OSKIT itself is imple-
mented in C, it suffers from the same problems that we pointed
out.

An example of using types for enforcing security proper-
ties is packet types, proposed independently by Sekar et al
[12] and Chandra et al[11]. They use the concept of types to
check the structure of network packets. They define a small
domain-specific language for defining the structure of network
packets. This language is strongly typed. It uses inheritance to
capture the idea of protocol stacks with nested packet struc-
tures. Packet definitions in this language are used to automati-
cally generate code that can parse and check incoming packets
for conformance. An added advantage is the ability to con-
cisely do pattern matching on packets. Sekar et al use this to
detect low-level network attacks[12]. Though they use a do-
main-specific language, most of the notions used can be car-
ried over easily to modern strongly typed languages such as
Java. However, some special runtime support would be needed

253



5. SUMMARY
We note that most security breaches in modern computer

systems are a consequence of weak typing. This is because
almost all modern operating systems are implemented in a
weakly typed language such as C in which most checks are left
to the programmer, and are not mechanically enforced. The
field of language-based security offers many promising solu-
tions to the problem of specifying security policies, checking
conformance against them and enforcing them.

We propose to build a trusted system on tamper-proof
trusted hardware, from the ground up, by leveraging a combi-
nation of language-based techniques for security. We envision
all code in the system, including the operating system, being
in some type-safe, secure intermediate representation. At the
heart of our system is the idea of bringing language-based
security into the operating system kernel itself, eliminating a
substantial source of security breaches. We propose to do this
by implementing on bare hardware a compiler for a secure
type-safe intermediate representation. The rest of the system
would use the abstractions provided by this compiler kernel.
Also, we propose to export only a strictly typed view of hard-
ware to the rest of the system. We call this a typed hardware
abstraction layer. This again eliminates another important
source of security breaches, by constraining the ways in which
hardware can be used.

We see the following as novel contributions of the pro-
posed research:

!Security from the ground-up: starting from hardware that
is trusted, building a secure system from the ground up,
and not just from the operating system-up, as is the case
with current systems.

!Typed hardware abstraction layer: exporting only a
typed view of hardware to the rest of the system, which
would automatically disallow illegal operations on hard-
ware and ensure data integrity.

!Building a whole system from mobile code: leveraging
language based security right from the level of hardware,
and implementing the entire system, including the operat-
ing system in a secure type safe intermediate representa-
tion, enabling us to make safety guarantees about it.

ACKNOWLEDGMENTS: Thanks are due to Niall Dalton, Pe-
ter Froehlich, Peter Housel, Fermin Reig, Christian H. Stork
and Alex Strashny for many fruitful discussions and com-
ments.

6. REFERENCES
[1] B. Bershad, S. Savage, P. Pardyak, E. Gunder, M. Fiuczynski, D.

Becker, S. Eggers, and C. Chambers. Extensibility, safety, and per-
formance in the SPIN operating system. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles, pp. 267--
284, 1995.

[2] M. M. Brandis, R. Crelier, M. Franz, and J. Templ. The Oberon
System Family. SoftwareÑPractice and Experience,
25(12):1331Ð1366, Dec. 1995.

[3] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
Symposium on Operating Systems Design and Implementation
(OSDI 2000), San Diego, CA, 23Ð25 Oct. 2000.

[4] D. R. Engler, M. F. Kaashoek, and J. OÕToole. Exokernel: An op-
erating system architecture for application-level resource man-
agement. In Symposium on Operating Systems Principles, pages
251Ð266, 1995.

[5] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The flux OSKit: A substrate for kernel and language research. In
Symposium on Operating Systems Principles, pages 38Ð51, 1997.

[6] Y. E. James. Vino: The 1994 fall harvest.

[7] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In Operating
Systems Design and Implementation, pages 213Ð227, 1996.

[8] O. Shivers. Continuations and threads: Expressing machine
concurrency directly in advanced languages. In Second ACM SIG-
PLAN Workshop on Continuations, Jan. 1997.

[9] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles, pages 203Ð216, 1993.

[10] N. Wirth and J. Gutknecht. Project Oberon. Addison-Wesley, 1992.

[11] S. Chandra and P. J. McCann. Packet Types. In Second Workshop
on Compiler Support for Systems Software (WCSSS), May 1999

[12] R. Sekar, Y. Guang, S. Verma and T. Shanbhag A High-
Performance Network Intrusion Detection System. In ACM Sympo-
sium on Computer and Communication Security, 1999.

[13] CERT Advisory CA-1996-26. Denial-of-service attack via ping.
http://www.cert.org/advisories/CA-1996-26.html. October 1996.

[14] G. C. Necula. Proof-carrying code. In Conference Record of
POPLÕ97: The 24th ACM SIGPLANSIGACT Symposium on Princi-
ples of Programming Languages, pages 106Ð119, Paris, France,
January 15Ð17, 1997.

[15] D. Kozen. Language-based security. In Mathematical Foundations
of Computer Science, pages 284Ð298, 1999.

[16] B. C. Pierce. Types and Programming Languages. MIT Press,
2002. To be published.

[17] L. Cardelli. Type systems. In Allen B. Tucker, editor, Handbook of
Computer Science and Engineering. CRC Press, 1996.

[18] D. Wagner, J. S. Foster, E. A. Brewer, and Alexander Aiken. A
first step towards automated detection of buffer overrun vulner-
abilities. In Network and Distributed System Security Symposium,
San Diego, CA, pages 3Ð17, February 2000.

[19] F. B. Schneider, J. G. Morrisett, and R. Harper. A language-based
approach to security. In Informatics, pages 86Ð101, 2001.

[20] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):527Ð568, May 1999.

[21] U. Erlingsson and F. B. Schneider. SASI enforcement of security
policies: A retrospective. In New Security Paradigms Workshop,
pages 87Ð95, Ontario, Canada, 22Ð24 September 1999.

[22] R. DeLine and M. Fahndrich. Enforcing high-level protocols in
low-level software. In Proceedings of the ACM SIGPLAN Õ01
Conference on Programming Language Design and Implementa-
tion, pages 59Ð69, Snowbird, Utah, June 20Ð22, 2001. SIGPLAN
Notices, 36(5), May 2001.

[23] A. C. Myers. JFlow: Practical mostly-static information flow con-
trol. In Conference Record of POPLÕ99: The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
[POP99], pages 228Ð241.

[24] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[25] C. H. Stork and V. Haldar. Compressed Abstract Syntax Trees for
Mobile Code. In Workshop on Intermediate Representation Engi-
neering (IRE 2001), July 2001, Orlando, Florida

[26] T. Saulpaugh and C. Mirho (1999) Inside the JavaOS Operating
System. Addison Wesley, Reading, Massachusetts.

[27] M. Golm, J. Klein�der, and F. Bellosa. Beyond Address Spaces -
Flexibility, Performance, Protection, and Resource Management in
the Type-Safe JX Operating System. In HotOS 2001, May 20-23,
2001, Elmau/Oberbayern, Germany

254


