
Rethinking Networking Abstractions for Cloud
Tenants

Sarah McClure
sarah@eecs.berkeley.edu

UC Berkeley

Sylvia Ratnasamy
sylvia@eecs.berkeley.edu

UC Berkeley

Deepak Bansal
dbansal@microsoft.com

Microsoft

Jitendra Padhye
padhye@microsoft.com

Microsoft

ABSTRACT
We argue that network virtualization as experienced by many
cloud tenants is overly complex and needs to be rethought.
We propose that the goal for a new design should be to free
cloud tenants entirely from having to build and operate vir-
tual networks. Building on this philosophy, we propose that
instead of low-level building blocks (virtual links, routers,
firewalls), cloud networking should be exposed to tenants in
a declarative and endpoint-centric manner.

ACM Reference Format:
Sarah McClure, Sylvia Ratnasamy, Deepak Bansal, and Jitendra Pad-
hye. 2021. Rethinking Networking Abstractions for Cloud Tenants.
In Workshop on Hot Topics in Operating Systems (HotOS ’21), May
31-June 2, 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3458336.3465303

1 INTRODUCTION
A growing number of enterprises have workloads that span
multiple regions within a cloud, multiple clouds, and private
on-premises datacenters. For example, a recent survey reports
that over 88% of surveyed enterprises use two or more cloud
providers and over 92% have both public and private cloud
deployments [24]. In such scenarios, the tenant must network
their workloads – e.g., connecting their Spark cluster on Azure
to their database on AWS, and their on-prem alert manage-
ment system. Today, tenants achieve this by building one or
more virtual networks using the abstractions provided by the
cloud providers (e.g. VPCs in AWS, VNets in Azure) and
interconnecting these virtual networks to their on-premises
network and to their networks in other clouds.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465303

For tenants such as the above, building a virtual network
is ad hoc, complex, and ultimately expensive. The underly-
ing problem is that the networking abstractions available to
tenants are essentially virtualized versions of the low-level
building blocks used to build physical networks: virtual gate-
ways, routers, appliances, links, etc. A simple virtual network
may be sufficient for some tenant use cases. However, when
networking larger deployments, tenants have no choice but
to construct a complex virtual network from these low-level
building blocks. With additional performance or security re-
quirements, a range of appliances may be necessary. Further,
as their infrastructure spans multiple clouds and on-premises
datacenters, tenants face inter-domain technologies such as
BGP. Compounding all of the above, each cloud exposes
slightly different versions of these low-level abstractions, pro-
visioned and configured uniquely.

The number of virtual components and their complex con-
figuration amounts to an undue burden on the tenant. Con-
struction and management of a virtual network requires de-
tailed knowledge of low-level networking concepts and so-
phisticated reasoning about network scaling, availability, and
security. Overall, this means that despite the simplicity the
cloud promises, tenants must have the skill set of a seasoned
network operator.

We believe that it is time to rethink tenant networking
with the goal of simplification. We conjecture that the goals
currently met by a tenant’s virtual network can instead be
achieved with the right support from the tenant’s application
layer and the cloud provider’s networking layer. Further, we
argue that this cloud support should not be provided through a
bloated set of low-level abstractions as it is today and, in fact,
that tenants should not be required to construct and manage a
virtual network at all.

Instead, cloud providers should support a more declarative
approach in which a tenant specifies a set of “connectivity
parameters” associated with each compute endpoint. E.g.,
specifying the desired level of QoS, isolation, and availability
associated with compute instances.

41

https://doi.org/10.1145/3458336.3465303
https://doi.org/10.1145/3458336.3465303


HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Sarah McClure, Sylvia Ratnasamy, Deepak Bansal, and Jitendra Padhye

Figure 1: A tenant’s virtual network spanning multiple
cloud providers, regions, and an on-prem datacenter.

This declarative form benefits both providers and tenants.
Tenants specify their desired level of service without worry-
ing about how it is achieved while cloud providers are free to
engineer their networks as they choose to meet these goals.
In addition to being streamlined, this approach provides a
more uniform interface to multiple clouds while still allowing
providers to differentiate through rich performance, availabil-
ity, and security tiers.

Notably, this architecture change is forward-looking, but
not clean-slate. In most cases, the cloud providers would only
need to change the tenant’s interface to their network. The
underlying virtualization techniques may remain the same
and evolve independently. Not all cloud tenants may initially
embrace this approach. However, just as with initial cloud
adoption, we believe that a few low-risk tenants/workloads
may be willing to confront the initial uncertainty for the
promise of greater simplicity.

In the rest of the paper, we motivate the need to revisit ten-
ant networking (§2-3) and present an outline of our proposal
(§4-6) which we present as a starting point for a broader dis-
cussion on how to mitigate complexity in tenant networking.

2 TENANT NETWORKING TODAY
We elaborate on the complexity that tenants face in network-
ing their workloads. For simplicity, we use the terminology of
a specific cloud provider (AWS) though most of the abstrac-
tions we discuss have equivalents in other clouds. Therefore,
we believe our discussion is sufficiently representative of a
tenant’s general experience.

We consider an enterprise tenant whose workloads span
multiple regions within a cloud, multiple clouds, and an on-
prem deployment as shown in Fig. 1. These workloads are
backend applications such as data analytics, storage, etc. At a
high level, constructing these networks involves five steps.
(1) Creating individual virtual networks (VPCs). The ba-
sic construct in a tenant’s network is a Virtual Private Cloud

(VPC) which builds on the traditional concept of a subnet
– a portion of the network whose hosts share a common IP
address prefix. The tenant’s first step, creating their VPCs,
involves assigning IP prefixes to each VPC based on the an-
ticipated number of instances, whether they should be IPv4 or
IPv6, public or private, etc. These are important decisions as a
particular choice (e.g., IPv4 vs. IPv6) leads to a separate path
down the decision tree of subsequent connectivity options.
As a tenant’s deployment scales, managing non-overlapping
subnets across 100s of VPCs becomes challenging, prompt-
ing AWS to recommend special address planner tools [35].
Beyond address management, defining a VPC involves config-
uring a range of additional parameters such as security groups,
ACLs, route tables, and individual VM interfaces (Table 1).
For simple deployments, this complexity can be hidden via
default configurations but this approach rapidly breaks down
with larger deployments.
(2) Connectivity in/out of a VPC. Next, the tenant must de-
fine how instances within a VPC access resources outside
the VPC. Options include setting up an “Internet Gateway
(IGW)” (connecting the VPC to the public Internet via IPv4),
an “Egress-only IGW” (for connectivity via IPv6), or a “Vir-
tual Private Gateway (VPG)” (for private VPN connectivity
to an on-prem datacenter). Finally, a tenant might also need
a “NAT Gateway” for address translation. Each of the above
gateways must be configured with the appropriate routing and
access policies.
(3) Networking multiple VPCs. The tenant’s next task is
to connect multiple VPCs both within and across multiple
cloud providers as well as to any on-prem or branch locations.
Once again, the tenant must navigate multiple building blocks
to achieve this. A tenant may create a private “VPC peer-
ing connection” between two VPCs within a single provider.
However, to interconnect VPCs across clouds and on-prem,
the tenant uses a “Transit Gateway (TGW)”. The TGW in-
terconnects different networks much like a BGP or border
router in physical networks. Because TGWs are limited to a
particular region, the tenant may need to deploy and network
multiple TGWs (Fig 1). Additional options exist for tenants
with more advanced peering goals [30]. Again, each option
comes with an associated set of configuration knobs; e.g.,
Table 1 lists a subset of configuration options for the TGW.
(4) Specialized connections. An increasingly common com-
ponent in large tenant networks are dedicated connections
that promise high availability and QoS. E.g., Direct Connect
provides a dedicated connection between a port on an AWS
gateway and a port on a router outside AWS, typically at an ex-
change location such as Equinix [28]. This helps to construct a
predictable and secure link between AWS and deployments in
other clouds or on-prem. E.g., the exchange router at Equinix
might connect to a dedicated connection (called Express-
Route) to an Azure deployment and/or an MPLS connection

42



Rethinking Networking Abstractions for Cloud Tenants HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

Abstraction Cloud Options Features Configuration Parameters (incomplete list)
Load Balancer AWS Application Load Balancer L7 load balancing Path, host, and header conditions; health checks; target groups

Network Load Balancer L4 load balancing Addressing; availability zones; health checks; target groups
Classic Load Balancer L4 & L7 load balancing Rules; availability zones; health checks; target groups
Gateway Load Balancer L3 load balancing Rules; appliances; VPCs

Virtual Network AWS VPC Isolated virtual network Addresses; route tables; security groups; appliances; peerings
Gateway AWS Transit Gateway VPC to on-prem connection Route tables; attachments; route propagation; MTU

Table 1: Sample of virtual network components. [27, 32, 33]

to an on-prem location (Fig. 1). Since these dedicated connec-
tions are expensive, tenants might configure their routers to
schedule higher priority or sensitive traffic over these links,
while routing other traffic over the public Internet.
(5) Appliances The above steps establish a basic topology
and connectivity between the tenant’s instances, but tenants
also deploy a range of virtualized appliances such as load
balancers and firewalls. And again, the tenant must select
appliances, place them in their virtual topology, configure
routing to steer traffic through the right appliances, and fi-
nally configure each appliance (e.g., DPI rules, load-balancing
rules, etc.). We see many issues with this long and involved
provisioning process, as we elaborate in the following section.

3 COMPLEXITY IN TENANT
NETWORKING

We briefly summarize the problems we see in today’s tenant
networking solutions.
(1) Abstractions that are too low-level. Given low-level ab-
stractions (links, subnets, routers), tenants have no choice
but to take on the various tasks associated with assembling
these components (e.g., topology planning, route selection,
per-device configuration) and have little support in reason-
ing about how their overall network design meets end-to-end
application goals.
(2) Complex planning. Not only does the tenant have many
components to select, each component comes with diverse
options in terms of features and pricing. For example, Azure
offers four load balancer options and the documentation [19]
that guides tenants on which load balancer to leverage in-
volves a decision tree that is five levels deep!

A further complication is that, for many appliances, a tenant
may choose between the cloud provider’s native implementa-
tion and that offered by third-party vendors, and/or whether to
consume it as an appliance vs. a managed service (e.g., [34]).
Vendor appliances promise consistency across clouds but lack
first-party support.
(3) Complex configuration. Once selected, each component
requires configuration which is a complex and error-prone
process and, despite many years trying, we still lack a uni-
form configuration management solution [4, 7, 22]. Further,
network configuration is decoupled from the applications
the network serves, requiring coordination between network
operators and app developers.

(4) Fragmented across clouds. With multiple cloud deploy-
ments, complexity worsens since each cloud has slightly dif-
ferent abstractions for similar functions. Hence as enterprises
onboard to more than one cloud, they effectively maintain
a different tenant network layer for each cloud. This siloed
structure may be manageable with minimal or high-level ab-
stractions, but this is not the case today.
(5) Complex to maintain and evolve. Given the diversity of
options, different tenants’ networks often look vastly different
[18]. This high degree of customization complicates mainte-
nance as each tenant must independently develop diagnostic
and upgrade procedures suited to their design. Moreover, as
cloud APIs are constantly evolving, a tenant must indepen-
dently assess how these changes impact their current design.
The lack of a uniform approach is also undesirable for cloud
providers as supporting tenants becomes more difficult, par-
ticularly on issues that involve deployments outside their own
cloud.
How do tenants handle this complexity today? In our ex-
perience, many enterprises undertake this complexity them-
selves using an array of per-vendor controllers and DIY
scripts. This often requires a team that understands network-
ing in all its gore: BGP, address management, VPNs, firewall
configuration, etc. Even worse, these teams must understand
multiple cloud environments, which change constantly and
outside of their control.

In addition, some tenants are turning to a new generation
of multi-cloud management solutions [1, 3, 36, 37]. Some of
these solutions are essentially a shim on top of the various
cloud networking abstractions. They provide a unified “pane
of glass” via which the tenant manages individual devices
across clouds [3, 36] but do not fundamentally change the
level of abstraction. Yet others essentially run a tenant network
as a service [1, 37], allowing tenants to completely outsource
the problem. This shifts the burden but does not fundamentally
solve it.
How did we get here and how do we move forward? Net-
work virtualization technologies were originally designed to
allow cloud providers to virtualize their physical network in-
frastructure [9, 12]. In this context, providing the user (in this
case, the datacenter operator) with virtualized equivalents of
their physical network is appropriate, and we do not question
the approach.

Extending the same approach to cloud tenants also made
sense in the early days of cloud adoption when enterprises

43



HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Sarah McClure, Sylvia Ratnasamy, Deepak Bansal, and Jitendra Padhye

with well-established on-prem datacenters often used the so-
called “lift-and-shift" strategy: creating a networking structure
that mimics the on-premises network that previously served
the workload. This strategy was justifiably appealing as it
allowed tenants to use familiar tools and tested configura-
tions in their new cloud deployments. However, we believe
this approach is neither desirable nor necessary as tenants
embrace the cloud more fully in terms of both the scope of
their deployments and in (re)designing applications for cloud
environments.

Nonetheless, we recognize that certain enterprises may
choose to continue with building their own virtual networks
for reasons that range from satisfying compliance require-
ments (e.g., with data protection laws [21]), to familiarity
with existing tools, and the perception of greater security (see
§4). Fortunately, this need not be an either-or decision: the
architecture we propose can be deployed alongside existing
solutions allowing tenants to choose whether and when to
migrate their workloads.

Our approach requires new support from cloud providers.
We believe this is reasonable since the current situation is
non-ideal even for cloud providers. The current complexity
imposes a steep learning curve for onboarding new customers,
and plenty of room for configuration errors that will, regard-
less of fault, result in unhappy customers. Further, by offering
unmanageable complexity, they give up some portion of the
market to a cottage industry of new vendors that build on
top on their infrastructure and consequently lose the direct
relationship with their customers. Finally, the cloud provider
could likely achieve higher resource efficiency by taking con-
trol of networking and orchestration from tenants.

4 TOWARDS A BETTER APPROACH
We propose an alternate architecture that meets tenant goals
without requiring them to construct and operate complex vir-
tual networks. We have found that customers’ network goals
broadly fall into 4 categories: (1) connectivity, (2) availability,
(3) security, and (4) QoS. Overall, our proposal is to eliminate
the tenant networking layer and replace it with an API which
allows customers to declaratively specify the above goals for
their deployment. All of the functionality previously provided
by the tenant networking layer will be provided by a combina-
tion of the tenant’s application layer and the cloud provider’s
networking layer. Further, we seek to design an API which
makes intra and inter-cloud communication simple without
requiring cooperation between the different administrative
domains. To achieve this goal, we make two assumptions:
(1) Service-centric application designs. We assume that ten-
ants’ applications follow a service-centric design in which
clients access application functionality via well-defined APIs.
All accesses (including management related) are first routed to
an API gateway which verifies the client’s access credentials

API Description
request_eip(vm_id) Grants endpoint IP
request_sip() Grants service IP
bind(eip, sip) Binds EIP to SIP
set_permit_list(eip, permit_list) Sets access list for EIP
set_qos(region, bandwidth) Sets region BW allowance

Table 2: Proposed cloud tenant network API.

and that the API call is well-formed [2, 26]. This is the well-
known microservices design paradigm used by Kubernetes-
based applications, among others [8]. We recognize that not
all applications follow this design pattern and hence our ap-
proach will initially be limited to workloads that do.
(2) All tenant instances have “public but default-off” IP
addresses. We assume that each tenant VM/container has
a globally routable IP address. However, once the cloud
provider receives the packet for such an address, it will en-
force a default-off policy in which only sources that are explic-
itly enumerated in a tenant-provided permit-list (described
below) are allowed to proceed through the provider’s network
to the destination VM/container. We recognize that this raises
security concerns and discuss this later in the paper. However,
this design choice is key to making communication across
clouds and on-prem datacenters trivial.

We now describe our proposed API, by considering each
tenant goal. Our initial aim is to develop an API that enables
functionality that is equivalent to what tenants achieve today
via their virtual networks. More advanced functionality can
be achieved through future extensions.
Connectivity. Connectivity between the tenant’s VMs in the
same cloud, across clouds, and to their on-prem network is
trivially achieved given that tenant instances have public IP
addresses. Thus our basic request_eip() API allows the
tenant to request and receive an endpoint IP address (EIP)
for each of its instances (see Table 2). A tenant must be
prepared to treat its EIP as a flat address with no assumptions
about whether its addresses can be aggregated, drawn from
certain prefixes, etc. This gives cloud providers the maximum
flexibility in assigning addresses from their overall pool (e.g.,
to maximize the ability to aggregate for routing, etc.) and
should not affect tenants in any way (since tenants are no
longer configuring routing with mechanisms such as BGP).

By giving all endpoints publicly routable IP addresses, we
can abandon the VPC and network appliance abstractions alto-
gether. Accordingly, tenants are not obligated to construct the
networks to facilitate communication outside of a given VPC,
as is required by the inherent isolation of the VPC abstrac-
tion. One VPC feature not addressed here is its function as a
grouping mechanism, though this could easily be built into
our API as an extension or as a part of the compute interface.
Availability. Tenants often build highly available services us-
ing multiple backend instances. The service is associated with
a service IP address (SIP) and an in-network load balancer
maps traffic destined for SIP to an available backend instance.

44



Rethinking Networking Abstractions for Cloud Tenants HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

We’d like to support this use-case without requiring that ten-
ants engage with the lower-level details of load balancers. For
this, we allow tenants to request a SIP and introduce a bind
API that allows tenants to associate EIPs with a SIP (Table 2).
This SIP address is globally routable, however, traffic des-
tined for the SIP is routed / load-balanced across the EIPs
bound to it and we place the responsibility of load balanc-
ing on the cloud provider. Hence, the bind call allows the
tenant to inform the cloud provider of how load-balancing
should be implemented, with optional parameters that guide
load-balancing policy (e.g., associating a weight with each
EIP, akin to weighted fair queuing policies).
Security. Today, tenant services are protected by a combi-
nation of application and network-layer defenses such as
authorization checks in the application code, private address
spaces, router ACLs, and complex DPI firewalls. We conjec-
ture that an equivalent level of security can be achieved via:
(i) mandatory API-level authentication and access control as
implemented by service-centric applications (our assumption
above), and (ii) in-network access control implemented by
cloud providers using permit-lists provided by tenants. API-
level checks enforce application semantics while the permit-
list guards against network resource-exhaustion attacks such
as DDoS. We do not support custom middlebox appliances –
e.g. deep-packet inspection firewalls.

Technologies such as Kubernetes and service meshes have
already made it commonplace to construct and enforce these
API-level checks (i.e., at the API gateway) [8]. To achieve
(ii), we extend our API to allow the tenant to communicate a
permit-list to the cloud provider. Mechanisms for in-network
access control are already seen in cloud DDoS prevention
options [20, 31]. We’re adding the explicit communication of
an access list from the tenant to the cloud provider using the
API in Table 2; we conjecture this is feasible for the backend
workloads we target since tenants already limit access to these
via higher-layer credentials.

One might view our proposal as violating the common
adherence to defense in depth, however, we believe this is
open to debate. In particular, we argue that authentication and
access control is better done at the layer which understands
application semantics (rather than through packet inspection
in the network) and that the widespread adoption of technolo-
gies like Kubernetes have given us a de-facto architectural
template for how to implement API-level security. Further,
our approach does not strictly preclude defense in depth as the
cloud provider may implement the customer-specified access
control list in a distributed and redundant manner.
QoS. We seek to meet the QoS capabilities of today’s abstrac-
tions with the possibility of further extensions not currently
supported. QoS guarantees offered to tenants today are rather
limited. Most cloud providers (and most ISPs) do not cur-
rently offer any guarantees on latency or jitter, nor do they

offer end-to-end guarantees on bandwidth. For individual
VMs, they typically offer an egress bandwidth guarantee al-
lowing a VM to send up to specified limit before it will be
throttled. We adopt this with no changes.

For traffic exiting the cloud, a tenant may choose how the
traffic is transported based on a so-called hot versus cold
potato model [29]. In the hot potato case, the traffic leaves
the cloud provider’s WAN backbone as soon as possible. For
customers seeking better performance, the cold potato model
keeps traffic on the cloud backbone for as long as possible
before exiting close to the destination. This higher-tier service
model generally results in better performance and availability,
though no hard guarantees are offered. Once again, we adopt
this option unchanged.

We do not support the dedicated links mentioned in §2
in our model, as we do not want the tenants to deal with
low-level networking artifacts required to provision and steer
traffic onto such links. Instead, we provide an API that the cus-
tomer can use to request total egress bandwidth from the cloud
provider at some pre-defined granularity (e.g., regional).1 This
guarantee comes into play after hot or cold potato routing has
been applied, as per the customer’s profile.

While this model does not include the stronger guarantees
of dedicated connections, we conjecture that we can approxi-
mate them. With egress bandwidth guarantees from different
cloud providers overlapping at internet exchange points with
an MPLS link to on-prem, tenants may receive comparable
performance to dedicated connections terminating at the same
exchange point. Of course, evaluation is necessary to deter-
mine if this simplified version is a reasonable approximation.
We leave this to future work.
Summary: Table 2 summarizes our proposed API. Ultimately,
this API allows tenants to specify their high-level goals with-
out having to design the virtual network to realize them. The
complex details of network management are shifted from a
burden on the tenant to an obligation of the cloud provider
and application design. In provisioning resources through
specification of connectivity, security, availability, and QoS
goals, the API is essentially associating SLOs with endpoints.
We see this as a natural extension to what cloud providers
already offer in compute and storage, and cloud providers can
innovate below this interface without developing tenant-layer
abstractions for every possible feature.

5 DISCUSSION
In our proposed API, we adopt an endpoint-centric view of
tenant deployments. Our "globally-routable but default-off"
addressing design was chosen to free tenants from having to

1Extensions might allow the tenant to indicate what portions of their traffic
should consume this reserved bandwidth; we leave developing such exten-
sions to future work.

45



HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Sarah McClure, Sylvia Ratnasamy, Deepak Bansal, and Jitendra Padhye

construct and maintain virtual networks. Importantly, it does
so in a manner that works within and across multiple cloud
deployments and does so without requiring new protocols or
cross-provider cooperation.

Our notion of declarative is different from prior work on
declarative networking [6, 10, 15–17]: broadly, their aim is
to enable declarative specifications of the protocols running
within a network (e.g., routing algorithms) while our goal is
to abstract the network internals away entirely and instead
allow users to directly express their end-to-end goals for per-
formance, availability, and so forth.

There is a significant amount of prior work in distributed
rate limiting within a datacenter [5, 13] and traffic engineer-
ing across cloud WANs [11, 12, 14] that suggest that our QoS
proposal is feasible. However, our QoS API depends on the
combination of these two areas: enforcing bandwidth guaran-
tees per tenant beyond the scope of a singular datacenter. Prior
work in this area [23, 25] does not explicitly assume that each
tenant will be guaranteed a minimum egress bandwidth as our
model does nor does it claim to approximate dedicated links.
Accordingly, our QoS proposal requires further research as
explained in §6.

We have created an initial prototype of our API on top of
existing cloud APIs for both Azure and AWS. For now, the
QoS API has been excluded since we introduce new func-
tionality not currently offered (bandwidth guarantees). We
have found the API can construct our target class of applica-
tions (service-based architectures) easily, requiring minimal
changes to move deployments across clouds. Further, the
tenant sees many fewer network "boxes" and does not have
to deal with the complexity of constructing their network.
We leave a full implementation and evaluation of the API to
future work.

Applying our API to the example deployment in Fig. 1,
the tenant will no longer have to consider any of the 6 VPCs
or 9 gateways in the original topology, only the endpoints
themselves. A more developed version of this example would
likely include firewalls and other network appliances which
would also be excluded using our proposed API. The tenant
must only interact with each instance, requesting addresses,
setting permit lists, etc. as needed. Further, any migration
between clouds will become incredibly simple as the basic
interface will be constant between clouds (though extension
parameters for each implementation may vary).

6 OPEN QUESTIONS
The reader may be wondering whether the architecture we
propose is simple or simplistic? There are two aspects to this:
(1) whether our architecture is technically feasible, and (2)
whether enterprise tenants will adopt this approach.
Questions regarding the feasibility include:

(i) Scalability: Does our assumption that all endpoints are
given a publicly routable address scale in terms of the size
of routing tables within a cloud provider? Does a (dynamic)
shared permit-list between tenants and cloud providers scale?
Can egress bandwidth quotas be scalably enforced? These
questions can be quantitatively answered given the appropri-
ate data traces; e.g., with traces that include launch/teardown
times for tenant instances, per-instance communication pat-
terns, etc.
(ii) QoS: We proposed an approach based on the combina-
tion of potato parameters and per-tenant quotas applied on
a per-region basis. Does this approach offer application per-
formance that is comparable to that achieved with the use of
dedicated links? With cooperation from cloud providers, this
is a question that we can experimentally evaluate: e.g., setting
up deployments and measuring application performance with
each approach.
(iii) Security: We proposed an approach based on the com-
bination of network-layer enforcement of L3/L4 permit-lists
and API-level access control. Does this provide sufficient
security? Or, at least, security on par with today’s approach to
building private networks? This is perhaps the hardest answer
to quantify. Possible approaches include a formal security
analysis of the surface area of attacks for each approach, the
feasibility of applying verification techniques to kubernetes
API servers, and/or evaluating each approach through the lens
of past attacks.

We are not claiming that the answers to the above are
easy or obvious. However, with the right data and access, we
believe we can evaluate the feasibility of our proposal.

The second part of the ‘simple or simplistic’ question is
whether it is plausible that enterprises will adopt our ap-
proach? Specifically, will enterprises be comfortable dialing
back the defense-in-depth mindset that leads them to iso-
late their workloads within (virtual) private networks? We
do not claim to know the answer and only note that our pro-
posed solution can co-exist with existing architectures allow-
ing tenants to incrementally opt-in for whatever workloads
they deem appropriate at that time. This is, in fact, not unlike
how enterprises embraced cloud computing, under very simi-
lar concerns. Hence, the question to answer is: what tenants
and workloads are the most likely early adopters for a new
architecture such as we propose?

Finally, one should question whether our proposed ap-
proach is in fact the right one and what alternative solutions
we should be considering. Further, one may ask if our solution
is sufficiently high-level. E.g., could we abstract above details
such as IP addresses entirely? We hope to discuss these and
other questions with the broader community.

46



Rethinking Networking Abstractions for Cloud Tenants HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

REFERENCES
[1] Alkira. 2020. Alkira. Retrieved May 13, 2021 from https://www.alkira.

com/
[2] The Kubernetes Authors. 2021. Ingress Controllers. Retrieved May

13, 2021 from https://kubernetes.io/docs/concepts/services-networking/
ingress-controllers/

[3] Aviatrix. 2021. Aviatrix. Retrieved May 13, 2021 from https://aviatrix.
com/

[4] M. Bjorklund. 2010. YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF). RFC 6020. RFC Editor.
1–173 pages. http://www.rfc-editor.org/rfc/rfc6020.txt

[5] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica.
2016. HUG: Multi-Resource Fairness for Correlated and Elastic De-
mands. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 407–424. https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/chowdhury

[6] David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein,
Philip Levis, Scott Shenker, and Ion Stoica. 2007. The Design and
Implementation of a Declarative Sensor Network System (SenSys ’07).
Association for Computing Machinery, New York, NY, USA, 175–188.
https://doi.org/10.1145/1322263.1322281

[7] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. 2011. Net-
work Configuration Protocol (NETCONF). RFC 6241. RFC Editor.
1–113 pages. http://www.rfc-editor.org/rfc/rfc6241.txt

[8] Jennifer Lin Eric Brewer. 2019. Application modernization and the
decoupling of infrastructure services and teams. https://services.google.
com/fh/files/blogs/anthos_white_paper.pdf

[9] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. 2011. VL2: A Scalable and Flexible Data Center
Network. Commun. ACM 54, 3 (March 2011), 95–104. https://doi.
org/10.1145/1897852.1897877

[10] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. 2009. Practical Declarative Network
Management. In Proceedings of the 1st ACM Workshop on Research
on Enterprise Networking (Barcelona, Spain) (WREN ’09). Associa-
tion for Computing Machinery, New York, NY, USA, 1–10. https:
//doi.org/10.1145/1592681.1592683

[11] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving High
Utilization with Software-Driven WAN. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China) (SIG-
COMM ’13). Association for Computing Machinery, New York, NY,
USA, 15–26. https://doi.org/10.1145/2486001.2486012

[12] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. 2013. B4: Experience with a Globally-Deployed Software
Defined Wan. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM (Hong Kong, China) (SIGCOMM ’13). As-
sociation for Computing Machinery, New York, NY, USA, 3–14.
https://doi.org/10.1145/2486001.2486019

[13] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Bal-
aji Prabhakar, Albert Greenberg, and Changhoon Kim. 2013. EyeQ:
Practical Network Performance Isolation at the Edge. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13). USENIX Association, Lombard, IL, 297–311. https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/jeyakumar

[14] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai,

Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Sigan-
poria, Stephen Stuart, and Amin Vahdat. 2015. BwE: Flexible, Hier-
archical Bandwidth Allocation for WAN Distributed Computing. In
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (London, United Kingdom) (SIGCOMM ’15).
Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/2785956.2787478

[15] Changbin Liu, Yun Mao, Mihai Oprea, Prithwish Basu, and Boon Thau
Loo. 2008. A Declarative Perspective on Adaptive Manet Routing.
In Proceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow (Seattle, WA, USA) (PRESTO ’08).
Association for Computing Machinery, New York, NY, USA, 63–68.
https://doi.org/10.1145/1397718.1397733

[16] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy
Roscoe, and Ion Stoica. 2009. Declarative Networking. Commun. ACM
52, 11 (Nov. 2009), 87–95. https://doi.org/10.1145/1592761.1592785

[17] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. 2005. Implementing Declarative
Overlays. In Proceedings of the Twentieth ACM Symposium on Op-
erating Systems Principles (Brighton, United Kingdom) (SOSP ’05).
Association for Computing Machinery, New York, NY, USA, 75–90.
https://doi.org/10.1145/1095810.1095818

[18] Microsoft. 2018. Cloud Design Patterns. Retrieved May 13, 2021
from https://docs.microsoft.com/en-us/azure/architecture/patterns/

[19] Microsoft. 2019. Overview of load-balancing options in Azure. Re-
trieved May 13, 2021 from https://docs.microsoft.com/en-us/azure/
architecture/guide/technology-choices/load-balancing-overview

[20] Microsoft. 2020. Azure DDoS Protection Standard overview. Re-
trieved May 13, 2021 from https://docs.microsoft.com/en-us/azure/
ddos-protection/ddos-protection-overview

[21] U.S. Department of Health and Human Services Office for Civil Rights.
2013. HIPAA Administrative Simplification.

[22] OpenConfig. 2016. OpenConfig. Retrieved May 13, 2021 from
https://www.openconfig.net/

[23] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth
Yocum, and Alex C. Snoeren. 2007. Cloud Control with Distributed
Rate Limiting. SIGCOMM Comput. Commun. Rev. 37, 4 (Aug. 2007),
337–348. https://doi.org/10.1145/1282427.1282419

[24] David Ramel. 2019. Research Brief Summarizes Trends in Multi-Cloud
Deployments. https://virtualizationreview.com/articles/2019/10/21/
cloud-trends.aspx

[25] Ahmed Saeed, Nandita Dukkipati, Valas Valancius, Terry Lam, Carlo
Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping
at End-Hosts. In ACM SIGCOMM 2017.

[26] Amazon Web Services. 2021. Amazon API Gateway. Retrieved May
13, 2021 from https://aws.amazon.com/api-gateway/

[27] Amazon Web Services. 2021. Amazon Virtual Private Cloud. Retrieved
May 13, 2021 from https://aws.amazon.com/vpc/

[28] Amazon Web Services. 2021. AWS Direct Connect. Retrieved May
13, 2021 from https://aws.amazon.com/directconnect/

[29] Amazon Web Services. 2021. AWS Global Accelerator. Retrieved
May 13, 2021 from https://aws.amazon.com/global-accelerator/

[30] Amazon Web Services. 2021. AWS Global Transit Network. Retrieved
May 13, 2021 from https://aws.amazon.com/solutions/implementations/
aws-global-transit-network/

[31] Amazon Web Services. 2021. AWS Shield. Retrieved May 13, 2021
from https://aws.amazon.com/shield/

[32] Amazon Web Services. 2021. AWS Transit Gateway. Retrieved May
13, 2021 from https://aws.amazon.com/transit-gateway/

[33] Amazon Web Services. 2021. Load balancer types. Retrieved
May 13, 2021 from https://docs.aws.amazon.com/AmazonECS/latest/

47

https://www.alkira.com/
https://www.alkira.com/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://aviatrix.com/
https://aviatrix.com/
http://www.rfc-editor.org/rfc/rfc6020.txt
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/chowdhury
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/chowdhury
https://doi.org/10.1145/1322263.1322281
http://www.rfc-editor.org/rfc/rfc6241.txt
https://services.google.com/fh/files/blogs/anthos_white_paper.pdf
https://services.google.com/fh/files/blogs/anthos_white_paper.pdf
https://doi.org/10.1145/1897852.1897877
https://doi.org/10.1145/1897852.1897877
https://doi.org/10.1145/1592681.1592683
https://doi.org/10.1145/1592681.1592683
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2486001.2486019
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/jeyakumar
https://doi.org/10.1145/2785956.2787478
https://doi.org/10.1145/1397718.1397733
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1145/1095810.1095818
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://docs.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview
https://www.openconfig.net/
https://doi.org/10.1145/1282427.1282419
https://virtualizationreview.com/articles/2019/10/21/cloud-trends.aspx
https://virtualizationreview.com/articles/2019/10/21/cloud-trends.aspx
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/vpc/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/global-accelerator/
https://aws.amazon.com/solutions/implementations/aws-global-transit-network/
https://aws.amazon.com/solutions/implementations/aws-global-transit-network/
https://aws.amazon.com/shield/
https://aws.amazon.com/transit-gateway/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html


HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Sarah McClure, Sylvia Ratnasamy, Deepak Bansal, and Jitendra Padhye

developerguide/load-balancer-types.html
[34] Amazon Web Services. 2021. NAT. Retrieved May 13, 2021 from

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat.html
[35] Amazon Web Services. 2021. VPCs and Subnets. Retrieved May

13, 2021 from https://docs.aws.amazon.com/vpc/latest/userguide/VPC_
Subnets.html

[36] VMWare. 2021. Multi Cloud Operations: Visibility & Control. Re-
trieved May 13, 2021 from https://www.vmware.com/cloud-solutions/
multi-cloud-ops.html

[37] Volterra. 2021. Volterra. Retrieved May 13, 2021 from https://www.
volterra.io/

48

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://www.vmware.com/cloud-solutions/multi-cloud-ops.html
https://www.vmware.com/cloud-solutions/multi-cloud-ops.html
https://www.volterra.io/
https://www.volterra.io/

	Abstract
	1 Introduction
	2 Tenant Networking Today
	3 Complexity in Tenant Networking
	4 Towards a Better Approach
	5 Discussion
	6 Open Questions
	References

