The RESTless Cloud

Nathan Pemberton

Johann Schleier-Smith

Joseph E. Gonzalez

UC Berkeley UC Berkeley UC Berkeley
nathanp@berkeley.edu jssmith@berkeley.edu jegonzal@berkeley.edu
ABSTRACT similarities. When deciding on a new feature, users must

Cloud provider APIs have emerged as the de facto operating
system interface for the warehouse scale computers that com-
prise the public cloud. Like single-server operating systems,
they provide the resource allocation, protection, communica-
tion paths, naming, and scheduling for these large machines.
Cloud provider APIs also provide all sorts of things that oper-
ating systems do not, things like big data analytics, machine
learning model training, or factory automation. Somewhere,
lurking within this menagerie of services, there is an operat-
ing system interface to a really big computer, the computer
that today’s application developers target. This computer
works nothing like a single server, yet it also isn’t a dis-
persed distributed system like the internet. It is something
in-between. Now is the time to distill and refine a coherent
“cloud system interface” from the multitude of cloud provider
APIs, preferably a portable one. In this paper we discuss what
goes in, what stays out, and the principles that inform these
decisions.

CCS CONCEPTS

» Computer systems organization — Cloud comput-
ing; « Software and its engineering — Operating systems.

ACM Reference Format:

Nathan Pemberton, Johann Schleier-Smith, and Joseph E. Gonzalez
. 2021. The RESTless Cloud. In Workshop on Hot Topics in Operating
Systems (HotOS °21), May 31-June 2, 2021, Ann Arbor, MI, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3458336.
3465280

1 INTRODUCTION

The cloud is a diverse and complicated place. Cloud providers
have added services one-by-one, their offerings growing or-
ganically to meet countless customer needs. Each service has
its own set of interfaces and semantics, and the differences
between cloud providers sometimes seem greater than their

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465280

49

pick a set of services to commit to, then work out how to
integrate and manage them. As needs evolve and platform
services expand, they may be forced to rewrite their logic.

Contrast this with writing an application for a single
server. While there are many languages and frameworks
to choose from, a common set of underlying abstractions is
found on just about every machine available. Whether the
platform is Windows or Linux, files and processes work in
roughly the same way. The portable operating system inter-
face (POSIX) [38] arose to formalize these patterns, not just
for portability as the name implies, but also as a model of how
an operating system behaves. It is time for the cloud to have
its own POSIX, a standard model for state and computation.

There are many options for how such an interface might
be designed. Most commonly today, programmers focus on
building applications that comprise multiple networked web
services [75], using REST-based protocols [26] to access stor-
age, compute, and other data center resources. Alternatively,
we could try to design a single system image (SSI) operat-
ing system [15] that presents the cloud as if it were a single
machine. Some proposals, like LegoOS, have proposed ex-
tending POSIX abstractions to disaggregated resources [64].
Others propose a departure from POSIX to abstractions more
suitable for distributed systems [62]. In this paper, we con-
tend that only these latter approaches are suitable for the
cloud. The cloud is not a single computer and application
designs need to reflect that. However, the cloud is also not a
widely dispersed set of independent machines as assumed
by web services.

In reality, the cloud is a collection of ever-changing, tightly
managed resources shared by many independent users. It
is also not a particular system, but a category of systems
with many competing implementations. Likewise, we are
not proposing a particular operating system, but a category of
system interfaces that can be implemented in a portable way
by any vendor. Furthermore, this interface should integrate
the wide range of constantly evolving features and services
available in the cloud today while providing an easier path
to innovation in the future. Critically, it will need to reflect
the physical reality of the cloud in a natural and intuitive
way. This helps ensure that applications can grow without
encountering artificial scalability bottlenecks, and that their
costs and resource consumption remain commensurate to
their actual needs.

https://doi.org/10.1145/3458336.3465280
https://doi.org/10.1145/3458336.3465280
https://doi.org/10.1145/3458336.3465280

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Serverless computing, and Function-as-a-Service (FaaS)
in particular, attempts to address many of these require-
ments [17, 60]. Cloud functions scale in accordance to the
number of requests they receive and free users from concerns
of provisioning and configuring individual servers. However,
current serverless interfaces remain limited in scope [34],
offering an alternative, rather than a unifying, paradigm
(Section 2). In this paper, we will present a sketch of a uni-
fied cloud interface that builds on serverless abstractions to
provide a portable and unified view of the cloud (Section 3).
While this is just one possible proposal for a portable cloud
interface, we hope that it will serve as a starting point for
discussion. We will follow our proposal with a discussion
of the benefits such an interface can provide (Section 4). Fi-
nally, we will present some remaining open questions and
challenges for the community (Section 5).

2 TODAY’S ALTERNATIVES

Before we dive into the design of a new cloud interface,
we first consider the inadequacies of existing solutions: the
web services APIs that cloud providers offer today, UNIX-
derived distributed operating systems, modern cross-cloud
management solutions such a Kubernetes, and serverless
computing as it exists today.

2.1 Why not web services?

Web services and the cloud are almost synonymous, and
for good reason. Warehouse scale computing [8] is possible
because it relies upon internet technologies with proven scal-
ability. Internet Protocol provides routing, TCP provides flow
control and congestion control, and HTTP load balancers
distribute work across servers. Service endpoints provide
stateless RESTful [25] interfaces, using another technology
derived from the web.

While web services are excellent for scalability and inter-
operability, optimizing them for performance remains a stub-
born problem. Table 1 shows the latency involved in various
operations that might be invoked during a call into the cloud
API. Web services APIs will always be adequate for certain
things, such as provisioning servers, or even fetching large
data objects from storage. However web service overheads
will certainly become prohibitive on future fast networks [6],
especially when supporting fine-grained operations such
as small-block reads and writes. Part of the problem comes
from protocol and data formatting requirements, part of it
from stream oriented transport (cf. scatter-gather file system
APIs), and part from the statelessness of REST. Statelessness
is particularly fundamental, and has consequences such as
repeated access control checks.

Building a distributed implementation of an application
when an efficient single-machine implementation could meet

50

Pemberton, et al.

Operation Latency
2005 data center network RTT 1,000,000 ns
2021 data center network RTT 200,000 ns
Object marshaling (1k) >50,000 ns
HTTP protocol 50,000 ns
Socket overhead 5,000 ns
Emerging fast network RTT 1,000 ns
KVM Hypervisor call 700 ns
Linux System call 500 ns
WebAssembly call - V8 Engine 17 ns

Table 1: Representative latency of various operations.
Emerging network technologies have RTT times
much lower than web service overheads. Hypervisor
calls and system calls have similar latency, and WebAs-
sembly isolation [31, 66] can have lower latency still.

the need can be tremendously wasteful [42], in part because
of overheads such as those of web services. As a concrete
example, we observe that fetching a 1KB object via the NFS
protocol takes 1.5 ms and costs 0.003 USD/M (without the
benefit of local caching), whereas fetching the same data
from DynamoDB [68] takes 4.3 ms and costs 0.18 USD/M.
We speculate that a part of the cost difference comes from
the cloud provider passing the cost of providing a RESTful
web service interface on to the customer.

At a minimum, cloud providers need a non-REST imple-
mentation of their existing APIs, but since performance prob-
lems are tied to the protocol statelessness, a simple transla-
tion is unlikely to suffice.

2.2 Why not POSIX?

Making a collection of computers work like one powerful
computer is a longstanding goal of distributed operating sys-
tems research [63, 71]. A flurry of work ensued in the decades
after inexpensive workstation hardware and local networks
first became available [3, 4, 20, 24, 33, 45, 47, 51, 61, 78]. These
efforts generally sought to provide a UNIX-like interface to
a group of machines. However this line of work was largely
eclipsed by the emergence of the internet, which ushered in
anew era of distributed systems that operated on a far larger
scale [7, 8]. The internet technologies won in the market
with the help of tremendous investment, which makes it
hard to conclude whether POSIX-like distributed operating
systems suffered from technical failings, or whether they
simply were not ready to meet the needs of gigantic internet
services.

In [63], Schwarzkopf, Grosvner, and Hand argue that hard-
ware trends have made warehouse-scale computers suitable
for distributed operating systems. Indeed, there have been

The RESTIless Cloud

several projects exploring designs in this direction [16, 54,
55, 62, 64, 81, 82].

The problem with POSIX and locality transparent operat-
ing system designs is the inverse of the problem with web ser-
vices. While web services have a built in design assumption
that everything is remote, POSIX has the built in assumption
that everything is local. NFS provides a clear example of how
interfaces designed in a local setting can prove troublesome
in a distributed setting. For example, a remote file system that
becomes unreachable may cause API responses not possible
with a local file system [77]. Compliance with POSIX consis-
tency guarantees [50], notably linearizability [35], has also
been a perennial source of pain for distributed file system
implementations [29, 37, 48, 79].

The assumption that everything is local infuses interface
design and is even more pernicious than the assumption that
everything is remote. A future-proof cloud system interface
can make neither assumption—it must work well regardless
of whether calls are serviced locally or remotely. We do not
see an inherent trade-off, and believe it is possible to do both.
We reinforce however, that we do not advocate full location
transparency, where local operations and remote operations
are indistinguishable, as in RPC [11] or distributed shared
memory [49]. Such abstractions have long been known to be
harmful [77]. Operations against memory or local storage
are still local and always fast. Operations against the cloud
API could be remote and slow, but they could also be local
and fast.

2.3 Why not Kubernetes?

A number of systems have arisen to provide a more uniform
abstraction for deploying services in the cloud and providing
them with resources. Kubernetes [13, 14] has particularly
strong industry adoption. Notably, all major cloud providers
offer support for it, and since it also runs on-premise, it is
the closest thing to a portable abstraction for the cloud. Ku-
bernetes derives from the Borg [73, 74] cluster scheduler,
which along with systems such as Mesos [36] and Open-
Stack [1] might be considered to offer a core functionality of
an operating system at data center scale [87].

Kubernetes and its ilk have been quite successful within
their domain: scheduling of lightweight server instances.
However they have little to offer in the way of state manage-
ment or security, and so represent a limited and incomplete
slice of system functionality.

2.4 What about Serverless?

Serverless computing represents an exciting evolution of the
cloud that we expect will help it deliver fully on its promise
and potential [60]. FaaS with its autoscaling stateless func-
tions gets the most attention [17], but other technologies

51

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

such as cloud object storage share the essential characteris-
tics of serverless computing: abstraction that hides servers,
pay-per-use without capacity reservations, and autoscaling
from zero to practically infinite resources. A major short-
coming of serverless computing as it exists today is that it
comprises disparate technologies residing in their own silos.
Programmers are burdened with using disjoint application
paradigms, data models, and security policies. Performance
and efficiency also suffer [69]. FaaS and other serverless tech-
nologies offer important lessons, but they do not yet provide
the unifying paradigm that we seek.

3 A NEW INTERFACE

To move forward, we will need a new interface to the cloud.
Let’s refer to this new interface as the Portable Cloud System
Interface (PCSI). What might this interface look like?

To begin answering this question, we now present a proof-
of-concept design based around two key abstractions: state
and computation. Separating state from computation has the
advantage of allowing independent resource scaling, and has
emerged as a popular design pattern for cloud applications.
The boundary it creates is also a natural place for interposing
a system interface, as demonstrated in established operating
system designs.

3.1 Computation

We define computation as any transformation over state
and refer to these transformations generically as “functions”.
Functions receive state as input and produce state as output.
They may also may read and manipulate state as they execute,
as described in Section 3.2.

In our PCSI proposal, functions are designed around three
key properties:

e Universal Compute Interface: Functions provide
the structure necessary for modular software [53]. A
function can be reimplemented without changing its
external interface, thus preserving an essential benefit
of today’s cloud web services. Drop-in replacement is
possible, even when the new function relies on new
underlying technology (e.g., hardware, programming
language, runtime system). Thus PCSI provides an
evolutionary path that enables rapid innovation in
the cloud ecosystem. Multiple implementations of the
same function can even be provided simultaneously,
allowing an optimizer to choose dynamically among
them to meet performance and cost goals [58].

e No Implicit State: Functions receive state, produce
state, and interact with external state via the data ab-
straction, however they cannot rely on internal state
beyond a single invocation. As with current serverless

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

FaaS$ offerings [17], or the vision of granular comput-
ing [41], this facilitates pay-per-use and allows func-
tions to scale from a single invocation to thousands
(or more).

e Narrow and Heterogenous Implementations: A
wide and evolving range of platforms may be used
to implement functions (e.g., accelerators, containers,
unikernels [84], WebAssembly [31], etc.). However,
each function should focus on a narrow and resource
homogenous operation. This decoupling enables max-
imum innovation and helps resource allocation by iso-
lating bottlenecks [52] and maximizing resource uti-
lization.

Function arguments include explicit data layer inputs and
outputs and a small pass-by-value request body. Users store
functions themselves as objects in the data layer, allowing
them to be invoked by other functions. In addition to invok-
ing individual functions, users can build task graphs, which
opens up optimization opportunities such as pipelining or
physical co-location. Such task graphs can either be specified
ahead-of-time, as in Cloudburst [69], or dynamically as in
Ray [44] or Ciel [46].

PCSI functions are inspired by serverless FaaS and share
similar design motivations and aims. However, PCSI pushes
these abstractions toward a more universal and integrated
system interface. For example, rather than require distinct
services for things like model serving or data analytics, PCSI
exposes these features through the same interface as any
other function. Likewise, new hardware and software plat-
forms can be introduced without requiring new system inter-
faces. While there are various serverless storage services that
can be used with FaaS [60], in PCSI the interface between
compute and state is deeply integrated into the model.

3.2 State

State in PCSI encompasses all information that is preserved
beyond the lifetime of a single task, or that is transmitted
outside of the scope of a single task. Access to state in PCSI
is always explicit, which means that functions always access
state over system interfaces. Our design centers around a
few key principles:

e Universal Storage Interface: Applications interact
with state through a common interface. This ensures
that the system has full visibility into communication
and storage patterns, allowing it to optimize schedul-
ing and placement, and to provide fault-tolerance. This
also provides a clear division between application and
system, enabling implementations to evolve over time.

o Everything is a File: If applications must use a com-
mon state interface, then that interface must be able
to express the wide range of functionality available in

52

Pemberton, et al.

the cloud. We achieve this in much the same way as
UNIX and its descendants [56, 57], by allowing various
implementations of file system objects. While some
objects may represent persistent data, others may rep-
resent network connections or interfaces to system
services.

e Simple Consistency Menu: Cloud storage services
offer a range of consistency models, and we can be sure
that there is no “one size fits all” choice. We propose
supporting just two consistency models, a strong one
and a weak one, along with configurable restrictions
on object mutability.

Objects in PCSI comprise several basic types including
directories, regular files, FIFOs, sockets, and device interfaces
to system services. This is analogous to POSIX, though the
behaviors of each object type are somewhat different (see
Section 3.3).

References are the primary method for accessing objects
as names are optional in PCSI. References also provide a
capability-oriented security mechanism, as Capsicum does
for POSIX file descriptors [80]. PCSI makes object reacha-
bility explicit. An object is only accessible by functions that
hold a reference to it or to a namespace containing it. In clear
clear contrast to web services, references make the PCSI API
stateful. One benefit is that object access possibilities are
known and constrained, opening opportunities for optimiza-
tion. Another benefit is automated resource reclamation for
unreachable objects.

Naming in PCSI provides a secondary access method and
a mechanism for indirection. PCSI has no global namespace,
but rather each function has a directory object as its file
system root. Functions access multiple namespaces via direc-
tories passed as arguments. File system layering has proven
valuable in building cloud applications, e.g., it is one of the
key features provided by Docker [9]. PCSI will include sup-
port for union file systems [85], allowing one namespace to
be superimposed on top of another.

PCSI only describes an interface to state, underlying im-
plementations may vary. For example, the cloud provider
may use any type of underlying storage medium, or a combi-
nation of several of them, to meet target performance, cost,
and availability criteria. This could mean storage on disk in
multiple data centers or keeping just one copy in the memory
of a GPU. The latter case exemplifies how an efficient PCSI
implementation can keep keep associated compute and state
resources close together, even though the abstract model
separates them.

3.3 Concurrency and Consistency

Reconciling consistency with performance and availability
is one of the persistently vexing challenges in distributed

The RESTIless Cloud

systems [2, 12]. We acknowledge it will likely remain an
active research area for some time to come and design PCSI
with this in mind. We provide limited options that allow
applications to choose between well understood paradigms,
and are careful to remove implementation concerns from the
interface.

PCSI allows objects to be configured to one of four mutabil-
ity levels. These levels and the transitions allowed between
them are shown in Figure 1. IMMUTABLE objects can be imple-
mented with the proven efficiency and scalability of cloud
object storage whereas MUTABLE objects allow more flexibil-
ity to applications that require it. Intermediate levels can still
offer improved performance, e.g., once written, the content
of an APPEND_ONLY object may be safely cached anywhere.

Operations against objects can execute at one of two
consistency levels: linearizability [35] and eventual consis-
tency [72, 76]. This sort of configurable consistency can
be provided through quorum systems like DynamoDB [68],
though we deliberately hide mechanism details like quorum
sizes from the application.

We also believe that the separation of compute and state,
a foundational assumption of PCSI, is at odds with some
intermediate consistency models. For example, CRDTs [65]
and lattice-based approaches [21, 22, 86] require the state
management system to support a merge operation, in effect
blending the notions of state and computation. We believe
such techniques will play an important role in the cloud,
however their implementations should be largely parallel to
PCSI, as we discuss next.

3.4 Limitations

In system design, what is not included is just as important
as what is. We believe that PCSI will enable a broad range of
cloud workloads, but we do not believe that all workloads
will run well as a collection of functions interacting with one
another and with the storage layer. Yet even those applica-
tions that run best with a server-based implementation can
be integrated with the PCSI—we allow them to be invoked
just like any other function. Things like OLTP databases
and key-value stores benefit from detailed control over sys-
tem resources [70], and can appear as part of a universal
abstraction. The same is true of certain scientific computing
applications and machine learning training systems, which
can benefit from precisely coordinated scheduling and appli-
cation specific network topology.

4 DISCUSSION

As a derivative of current serverless offerings, our design
inherits the benefits of pay-per-use, simplified deployment,
and autoscaling. It also benefits from being an evolutionary,

53

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

/ APPEND_ONLY

MUTABLE —> IMMUTABLE

I FIXED_SIZE —

Figure 1: Allowable object mutability transitions.

T~

FaaS > }\ HTTP + Neural |- —>| }\ Post- [
System Preprocessing | || —7| Network processing
P s (GPU)
File Uploads
System Directory Args FIFO
TCP Saved Weich Metrics
Connection Upload eights

Figure 2: Model serving pipeline with separation of
compute and state.

rather than a revolutionary, path from current systems to
as-yet unconceived improvements.

To understand PCSI’s benefits further, we now review an
example application: serving deep learning models. Figure 2
shows a pipelined composition of three FaaS functions. The
first runs in response to input on a TCP connection and
decodes an incoming HTTP request, including streaming
user image uploads to a file. Next is a GPU-enabled prediction
function which operates on the uploaded file. It also takes as
input the model weights, which rarely change but need to
be updated with strong consistency and replicated widely.
Finally the output is sent through a FIFO to a post-processing
function, which then uses the original TCP object to complete
the HTTP response.

4.1 Making it Fast

While the abstractions in PCSI are designed to support dis-
tributed systems, logical disaggregation does not imply phys-
ical disaggregation [69]. A naive implementation might send
intermediate data from the preprocessing function to remote
storage before pulling it onto a remote GPU to run the model.
However, a more sophisticated implementation could use
knowledge of application behavior to make much better de-
cisions [10]. Since the task graph indicates that these two
functions will be composed, the system can schedule the
first CPU function on a physical server that also contains
a GPU. Since data were intended only for the next task (ex-
plicit inputs and outputs), data movement is reduced to a
single cudaMemcpy. This implementation would achieve per-
formance similar to a monolithic server-based service.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

4.2 Making it Efficient

In the previous example, we described how user applications
could be run with little performance overhead. However,
being fast is not enough. After all, a dedicated bare-metal
cluster would also be fast. The logically disaggregated design
of PCSI also enables other optimization targets like cost or re-
source efficiency, even at the expense of performance. Rather
than wait for a large enough server to handle the entire graph,
the provider is free to scavenge underutilized resources from
around the cluster for each function independently. Even
though this may affect performance, it makes much more effi-
cient use of expensive resources. Fortunately, the concept of
“good enough” performance is prevalent in cloud workloads.
Many applications come with service level objectives (SLOs)
that stipulate a maximum acceptable latency, and experience
little or no benefit from lower latency [43].

More generally, PCSI enables flexible scheduling and scal-
ing of resources. Preprocessing functions can be scaled in-
dependently of the GPU-enabled model functions, precisely
matching resource demands, even under rapidly varying
load or skew. Since functions can be specialized to resource
types, we can develop specialized hardware platforms with
tailored thermal, packaging, and networking designs. Exist-
ing platforms like Microsoft’s Catapult [18] or Google’s TPU
Pods [28] suggest that significant advantages can come from
such specialization. While these existing systems require
a specialized software environment, PCSI offers a unified
interface that would enable more rapid development and
deployment of specialized hardware platforms.

4.3 Making it Flexible

Cloud platforms launch new products at a rapid pace. Any
successful cloud interface needs to be flexible enough to
integrate new technologies and techniques with minimal
application changes.

On the data side, we notice that our application has mul-
tiple inputs and outputs with differing consistency require-
ments, say strong consistency for model weights and even-
tual consistency for the upload archive and user metrics.
PCSI supports these needs through a single unified interface.

While our example application utilized GPUs to execute
the neural network, hardware for machine learning is ad-
vancing quickly [19, 39]. To take advantage of the latest
accelerator, PCSI developers may need to modify their neu-
ral network function implementation, but the rest of the
application would remain unchanged. It is not just the ac-
celerators themselves that can see advancements. New hard-
ware integration technologies are being developed that pro-
vide them with efficient memory hierarchies and network-
ing support [18, 27, 28, 32, 83]. Since state management is
explicit, the PCSI implementation can integrate these new

54

Pemberton, et al.

technologies without requiring application changes. Even
the non-accelerated functions can benefit from operating
system advancements like unikernels [40, 84].

We observe that cloud-native interfaces can naturally take
advantage of cloud-native hardware and operating systems
while traditional interfaces are far more difficult to adapt.

5 THE PATH FORWARD

An abstraction is not useful if it is never deployed. Ultimately,
we hope to see a common core of cloud interfaces that helps
extend and sustain innovation. The path to a common model
will be driven by user demands and open collaboration. We
have seen successes before. Kubernetes [13] adoption has
grown quickly, with user demand leading cloud vendors to
release their own hosted Kubernetes services. Further afield,
the computer architecture community has escaped the bonds
of proprietary ISAs by coming together around the RISC-
V open source ISA [5], enabling an explosion of industrial
and academic innovation. We will need to learn from these
experiences if we wish to have similar success.

In the immediate future, this means continuing to de-
velop the core technologies and interfaces underlying the
PCSI approach. The authors are currently building some of
these components including serverless interfaces to GPUs,
and file systems for cloud functions. Other challenges re-
main to be addressed. Are the proposed consistency mod-
els sufficient? Will existing security models for the cloud
and warehouse-scale computers suffice or are new strategies
needed [59, 62, 80]? Can techniques to drive performance
and utilization of accelerators be broadened to a general
multi-tenant setting [23, 30, 58, 67]? As these and other ques-
tions are answered, existing serverless offerings can evolve
toward a common portable cloud system interface.

6 CONCLUSION

“What got you here won’t get you there”
- Marshall Goldsmith

The cloud is a unique platform. The warehouse scale com-
puters that power it are nothing like the individual servers
that comprise it, but they also bear little resemblance to the
global internet, the distributed system from which many of
their technologies are drawn. A well defined core system in-
terface for the cloud could unlock a great deal of innovation.
Much as POSIX and REST brought sanity to their respective
environments, a portable cloud system interface can tame
the wild-west of cloud programming. The recent growth of
serverless computing demonstrates that the community is
ready and willing to redesign their applications around truly
cloud-native interfaces—let’s give them one.

The RESTIless Cloud

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their thoughtful feedback. This research was supported
by NSF CISE Expeditions Award CCF-1730628 and gifts from
Amazon Web Services, Ant Group, Ericsson, Facebook, Fu-
turewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk
and VMware.

REFERENCES

[1] [n.d.]. OpenStack. https://www.openstack.org/.

[2] Daniel Abadi. 2012. Consistency tradeoffs in modern distributed data-
base system design: CAP is only part of the story. Computer 45, 2
(2012), 37-42.

[3] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D.
Noe. 1985. The Eden system: A technical review. IEEE Transactions on
Software Engineering 1 (1985), 43-59.

[4] Thomas E. Anderson, David E. Culler, and David Patterson. 1995. A
case for NOW (networks of workstations). IEEE micro 15, 1 (1995),
54-64.

[5] Krste Asanovi¢ and David A. Patterson. 2014. Instruction Sets Should
Be Free: The Case For RISC-V. Technical Report UCB/EECS-2014-146.
EECS Department, University of California, Berkeley. http://www?2.
eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

[6] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the killer microseconds. Commun. ACM 60,
4(2017), 48-54.

[7] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. 2003. Web search
for a planet: The Google cluster architecture. IEEE micro 23, 2 (2003),
22-28.

[8] Luiz André Barroso, Urs Holzle, and Parthasarathy Ranganathan. 2018.
The datacenter as a computer: Designing warehouse-scale machines.
Synthesis Lectures on Computer Architecture 13, 3 (2018), i-189.

[9] David Bernstein. 2014. Containers and cloud: From LXC to Docker to

Kubernetes. IEEE Cloud Computing 1, 3 (2014), 81-84.

Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. 2012. Shred-

der: GPU-accelerated incremental storage and computation.. In FAST,

Vol. 14. 14.

Andrew D. Birrell and Bruce Jay Nelson. 1984. Implementing remote

procedure calls. ACM Transactions on Computer Systems (TOCS) 2, 1

(1984), 39-59.

Eric Brewer. 2012. CAP twelve years later: How the “rules” have

changed. Computer 45, 2 (2012), 23-29.

[13] Eric A. Brewer. 2015. Kubernetes and the path to cloud native. In

Proceedings of the sixth ACM symposium on cloud computing. 167-167.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. 2016. Borg, Omega, and Kubernetes: Lessons learned

from three container-management systems over a decade. Queue 14, 1

(2016), 70-93.

Rajkumar Buyya, Toni Cortes, and Hai Jin. 2001. Single system image.

The International Journal of High Performance Computing Applications

15, 2 (2001), 124-135.

Michael Cafarella, David DeWitt, Vijay Gadepally, Jeremy Kepner,

Christos Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Za-

haria. 2020. DBOS: A Proposal for a Data-Centric Operating System.
arXiv preprint arXiv:2007.11112 (2020).
[17] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2019. The rise of serverless computing. Commun. ACM 62,
12 (2019), 44-54.

[18] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,

—
[
(=}

=

—
—
—_

—

[12

—

(14

[l

—
[
w

[

[16

=

55

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Puneet Kaur, Joo-Young Kim, et al. 2016. A cloud-scale acceleration
architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1-13.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2016.
Eyeriss: An energy-efficient reconfigurable accelerator for deep con-
volutional neural networks. IEEE journal of solid-state circuits 52, 1
(2016), 127-138.

David Cheriton. 1988. The V distributed system. Commun. ACM 31, 3
(1988), 314-333.

Alvin Cheung, Natacha Crooks, Matthew Milano, and Joseph M. Heller-
stein. 2021. New directions in cloud programming. CIDR (2021).

Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
and David Maier. 2012. Logic and lattices for distributed programming.
In Proceedings of the Third ACM Symposium on Cloud Computing. 1-14.

Feras Daoud, Amir Watad, and Mark Silberstein. 2016. GPUrdma:
GPU-side library for high performance networking from GPU kernels.
In Proceedings of the 6th International Workshop on Runtime and Oper-
ating Systems for Supercomputers. ACM, 1-8. https://doi.org/10.1145/
2931088.2931091

Partha Dasgupta, Richard J. LeBlanc, Mustaque Ahamad, and Umak-
ishore Ramachandran. 1991. The Clouds distributed operating system.
Computer 24, 11 (1991), 34-44.

Xinyang Feng, Jianjing Shen, and Ying Fan. 2009. REST: An alterna-
tive to RPC for Web services architecture. In 2009 First International
Conference on Future Information Networks. IEEE, 7-10.

Roy T. Fielding. 2000. Architectural styles and the design of network-
based software architectures. Vol. 7. University of California, Irvine
Irvine.

Gen-Z Consortium. 2018. Gen-Z Overview. Technical Report. Gen-Z
Consortium. https://genzconsortium.org/wp-content/uploads/2018/
05/Gen-Z-Overview-V1.pdf

Google 2021. Cloud TPU - Documentation - System Architecture. Google.
https://cloud.google.com/tpu/docs/system-architecture

Cary Gray and David Cheriton. 1989. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. ACM SIGOPS Oper-
ating Systems Review 23, 5 (1989), 202-210.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork:
Performance predictability from the bottom up. arXiv:2006.02464 [cs]
(Jun 2020).

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 185-200.

Mark Harris. 2017. NVIDIA DGX-1: The Fastest Deep Learning System.
Technical Report. Nvidia. https://developer.nvidia.com/blog/dgx-1-
fastest-deep-learning-system/

Rober Haskin, Yoni Malachi, and Gregory Chan. 1988. Recovery
management in QuickSilver. ACM Transactions on Computer Systems
(TOCS) 6, 1 (1988), 82-108.

[34] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-

[35]

[36]

Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019.
Serverless computing: One step forward, two steps back. CIDR (2019).
Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
correctness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463-492.
Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A platform for fine-grained resource sharing in the data center..
In NSDI, Vol. 11. 22-22.

https://www.openstack.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://doi.org/10.1145/2931088.2931091
https://doi.org/10.1145/2931088.2931091
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf
https://cloud.google.com/tpu/docs/system-architecture
https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-system/
https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-system/

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

(37]

(38

—

[39

[

[40

[t

[41]

[42]

[43]

(44]

(45

=

(46

[l

(47

—

(48

=

(49

—

(50

-

(51]

(52]

(53

=

(54]

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
Mahadev Satyanarayanan, Robert N. Sidebotham, and Michael J. West.
1988. Scale and performance in a distributed file system. ACM Trans-
actions on Computer Systems (TOCS) 6, 1 (1988), 51-81.

Andrew Josey, Eric Blake, Geoff Clare, et al. 2018. The Open Group
base specifications issue 7. https://pubs.opengroup.org/onlinepubs/
9699919799/.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1-12.

Ricardo Koller and Dan Williams. 2017. Will serverless end the domi-
nance of Linux in the cloud?. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems. 169-173.

Collin Lee and John Ousterhout. 2019. Granular Computing. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 149-154.

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability!
But at what COST?. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV).

Jeffrey C. Mogul and John Wilkes. 2019. Nines are not enough: Mean-
ingful metrics for clouds. In Proceedings of the Workshop on Hot Topics
in Operating Systems. 136—141.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing Al applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 561-577.

Sape J. Mullender, Guido Van Rossum, AS Tananbaum, Robbert Van Re-
nesse, and Hans Van Staveren. 1990. Amoeba: A distributed operating
system for the 1990s. Computer 23, 5 (1990), 44-53.

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. 2011. Ciel: A universal
execution engine for distributed data-flow computing. In Proc. 8th
ACM/USENIX Symposium on Networked Systems Design and Implemen-
tation. 113-126.

Roger Michael Needham and Andrew J. Herbert. 1983. The Cambridge
distributed computing system. (1983).

Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. 1988.
Caching in the Sprite network file system. ACM Transactions on
Computer Systems (TOCS) 6, 1 (1988), 134-154.

Bill Nitzberg and Virginia Lo. 1991. Distributed shared memory: A
survey of issues and algorithms. Computer 24, 8 (1991), 52-60.

Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa
Gardner. 2018. A concurrent specification of POSIX file systems. In
32nd European Conference on Object-Oriented Programming (ECOOP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

John K. Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N.
Nelson, and Brent B. Welch. 1988. The Sprite network operating
system. Computer 21, 2 (1988), 23-36.

Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott
Shenker. 2017. Monotasks: Architecting for performance clarity in
data analytics frameworks. In Proceedings of the 26th Symposium on
Operating Systems Principles. 184-200.

David L. Parnas. 1972. On the criteria to be used in decomposing
systems into modules. In Pioneers and Their Contributions to Software
Engineering. Springer, 479-498.

Larry Peterson, Scott Baker, Marc De Leenheer, Andy Bavier, Sapan
Bhatia, Mike Wawrzoniak, Jude Nelson, and John Hartman. 2015. XOS:
An extensible cloud operating system. In Proceedings of the 2nd Inter-
national Workshop on Software-Defined Ecosystems. 23-30.

56

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Pemberton, et al.

Fabio Pianese, Peter Bosch, Alessandro Duminuco, Nico Janssens,
Thanos Stathopoulos, and Moritz Steiner. 2010. Toward a cloud oper-
ating system. In 2010 IEEE/IFIP Network Operations and Management
Symposium Workshops. IEEE, 335-342.

Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-
son, Howard Trickey, and Phil Winterbottom. 1995. Plan 9 from Bell
Labs. Computing systems 8, 3 (1995), 221-254.

Dennis M. Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing
System. Communications (1974).

Francisco Romero, Qian Li, Neeraja]J. Yadwadkar, and Christos
Kozyrakis. 2019. INFaaS: A Model-less Inference Serving System.
arXiv:1905.13348 [cs] (Sep 2019).

Ravi S. Sandhu. 1998. Role-based access control.
computers. Vol. 46. Elsevier, 237-286.

Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ton Stoica, and David A. Patterson. 2021. What serverless computing
is and should become: The next phase of cloud computing. Commun.
ACM 64, 5 (2021), 55-63.

Frank Schmuck and Jim Wylie. 1991. Experience with transactions in
QuickSilver. In ACM SIGOPS Operating Systems Review, Vol. 25. ACM,
239-253.

Malte Schwarzkopf. 2015. Operating system support for warehouse-scale
computing. Ph.D. Dissertation. University of Cambridge.

Malte Schwarzkopf, Matthew P. Grosvenor, and Steven Hand. 2013.
New wine in old skins: The case for distributed operating systems
in the data center. In Proceedings of the 4th Asia-Pacific Workshop on
Systems. 1-7.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A disseminated, distributed OS for hardware resource disag-
gregation. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). 69-87.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free replicated data types. In Symposium on Self-
Stabilizing Systems. Springer, 386—-400.

Simon Shillaker and Peter Pietzuch. 2020. Faasm: lightweight isolation
for efficient stateful serverless computing. In 2020 USENIX Annual
Technical Conference (USENLX ATC 20). 419-433.

Mark Silberstein. 2017. OmniX: An accelerator-centric OS for omni-

In Advances in

programmable systems. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems - HotOS ’17. ACM Press, 69-75.
Swaminathan Sivasubramanian. 2012. Amazon DynamoDB: A seam-
lessly scalable non-relational database service. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data.
729-730.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proceed-
ings of the VLDB Endowment 13, 11 (2020).

Michael Stonebraker. 1981. Operating system support for database
management. Commun. ACM 24, 7 (1981), 412-418.

Andrew S. Tanenbaum and Robbert Van Renesse. 1985. Distributed
operating systems. ACM Computing Surveys (CSUR) 17, 4 (1985), 419-
470.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
Mike J. Spreitzer, and Carl H. Hauser. 1995. Managing update conflicts
in Bayou, a weakly connected replicated storage system. ACM SIGOPS
Operating Systems Review 29, 5 (1995), 172-182.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: The next generation. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems. 1-14.

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

The RESTIless Cloud

[74] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems. 1-17.

Werner Vogels. 2003. Web services are not distributed objects. IEEE
Internet computing 7, 6 (2003), 59-66.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

SIGOPS Operating Systems Review 43, 2 (2009), 76-85.

David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin
Modzelewski, Adam Belay, Lamia Youseff, Jason Miller, and Anant
Agarwal. 2010. An operating system for multicore and clouds: Mecha-
nisms and implementation. In Proceedings of the 1st ACM symposium
on Cloud computing. 3-14.

[76] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 [83] Bruce Wile. 2014. Coherent Accelerator Processor Interface (CAPI) for
(2009), 40-44. POWERS Systems. Technical Report. IBM Systems and Technology
[77] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. 1996. A Group.
note on distributed computing. In International Workshop on Mobile [84] Dan Williams and Ricardo Koller. 2016. Unikernel monitors: Extending
Object Systems. Springer, 49-64. minimalism outside of the box. In 8th USENIX Workshop on Hot Topics
[78] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg in Cloud Computing (HotCloud 16).
Thiel. 1983. The LOCUS distributed operating system. ACM SIGOPS [85] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan,

Operating Systems Review 17, 5 (1983), 49-70.

Randolph Y. Wang and Thomas E. Anderson. 1993. xFS: A wide area
mass storage file system. In Proceedings of IEEE 4th Workshop on Work-
station Operating Systems. WWOS-III IEEE, 71-78.

Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Ken-
naway. 2012. A taste of Capsicum: Practical capabilities for UNIX.

David P. Quigley, Erez Zadok, and Mohammad Nayyer Zubair. 2006.
Versatility and Unix semantics in namespace unification. ACM Trans-
actions on Storage (TOS) 2, 1 (2006), 74-105.

Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. 2019.
Anna: A KVS for any scale. IEEE Transactions on Knowledge and Data
Engineering (2019).

Commun. ACM 55, 3 (2012), 97-104. [87] Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi, An-
[81] David Wentzlaff and Anant Agarwal. 2009. Factored operating systems thony D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. 2011.
(fos) the case for a scalable operating system for multicores. ACM The datacenter needs an operating system.. In HotCloud.

57

	Abstract
	1 Introduction
	2 Today's Alternatives
	2.1 Why not web services?
	2.2 Why not POSIX?
	2.3 Why not Kubernetes?
	2.4 What about Serverless?

	3 A New Interface
	3.1 Computation
	3.2 State
	3.3 Concurrency and Consistency
	3.4 Limitations

	4 Discussion
	4.1 Making it Fast
	4.2 Making it Efficient
	4.3 Making it Flexible

	5 The Path Forward
	6 Conclusion
	References

