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ABSTRACT

Most sciences conduct experiments with a thorough under-
standing of the accuracy and precision of the instruments
used for making measurements. Time is the most frequently
used measurement in systems research, yet most of the liter-
ature does not consider the precision and accuracy of clocks.
In this paper, we argue for the importance of understanding
timekeeping and providing precise and accurate time for
general systems research.
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1 INTRODUCTION

Measuring time is the foundation of systems research. The
majority of systems evaluations consist of evaluating sys-
tem artifacts through benchmarks and comparing the results
against other state-of-the-art systems. Obtaining these mea-
surements involves timing various operations through the
use of a clock. The quality of these clocks is often unknown
to the benchmark designer. For example, in Linux, bench-
marks often obtain time from the clock_gettime() func-
tion, which returns a timespec from various user-selectable
clocks. The timespec structure, however, returns no infor-
mation about the precision or accuracy of the clock, only a
counter value in nanoseconds. Notably, the quality of the
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clock can depend on many factors, such as whether or not the
system is virtualized, the selected clock source, the overhead
of reading that clock source, time synchronization activity
on the system, and even the temperature of the system itself.
Measurements taken using different clocks can be incompa-
rable: not only can using different timing sources result in
different absolute times, but the overhead of reading time can
also induce variations in the runtime behavior of the experi-
ment itself. While systems research follows best practices to
reduce the amount of error introduced by the timing, most
benchmarks trust the time output to not only be correct, but
have little effect on the experiment itself. This practice runs
in contrast to other fields, where measurement equipment is
frequently calibrated, and its effects on the experiment are
well known.

In this paper, we argue that understanding how to measure
the passage of time accurately is critical to systems research
and that current interfaces for measuring time are insuffi-
cient because they do not provide the error or accuracy of
the underlying clocks. We show that the abstractions we
have built for obtaining time make it difficult to verify the
time provided, and failing to verify that the time is correct
can lead to actual benchmarking errors. We argue that every
system evaluation should calibrate clocks before running ex-
periments and that this calibration is inexpensive. We hope
that this paper encourages the use of and standardization of
accurate and precise time in systems and systems research.

2 TIME IN COMPUTER SYSTEMS

System clocks are built by incrementing a counter at a regular
interval. In hardware, an oscillator produces a regular wave-
form known as a clock which increments the counter at a reg-
ular frequency. In most computer systems, this oscillator is a
quartz crystal cut to resonate at a specific frequency. Differ-
ent oscillators can provide different levels of accuracy (how
close to the advertised frequency the oscillator resonates)
and drift (how much the oscillator’s frequency changes over
time), often specified on the oscillator’s datasheet. Typical
quartz has an error of about 20ppm [21], which is 0.002%
error, or roughly 20 microseconds per second. This error
is often temperature-dependent, and crystal manufacturers
publish the temperature dependency in a datasheet.

While this clock is imperfect, we will see that the physical
characteristics of this clock only contributes a tiny amount
to the overall error that may skew experimental results.
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2.1 Time in x86 Linux

There are several system clocks in a modern x86 system,
known as clock sources in Linux, which tick at different
rates. At boot time, the Linux kernel reads the clock from
the real-time clock (RTC). A battery powers the RTC, so this
clock continues to tick even when the system is off. Because
this clock ticks at a relatively low frequency and is expensive
to access, it is not usable for precise measurements. Instead,
the kernel uses another counter, known as the timestamp
counter (TSC), which ticks at a much higher frequency, en-
abling measurements with nanosecond precision. The TSC
is readable through the RDTSC instruction, which is unprivi-
leged and accessible to userspace applications. To make the
wall time (real time and date) available, the kernel uses the
RTC to initialize an offset from the TSC. A userspace daemon
such as NTPd [11] or chrony [3] synchronizes this offset to
external clocks available on the network. The kernel calcu-
lates the frequency of the TSC at boot time and uses it to
convert the TSC timestamp to a time in nanoseconds. Sev-
eral other counters, such as the HPET, APIC and ACPI PMT
also exist, which tick at different frequencies. Notably, Linux
may automatically select one of these clock sources as the
default if it deems that the TSC is unreliable. Historically,
the TSC hardware has been unreliable for timekeeping for
various reasons: early versions of the TSC used the actual
processor clock as the input frequency, so mechanisms such
as dynamic frequency scaling would affect the tick rate, or
turned off the clock to the TSC when the processor was idle,
making it impossible to use the TSC to measure time.

Userspace applications obtain time using clock_gettime(3),

which provides several clocks. Most benchmarks use CLOCK_MONOT

which obtains the timestamp counter with limited monoton-
ically increasing corrections from the system timer, typically
TSC without adjustments from NTP. The vDSO mechanism,
which injects kernel code and data into userspace, is used
to avoid a transition into the kernel and provide the neces-
sary data to calculate the returned time value, such as the
conversion factor.

Virtualization can further complicate the path to obtaining
time, as hypervisors may migrate virtual machines between
processors or physical machines which have different TSC
counters. Hypervisors can trap the RDTSC instruction to cor-
rect for time, provide time through paravirtual mechanisms
such as kvm-clock or VMware VMI, or use the TSC scal-
ing feature of newer processors, which enables a hypervisor
to provide an offset and effective frequency for the RDTSC
instruction. Each mechanism has its drawbacks: trapping
RDTSC results in an expensive VM-Exit and reduces the
precision of the timer, paravirtual mechanisms may have
incompatibilities with mechanisms such as vDSO, and TSC
scaling might not be supported on all hosts.
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2.2 Time in other systems

Keeping track how time is obtained has become more dif-
ficult as computer systems have become increasingly het-
erogenous. For example, Microsoft® Windows® offers the
QueryPerformanceCounter() API [18], which has its own
mechanism to select whether the HPET, ACPI PM or TSC is
used. On Android™, high precision timestamps are usually
retrieved using native code [5]. On ARM-based SoCs, the
clocksource can vary, and retrieving the time from the cycle
counter requires privilege, unlike on x86 processors [2]. In
the browser, timing calls are intentionally made noisy and
imprecise to defend against timing attacks [9]. Despite the
diversity of methods to obtain time, these timing calls all
return a simple timestamp without the semantic information
of where the time came from and how accurate it is. In the
next sections, we show that this semantic gap can lead to
problematic conclusions about time.

3 COMPLICATIONS OF TIME AND
PITFALLS

While the abstractions we have built to make it easy for de-
velopers to retrieve precise timestamps, losing the semantic
details about the clocks used to retrieve time can lead to
incorrect, or worse, misleading evaluations.

For instance, in virtualized environments, the frequency of
the TSC is unavailable to guest OSes in the mainline kernel.!
LLVM’s X-Ray profiling tool erroneously assumes that it can
calculate the TSC frequency from the processors’ maximum
frequency, which is no longer valid in recent x86 processors
that utilize turbo. Without the correct frequency, X-Ray can

ONIC

genérate flame graphs where the sum of function runtimes
are less than the total runtime of the test [26].

SMI handlers may actively modify the TSC in order to hide
their execution [19], resulting in incorrect execution times,
especially for very short microbenchmarks. Misconfiguration
of the clocksource, especially in virtualized environments,
can result in noisy or incorrect time measurements due to the
overhead of obtaining time [20]. Overclocking can also affect
a benchmark by changing the frequency of the underlying
timers [13].

Despite the complexity of the pathway for obtaining time,
we tend to treat evaluation results as comparable. If we run
the same benchmark on two systems, a system that reports
10,000 op/s should objectively be faster than a system run-
ning at 9,000 op/s. However, if the measurement overhead
of collecting time is higher in one system over the other, or
if the clock is running faster or slower than expected, the
results from one system can become incomparable to the
other.

1t is, however, available in Google’s proprietary production kernel [26],
and from a custom kernel module [24].
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To avoid these pitfalls, the systems community follows a
set of best practices, which involve ensuring that the cor-
rect clock is selected, appropriate fencing instructions are
used when necessary, and that benchmarks are run many
times to eliminate outliers and other anomalies. Even when
these guidelines are closely followed, timing may still be
inaccurate. Unless we closely examine timing results for in-
consistencies, these results could be relied upon to draw
incorrect conclusions about a system.

An example of these pitfalls manifesting is the “HPET
bug” [6], which resulted in incorrect performance bench-
mark results published on several popular websites that had
to be pulled. In particular, these benchmarks showed that
the AMD Ryzen 2000 series performed impressively well
compared to other processors of the time. It turned out that
starting with Intel’s Skylake processors, Intel’s HPET imple-
mentation became more costly to call compared to previous
generations, reducing the number of HPET calls from 1.4
to 0.2 million per second, creating the illusion that the Intel
systems were slower when that timer was relied on, even
though the overall system performance was faster. In their
post mortem analysis of the discrepancy, Anandtech wrote:

...if HPET was having any effect, it was un-
noticed: our results were broadly similar to
others, and each of the products fell in line
with where they were expected. Over the
several review cycles we had, there were
a couple of issues that cropped up that we
couldn’t explain, such as our Skylake-X
gaming numbers that were low, or the first
batch of Ryzen gaming tests, where the
data was thrown out for being obviously
wrong however we never managed to nar-
row down the issue. [25]

This conclusion is troubling: if the AMD Ryzen’s numbers
were closer to the Intel Skylake’s numbers, this error may not
have been discovered at all. The reality is that the Anandtech
authors were running experiments with uncalibrated equip-
ment: due to the interface provided the operating system,
they didn’t know what the accuracy or cost of the system
timer.

While the HPET bug issue was an example of timer over-
head affecting the system’s overall performance, errors in
the actual timer can occur as well. For example, from kernels
4.10-5.3, the frequency of the TSC was determined using
hardcoded values, and particular CPUs were on a “crystal
quirk list” [12]. Intel Skylake-X Server and workstation SKUs
used crystals with different frequencies (25MHz vs 24MHz),
but the crystal quirk list did not account for the difference.
As a result, Skylake-X workstations had a TSC clock with
at least a 4% drift due to the kernel incorrectly calculating
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the TSC frequency [1]. Furthermore, EMI reduction circuitry
can reduce the frequency by a further 0.25%. This bug was
reported as early as 2017, fixed in 2018 and still reported
by users as late as 2019 [4, 10]. With this bug, the system
appears to run normally, but benchmarks can return faster
than expected results due to the slow TSC

Newer server grade motherboards offer overclocking as
a standard feature: for example, Supermicro offers a Hyper-
Speed platform marketed for low-latency and high perfor-
mance computing [23]. This server platform changes allows
the user to change the BCLK slightly (by up to 6%). This
caused the clock to be inaccurate in some versions of Linux
which relied on the frequency provided by the processor un-
til the end of 2019, where a patch was written to calibrate the
clock to another local clock [14]. Notably, this caused some
users to be surprised that their benchmarks returned the
same results before and after the overclock was applied [22].

Another bug in the implementation of HPET (which is
used to check the accuracy of the TSC) in relatively recent
Intel processors (Coffee Lake, Ice Lake) also have caused
Linux to fallback to using the buggy HPET, resulting in inac-
curate time [8]. When the HPET is used in these systems, the
clock stops when idle, resulting in extremely skewed timing
results.

None of these bugs affected the typical use of the sys-
tem: even though the clock was running significantly faster
or slower, time synchronization would hide the bug from
the user unless the user examined the synchronization logs
carefully.

4 WHAT CAN WE DO?

The relative ease in which results based on incorrect timing
information can be produced is alarming, and can distort the
results of the benchmarks we trust. One of the problems we
identified is that the clock_gettime() interface is opaque:
to understand the accuracy of the timestamp, a benchmark
must break through several layers of abstraction, such as
which timer is currently being used by the system and its
properties. Certainly, the Linux kernel already exposes some
of this information: the current clocksource, for example, is
accessible via sysfs. An application may also attempt to check
the sanity of the time values returned by checking against
an external clock source. We feel that given the importance
of measuring time in a system, a more principled approach
for measuring time is appropriate.

5 TOWARDS A PRINCIPLED APPROACH
FOR TIME
Start at the Hardware. The hardware has the best under-

standing about the characteristics of the clocks in the sys-
tem. The motherboard manufacturer knows which oscillators
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were selected and their properties, as well as changes to the
clocks and their frequencies in the BIOS. This information
should be exposed to software, for instance, via ACPI tables.

The processor should be able to combine the information
from the motherboard with its own data to specify to soft-
ware the exact frequency.

Calibrate the clock. Regularly, and when requested by the
user, the system should check that each clock behaves as
expected. Calibrating the clock requires synchronizing the
clock against known, external time sources, similar to cal-
ibration of other measurement instruments. Without this
calibration, we only are able to trust the data provided by the
designer, and cannot account for run-time error due to con-
figuration or physical effects, such as temperature. Regular
calibration of the clock is critical: the properties of a clock can
change over time as oscillators age, or when configuration
changes are made.

By synchronizing a clock multiple times, we calibrate the
time measured against a known time source, by observing the
difference measured by the two clocks. While time synchro-
nization might only correct the local time value, calibrating
the clock records the error in measuring a timespan, using
the same facilities available to applications for reading clocks.
Using a calibrated clock enables us to accurately compare
results between measurements which use different timing
mechanisms.

Several mechanisms already exist for synchronizing clocks.
For instance, NTP synchronizes with external time servers.
Because of the asymmetric delay involved in NTP, state-
of-the-art NTP clients such as Chrony [3] can synchronize
clocks within the range of milliseconds. For most evaluations,
NTP synchronization should be sufficient to determine if a
clock has a large error, as one would expect from a mis-
configuration. These are the types of errors most likely to
cause significant errors for systems evaluations. Unfortu-
nately, time synchronization can be a double-edged sword:
while time synchronization can detect a mismatch against an
external time reference, it is typically used to transparently
correct for errors in the local clock instead. As a result, a
clock that is very fast or slow due to misconfiguration might
not be obvious to the user but still produce incorrect results
between synchronizations. It is critical that synchronization
error be exposed to the user in a meaningful way.

For more detailed evaluations, such as those which com-
pare function level or microarchitecture level performance,
obtaining a stronger bound on the clock is desirable.

The Precision Time Protocol (PTP), or IEEE 1588 [7],is a
mechanism which can be used to synchronize clocks with
hardware support and is available on most server networking
hardware. PTP can synchronize clocks to the range of 100s
of nanoseconds, but the clock synchronized is located on
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the network card. A simple daemon can be used to compare
another clock, such as the timestamp counter, to the network
clock.

If a general purpose I/O (GPIO) pin is available, an external
timing input can also be used to calibrate clocks. This timing
input is known a pulse-per-second (PPS), and Linux provides
a facility to capture PPS inputs for the purpose of synchroniz-
ing clocks [17]. We were able to use an inexpensive $10 GPS
dongle to provide a PPS output. Unfortunately, as servers
have removed legacy ports, most modern servers have made
traditional access to GPIO, which was accessible via legacy
and serial ports. However, we were able to synchronize the
clock by wiring a GPS PPS output to the NMI button and
applying a small modification to the kernel to capture the
clock when the NMI is triggered, and the same setup could
easily be made by and FPGA triggering a message signaled
interupt over PCle. The NMI is exposed on most modern
server hardware. GPS clocks, when synchronized, offer on
the order of 5-30ns synchronization with GPS satellites, and
more importantly, the PPS mechanism offers synchroniza-
tion accuracy on the order of a few 100ns. This solution offers
an extremely low cost approach for calibrating nearly any
server. GPS is not strictly necessary: since we are primarily
interested only in the clock error and not the absolute time,
a waveform generator can be used in the case a GPS signal
is not available.

Exposing the calibration. Once we have measured the error
in the clock, that calibration should be exposed to userspace
applications. First, when the kernel calibrates clocks at boot
time, it should discard clocks with errors that are outside the
specification declared by the hardware.

Second, the kernel should return calibration information
whenever time is requested. This could be an addition to the
timespec structure, and could be thought of as analogous
to a “calibration certificate”, specifying that the clocks’ ac-
curacy has been verified against a known time source, and
what error against the known source was found during the
last calibration. When calculating and presenting results, ap-
plication and benchmarks should present the calibration and
apply the calibration data to the results.

6 FUTURE DIRECTIONS

As system research continues to advance as a science, so will
the ability to generate repeatable results. Calibrating timers
is the start of this process. Our work and experience with
timers has highlighted several areas to be explored:

6.1 Reliable Time

Part of the reason that measuring time can lead to misleading
results is that the hardware interface for time is complex and
ambiguous. For instance, in an x86 machine there are at least
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six different timers, ranging from the RTC to the TSC, all with
different time characteristics [16]. Even the TSC, which is
most commonly used for time today, was originally intended
to count processor cycles. At first, processor frequencies
were constant so the counter could be used to measure time,
so programmers needing high precision time used it for
timing measurements. However, when technologies such as
dynamic frequency scaling and idle states arrived, the cycle
count diverged from time and caused programs which relied
on it to misbehave. As a result, Intel changed the behavior
of the timer to produce a constant frequency even while idle,
without making strong guarantees about time.

Since time, and measuring time is so critical to computer
science, we believe in the importance of a standardized, high
resolution timer that is fed by a consistent uniform frequency
across all hardware. This effort needs to be led by proces-
sor manufacturers, and the recent increase in architectural
diversity has made the need for such a mechanism all the
more important.

6.2 Synchronizing Time

There has been a significant effort in the systems commu-
nity to synchronize clocks, typically to GPS time so that
timestamps can be used across hardware and geographical
boundaries [28, 31]. While calibrating clocks is similar to
synchronizing them, it has several different properties. Cali-
brating clocks is about ensuring two clocks agree on elapsed
time, whereas synchronizing clocks is about ensuring that
two clocks both step at and reflect the same time. As a result,
calibrating clocks is an easier problem: whereas synchro-
nizing a clock requires constantly measuring the time error
and correcting it, to calibrate a clock only requires several
synchronizations to obtain a bound on the error of the local
clock.

Synchronizing clocks can have several interactions with
timing and calibration. In order to correct for the difference
in the local clock to the remote clock, clock synchronization
software must alter the timestamp to correct for any accu-
mulated error. If a synchronization occurs while the timer is
running, updating the value of the timer, this could result in a
benchmark that runs slightly faster or slower than expected
due to time “jumping” backwards or forwards.

For this reason, benchmarks are usually run against an
uncorrected timer, but this timer does not get the benefits
of the correction provided by synchronization. A hardware
interface for correcting the clock transparently may enable
the clock to be slowly corrected without causing the same
effects as software reloading the timer. For instance, if syn-
chronization software detects that the clock is running too
fast, an interface to slow down the clock could be used to
maintain continuous time.

69

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

6.3 Calibrating Other Sensors

Computer systems contain a variety of other sensors which
may be more complex to calibrate. For example, the pro-
cessor has temperature sensors and the motherboard has
voltage monitors with varying error. Ensuring that these
sensors are accurate may be much more intrusive, but may
be possible if the right interface is exposed. For example,
testing voltage sensors maybe be possible if a interface to an
external multimeter or voltage reference is available.

6.4 The Observer Effect

The observer effect states that observing a system can alter
its behavior. Best known from physics, this effect applies
to systems research as well. Adding timer calls and storing
timing information inevitably alters execution. The choice
of which timer calls are used also affect execution, and differ-
ences in the timer used are what caused the inconsistencies
leading to the "HPET bug".

Systems can reduce or eliminate the observer effect by
minimizing the instrumentation overhead. For example, in-
stead of software manually invoking a timer and saving
the values to memory, A hardware based system could be
used. Platforms like Intel’s Precise Event Based Sampling
(PEBS) [33] might provide this functionality, but a similar,
more universal interface is desirable.

In addition, the system should expose information about
the timing method used and its overheads to the application.

6.5 Reproducible Results

Evaluating computer systems accurately and reproducibly is
difficult because they are subject to various sources of non-
determinism. While calibrating clocks reduces one source of
non-determinism, many other sources of non-determinism
still exist. Many of these sources of non-determinism are
opaque because of abstractions designed to hide detail from
applications. While ensuring that every parameter is the
same between experimental setups is not tractable, it might
be possible to develop a set of standardized conditions. For
instance, in the physical sciences, standard temperature and
pressure (STP) is used to enable comparisons to be made
between different sets of data. It may be possible to create a
similar analog in computer systems.

6.6 Statistical Analysis

Several papers in the literature [29, 32] highlight flaws in the
statistical presentation or methodology in systems research.
By calibrating the clock, we enhance statistical analysis by
providing the actual error of the underlying clock, enhancing
the confidence of presented results. Furthermore, statistical
analysis can also be used to enhance the soundness of per-
formance evaluations [27].
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6.7 Security

Interestingly, there is an active movement to obfuscate and
prevent applications from reading accurate time, because of
its utility as a side channel. For example, in light of Spec-
tre [30], many browsers may round or reduce to precision of
the clock to as much as 100ms [15]. Often, these changes are
opaque: for example, the performance.now() API merely
returns a timestamp, with no way to determine what the
actual precision being returned is without making multiple
calls. We believe that an application developer should know
when the time is obscured for security reasons so a user can
take appropriate action.

7 CONCLUSION

We hope that this paper highlights the need for systems
researchers to calibrate timers, the primary instrument used
for systems experiments. We have shown that calibrating
timers is critical for comparable, repeatable system results,
and that the equipment for calibrating timers is inexpensive
and easily performed by any research lab. In the future, we
will release a device and/or software which can help users
calibrate their systems, and keep systems research running
in time.
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