
Programming Fully Disaggregated Systems
Christoph Anneser Lukas Vogel Ferdinand Gruber

Maximilian Bandle Jana Giceva
Technical University of Munich
firstname.lastname@in.tum.de

Abstract
With full resource disaggregation on the horizon, it is unclear
what the most suitable programming model is that enables
dataflow developers to fully harvest the potential that recent
hardware developments offer. In our vision, we propose to
raise the abstraction level to allow developers to primarily
reason about their dataflow and the requirements that need
to be met by the underlying system in a declarative fashion.
Underneath, the system works with typed memory regions
and uses the notion of ownership that allows formore flexible
memory management across the different compute devices
and the tasks mapped onto them. This requires a holistic
approach that crosses multiple layers of the system stack,
opening exciting systems research questions.

ACM Reference Format:
Christoph Anneser, Lukas Vogel, Ferdinand Gruber, Maximilian
Bandle, and Jana Giceva. 2023. Programming Fully Disaggregated
Systems. InWorkshop on Hot Topics in Operating Systems (HOTOS
’23), June 22–24, 2023, Providence, RI, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3593856.3595889

1 Introduction
With the ever-increasing demand for data, where the datas-
phere volume is expected to reach 175ZB by 2025 [50], we
have reached the point where moving data is the dominating
cost factor in data centers [34, 45]. Cloud providers race to
serve the different requirements of modern workloads better
but with pressure to achieve it in a more sustainable fash-
ion [51]. To improve efficiency, data centers have evolved
to more loosely coupled software-defined racks, where they
disaggregate resources over fast network interconnects [52].
However, until recently, coherent memory remained

tightly coupled, and servers had to be equipped with large
memory capacities to serve peak workloads reliably. This

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595889

CXL
DRAM DRAM DRAM

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR GDDR

PCIe/CXL

(a) Current Architectures

DRAM GDDR

PMEM CXL DRAM

Memory Pool

Runtime System

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

(b) Our Vision

Figure 1: Moving from a compute-centric to a memory-
centric architecture.
overprovisioning is a considerable cost (50% of Azure’s
servers [5] and 40% of Meta’s rack costs come from mem-
ory [40]) for a resource that could not be properly pooled.
The average memory utilization reported by many cloud ven-
dors remains low, typically in the range of 50-65% [38, 56].
Therefore, data centers could reduce costs by pooling dif-
ferent types of memory [9, 11, 21, 57] and compute de-
vices [6, 13, 17–19, 30, 33, 47] by connecting them with fast
networks [14, 45].

However, data and compute placement within these pools
significantly impacts the overall system performance. For
example, non-uniform memory accesses (NUMA) can slow
down algorithms by up to 3× [39]. Similarly, a naïve data
placement in a heterogeneous storage landscape can reduce
a database system’s performance by up to 3× [59].

Moreover, today, optimal placement has become an issue
even within single processors. For example, take the recently
introduced Intel’s 4th Generation Intel® Xeon® Scalable Pro-
cessors – codenamed Sapphire Rapids [7]. They have built-in
encryption, compression, streaming, and high-bandwidth
memory accelerators. Its most promising feature, however,
is the adoption of Compute Express Links™ (CXL™) – an
industry standard for cache-coherent interconnects for pro-
cessors, memory expansion, and accelerators based on PCIe
5.0, which has been adopted by companies like Intel, AMD,
ARM, Samsung, and NVIDIA, amongst others [9]. CXL en-
ables us to first scale-up nodes by extending their compute
and memory pools with ‘pluggable’ compute devices and
DRAM/PMem expansion cards before we have to rely on
more expensive ‘scale-outs’ to other compute nodes that

188

https://doi.org/10.1145/3593856.3595889
https://doi.org/10.1145/3593856.3595889


HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

Table 1: Memory device properties as seen from a CPU.

Name Bw. Lat. Gran. Attached Sync Persist.

Cache ++ ++ 1 B CPU ✓ ✗
HBM ++ + 64 B CPU ✓ ✗
DRAM + + 64 B CPU ✓ ✗
PMem ◦ ◦ 256 B CPU ✓ ✓
CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗
Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗
SSD − − 4 KiB PCIe ✗ ✓
HDD −− −− 4 KiB SATA ✗ ✓

would require the implementation of more complex con-
sistency protocols [38]. Furthermore, CXL-based compute
devices can coherently access and cache host CPU memory,
enabling new data and compute placement combinations but
making optimal placement decisions much more complex,
as Figure 1a shows.
We believe that in such a heterogeneous hardware land-

scape, existing programming models are not suitable any-
more. Traditionally, a developer has to explicitly place data
on a memory device and specify which accelerator performs
the computation. In particular, this explicit data placement
requires the developer to be aware of various memory types’
different properties, as shown in Table 1. For example, to
optimize applications and data placement, developers must
consider access latencies, their granularities (bytes or logical
blocks), and how devices are physically attached. Otherwise,
they will be unable to fully unlock the potential of these
exciting, emerging hardware platforms. Unsurprisingly, this
topic is being discussed in several recent proposals on how
to write programs for scale-out cloud systems [20, 29, 61]
and how to do memory-tiering at warehouse scale [22, 40].

Recent work suggested that we should switch away from
CPU- or process-centric architectures to overcome the com-
plexity of disaggregated systems and thus allow develop-
ers to primarily focus on their application logic [22, 23, 28,
53, 54, 60]. For example, by lifting the abstraction level, Vo-
gel et al. proposed a new framework enabling developers
to get declarative control over data movement in heteroge-
neous, disaggregated environments [58], while HetCache
co-optimizes data placement by taking different memory,
compute devices, and queries into account [43].
In this paper, we ask ‘what should be the appropriate pro-

gramming model for implementing various dataflow frame-
works in the era of full resource disaggregation.’

2 Vision
This section presents our envisioned programming model
and runtime system that would enable the writing of scalable
code that leverages modern hardware with disaggregated
compute and memory pools.

Job1

Job2

. . .

State

 Employees

 Patients

Preprocessing𝑇1

Face Recog.𝑇2

Track Hours𝑇3

Compute Util.𝑇4

Alert Caregivers𝑇5

� CCTV Video Stream

comp. device: GPU
confidential: true
persistent: false
mem. latency: low

comp. device: GPU
confidential: true
persistent: false
mem. latency: low

comp. device: CPU
confidential: true
persistent: false
mem. latency: low

comp. device: CPU
confidential: false
persistent: false
mem. latency: –

comp. device: CPU
confidential: true
persistent: true
mem. latency: low

a) Jobs b) Tasks c) Properties

Figure 2: Example dataflow system of a hospital. Jobs
consist of tasks that forma directed acyclic graph. Prop-
erties can be attached to tasks and dataflows.

2.1 Foundations
Data-intensive applications like database systems [42], ma-
chine learning frameworks [3, 4], or large-scale data analytics
platforms [1, 2] can often be generalized to dataflow systems.
To introduce the concepts of our approach, therefore, we
rely on their well-known architecture, where applications
launch jobs that consist of tasks. Tasks represent computa-
tional units, and connecting arrows between tasks represent
the dataflow and its direction. Connected tasks form a di-
rected acyclic graph.
Example. Figure 2 shows an example of such a job (2a)
consisting of 5 tasks (2b): A hospital might have a CCTV
camera recording entering and leaving persons (𝑇1) using
GPU-accelerated face recognition connected to an employee
and patient database (𝑇2). This information is then used to
track the working hours of the employees (𝑇3), feed a public
website displaying the utilization of the emergency ward (𝑇4),
and alert caregivers if a confused patient exits the hospital
and does not reappear after a grace period (𝑇5).
Declarative programming. As described in Section 1,
recently introduced hardware platforms (such as Sapphire
Rapids [7]) have built-in accelerators and support CXL1.1,
allowing to scale-up one node with more accelerators and
coherent memory expansion. From a programmer’s perspec-
tive, implementing and optimizing applications, such as the
hospital’s dataflow, for modern hardware becomes increas-
ingly complex and time-consuming. One viable option for
developing high-performance dataflow applications is to in-
troduce a new abstraction layer. This abstraction would hide
the details of compute and memory devices during the ap-
plication’s development and defer the compute and memory

189



Programming Fully Disaggregated Systems HOTOS ’23, June 22–24, 2023, Providence, RI, USA

placement decisions to runtime. Declarative programming
concepts could allow developers to focus on the application
logic (what) rather than how it is executed on a specific
platform.
Common patterns. Today’s dataflow applications share
common patterns and often have similar requirements. For
example, processing sensitive user data (i.e., 𝑇2) requires
them to implement security standards, including data encryp-
tion. Jobs and tasks could be either streamed or processed in
batches. Machine learning-related tasks benefit from hard-
ware acceleration. Implementing such requirements for each
dataflow system individually and optimizing it to run on
disaggregated systems is time-consuming and error-prone.
Properties for dataflow systems. Instead, a program-
ming model should enable developers to attach common
properties to their dataflow applications at different granu-
larities. In Figure 2c), each task has some properties: While
the video feed’s confidentiality might depend on the country,
the employee and patient database, and the tagged and cross-
referenced persons are confidential. Furthermore, the video
feed itself is not latency-sensitive, but since image recog-
nition is computationally intensive, it requires low-latency
memory (from the view of the GPU) to allow for real-time
face recognition. The alerting task (𝑇5) has to store miss-
ing patients persistently, as a system crash would otherwise
mean theymight be forgotten. Furthermore, by attaching the
property confidentiality to the tasks 𝑇1–𝑇3 and 𝑇5 in Figure 2,
the application developer can indicate that the processed
data is sensitive and must not be visible to other tasks or
jobs. Another recurring pattern is the materialization of out-
put data, as is the case for materialized views in database
systems or the neural network’s weights after training, mak-
ing it another good candidate for a property being attached
in dataflow systems.
Requesting properties. Current disaggregated systems
introduce various memory devices, each having different
properties regarding latency, bandwidth, persistency, and
others (cf. Table 1). Deploying dataflow systems that serve
thousands of jobs in parallel on such complex hardware
landscapes with multiple physical memory devices makes
efficient memory management more challenging, especially
when tasks are deployed on different compute devices and
the performance-critical inter-task communication is being
implemented via message-passing over shared memory [41].
Therefore, the physical memory devices should be made
transparent to applications that instead request memory
based on the required properties. For example, the applica-
tion could specify whether the allocated memory should be
persistent and what latencies or bandwidths are acceptable.
Ownership Chunks of memory requested in such a way
would then have a clear owner (i.e., a task, a job, or the
whole application) allowing us to reason about the lifetime of

DRAM

PMEM

GDDR

Pr. Scratch

Gl. State

Gl. Scratch

CPU

Pr. Scratch

Gl. State

Gl. Scratch

GPU

Runtime System

PhysicalLogical Logical

Figure 3: Mapping logical Memory Regions to physical
memory depends on the compute device.

chunks of memory and be aware of when we can re-assign it
to new tasks. We could, thus, implement a reusable optimizer
for various dataflow systems’ data placement.
Summary. Given the challenges listed above, we need a
programming model that enables application developers to
utilize modern, disaggregated hardware platforms more effi-
ciently. Such a model ideally enables the developer to attach
commonly seen properties to tasks and facilitates managing
disaggregated memory declaratively, which makes not only
the application development more efficient but also the ap-
plications themselves by automatically co-optimizing data
placement and the overall resource utilization.

2.2 Mapping to Disaggregated Systems
While the envisioned programming model abstracts from
specific memory devices and instead lets the application
specify what properties the requested memory must have,
we need a runtime system that maps logical requests to the
physical hardware in the background.
Memory devices. As shown in Table 1, various devices are
already contributing to the pool of disaggregated memory,
withmore being added in the future. Each device has different
properties concerning latency, bandwidth, coherency, and
persistency. The mapping from a task’s memory request and
its declared properties must therefore be matched to the
underlying hardware, which leads to three challenges:
(1) The ‘optimal’ memory device depends on the compute
device executing the task and the type of memory accesses
it performs (e.g., random vs. sequential, read- or write-
intensive accesses, or access granularity). Figure 3 visual-
izes this problem: ‘fast and local’ scratch memory might
preferably be DRAM when the task runs on a CPU. For tasks
running on a GPU, however, GDDR provides better latency
and bandwidth, although with less capacity.
(2) Tasks might share memory: The preceding task’s output
could become the succeeding task’s input. If both tasks run
on different compute devices, their shared memory must be
addressable by both (e.g., via CXL.mem) or copied after the
first task is done. Therefore, data placement depends not only
on one task but also on the interaction of multiple tasks.

190



HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

Table 2: Common Memory Regions.

Name Properties Purpose

Global State {coherent, sync} Syncing tasks
Global Scratch {coherent, async} Data exchange
Private Scratch {noncoherent, sync} Thread-local data

(3) Depending on how far memory is physically away, we
want to expose different interfaces. In the case of near mem-
ory that provides low access latency, we would prefer syn-
chronous loads/stores to reduce the task’s execution time.
If memory is ‘far away’, we should switch to an asynchro-
nous interface that fetches memory in the background. For
example, accessing CXL-attached memory will result in high
latency comparable to accessing DRAM on a different NUMA
socket. Asynchronous accesses improve the accelerator’s uti-
lization and overall throughput.

We propose three concepts to mitigate these problems:
(1) Memory regions. Since the properties of a device
change depending on the task’s point of view (i.e., by which
compute device it is executed), we use the concept ofMemory
Regions to abstract from physical devices. A Memory Region
is a logical view on a physical device: It guarantees some
set of properties specified by a task (e.g., low latency, persis-
tency) relative to the executing compute device. At runtime,
the system maps the Memory Region to a physical device
satisfying its properties. Memory Regions are thus declared
and identified by their properties, not by their location, unlike
traditional approaches. We group properties that are often
used together and name the resulting Memory Region to ex-
press commonly used abstractions in programming – Table 2
describes three frequently used Memory Regions and Fig-
ure 4 shows how our dataflow system uses them: All threads
of a task have their Private Scratch and hold a reference
to a Global State and Global Scratch. Memory regions for
dataflow systems for a single device have already been used
in the past. Broom [25], for example, introduces memory
regions and ownership to track lifetimes and, therefore, to
remove the garbage collector. We build on this approach by
generalizing memory regions to multiple devices.
(2) Memory ownership. To facilitate inter-task communi-
cation, we introduce the concept of memory ownership: Each
chunk of allocated memory is either

• exclusively owned by a task. This applies if it is just task-
local scratch space or handed over to the next task after
completion. Here, consistency guarantees and memory
ordering can be relaxed.

• or it shares the ownership with other tasks that may
run concurrently. This puts additional requirements on
the Memory Region, i.e., being cache-coherent or having
strict memory ordering.

𝑇1𝑎 𝑇1𝑏 . . . 𝑇1𝑧

𝑃1𝑎 𝑃1𝑏 𝑃1𝑧
Private
Scratch

Input

Out Intransfer
ownership

𝑇2𝑎 𝑇2𝑏 . . . 𝑇2𝑧

𝑃2𝑎 𝑃2𝑏 𝑃2𝑧
Private
Scratch

Out Intransfer
ownership

Global
Memory

Global
State

Global
Scratch

𝑇1

𝑇2

sync

async

Figure 2b

Figure 4: Tasks and Typed Memory Regions.

Note that memory being owned exclusively by a task does
not mean it can only ever be owned by one thread of execu-
tion. As Figure 4 shows, ownership can be transferred, i.e., a
reference to the memory chunk can be passed to the next task
(the “out” becomes the “new in”), which is similar to C++’s
move semantics. This explicit ownership model enables us
to always allocate the most suitable memory per thread of
execution. In contrast, in a traditional disaggregated system,
users must choose placement, which increases complexity,
especially as more kinds of memory become available.
(3) Access interfaces. It is beneficial to address different
Memory Regions by different access modes to improve re-
source utilization. When accessing global memory, we might
benefit from an asynchronous model where we can inter-
leave computation with memory accesses. Memory Regions,
thus, should expose different interfaces to access data.

2.3 Programming Model
After introducing the abstractions of Memory Regions, own-
ership, and interfaces, we now switch back to the application
level and discuss integrating these concepts into the moti-
vating dataflow example.
Runtime system. To implement the envisioned program-
ming model, we need a runtime system that is responsible for
(1) determining at runtime which physical memory device
best fits each task’s declared requirements, (2) allocating the
Memory Regions that tasks have requested, (3) de-allocating
Memory Regions after the last owning task finishes, (4) and
resource-aware task scheduling.
Abstracting memory regions. As discussed in the previ-
ous section and Table 2, dataflow systems share common
memory usage and access patterns and have similar require-
ments. The followingMemory Regions should be pre-defined
by the programming model:
• Private Scratch is memory local to each thread of the
task. Since it is not shared, it may have relaxed coherence
guarantees. As demonstrated in Figure 4, each task’s thread
has its own private scratch space (𝑃1𝑎 . . .𝑃1𝑧 ), which is only

191



Programming Fully Disaggregated Systems HOTOS ’23, June 22–24, 2023, Providence, RI, USA

Table 3: How applications may use memory regions.

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state
(hashtables, . . . )

synchronization
(latches, . . . )

(temp) indexes,
caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

alive during its execution. It stores intermediate results
not part of the task’s output. Private scratch is visible to
only one thread and not transferable.

• Global State is memory global to the application and
shared between tasks to synchronize tasks and threads.
It, thus, has to provide strict coherence guarantees and
strong memory ordering but is expected to be slow as it
has to be accessible from all compute devices.

• Global Scratch can pass data between tasks that are not
connected. Passing data in such a way is helpful when two
tasks do not depend on each other but may use an inter-
mediate result from another task (such as a bloom filter)
to speed up its processing. The Global Scratch exposes
an asynchronous interface as threads should not block on
load/store on slow memory.

Moving data. Data will be passed between tasks via Global
Scratch memory or to the next task in the dataflow. For the
second case, we need a concept of input and output as shown
in Figure 4. The input consists of the data set the current
task should operate on and is generated by the preceding
task. The output is the data the task produces, i.e., the next
task’s input. Input and output can be modeled as Memory
Regions, which the active task owns. Thanks to our concept
of memory ownership, the output memory of the preceding
task can directly become the input memory of the next task
if it is addressable by the compute devices of both tasks. The
runtime system allocates input and output memory so that
handover is just a memory ownership transfer, and physical
data movement is minimized.

2.4 Mapping Application Types
Different application types can be easily mapped to our pro-
posed architecture. We illustrate four types in Table 3 and
describe two in more detail.
Database systems internally represent queries as relational
operator trees where the output of one operator becomes
the input of the following operator, which nicely maps onto
dataflow systems. Each operator must keep track of its state
in private scratch (e.g., a group hash table for aggregation
operators) and synchronize with other concurrently running
operators via latches in the global state. Furthermore, some

operators can re-use (transient) results of earlier operators
stored in the global scratch space (e.g., a hash join might
re-use a hash index created by an aggregation operator).
AI/ML applications must first transform and preprocess
the input data (e.g., parsing, sampling, and feature extrac-
tion) before training a model on accelerators. This can
also be modeled as a dataflow system, as demonstrated by
Cachew [26]. Cachew stores the transformed data in a cache
(global scratch) and uses a dispatcher accessing worker states
(global state) to assign tasks running on accelerators (private
scratch).

3 Discussion
Our proposed memory-centric programming model radically
changes how applications and developers interact with mem-
ory in the disaggregated cloud. They should no longer have
to deal with the complexity of handling different memory de-
vices, which is further complicated by emerging technologies
like CXL. Instead, memory should be requested declaratively
based on desired properties like latency or bandwidth.
The way forward. Our programming model requires a
runtime system (RTS) that should abstract away hardware-
specific details of memory accesses and does the bookkeep-
ing regarding ownership and the lifetime of regions. Fur-
thermore, the RTS needs to make the deployment decisions
on mapping tasks and memory onto the disaggregated re-
sources. To make this come true, we need to address several
challenges for which we begin the discussion in this section:
(1) Who oversees the management and utilization of the
disaggregated resources?
(2) How do we make optimal deployment decisions?
(3) How to enforce deployment policies at runtime?
(4) Where should the RTS/control plane be placed?
(5) What support from the underlying system stack is needed
on the critical data path?
(6) How can we make our concept of memory regions easy
to use in general-purpose programming languages?
(7) How can we combine declarative and imperative princi-
ples in one programming model?
(8) What are the potential limitations of our approach?
Implementing the programming model and the runtime

system is a non-trivial endeavor that calls for a holistic ap-
proach, crossing multiple layers of the systems stack. In the
following paragraphs, we discuss how we can address these
challenges and use prior work from the systems, compiler,
and database communities to set the stage for our proposal.
Challenges 1-3: What is required from the RTS? Our
RTS needs to manage memory resources –typed with differ-
ent properties (cf. Figure 2)– of multiple machines or even
cluster wide. Jobs and tasks request memory regions from
the RTS that it then maps to physical memory (cf. Figure 3).

192



HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

The allocation of memory regions goes beyond the capabili-
ties of already known single-host memory management [46]
and existing distributed managed runtimes [2]. With multi-
ple, coherently accessible memory tiers, the RTS must man-
age memory regions based on pages or objects and their
placement. Both approaches are actively researched by the
systems community and have different implications on per-
formance and scalability [48, 62]. To optimize the placement
of memory regions, we can build on recent work that used
pointer tagging to track the hotness of pages or objects and to
implement remotable pointers that either point to objects in
local or in remote memory (pointer swizzling) [37, 40, 48, 62].
Our RTS must also schedule and map tasks to different

types of devices using cost models that consider topology and
access paths [49] to optimize for concurrently running jobs.
Therefore, it must know or predict the resource utilization of
memory and compute devices. Scheduling also requires re-
using results to avoid unnecessary copying [60] and lowering
to different types of hardware. Thankfully, such cost models
for optimization and lowering tasks to multiple devices are
already well-known in the database and compiler communi-
ties [24, 35, 54]. Furthermore, new approaches using MLIR,
such as LingoDB [31], have shown that it is feasible to pro-
vide the compiler with various statistics to make cost-based
transformations and data and task placement decisions.
Challenges 4-5: What layer supports the RTS memory
deployment? The RTS provides memory regions, but with-
out some levels of abstraction, the complexity of handling
disaggregated memory is just moved to the application. In
our vision, the core responsibility of the operating system
(OS) is mapping RTS-requested memory into the address
space of our proposed tasks. The processor-centric design
could lead to host congestion [10] and become a bottleneck
in the future and the concept of memory ownership of to-
day’s OSes are not suitable anymore [53] because ownership
is now globally managed by the RTS [23]. Thus, in the dis-
aggregated cloud, OSes should be built memory-centric, like
our jobs and tasks. Of course, this is a simplification of OS
memory management, leaving out many aspects (e.g., the
memory the OS requires for managing devices). We are not
the first to propose such a shift in OS design and can rely on
previous research [23, 53].
Challenges 6-7: How to get the developer on board and
ease adoption? Until now, there is no consensus on han-
dling the ownership and lifetime of memory objects and
streams across different devices, and popular AI/ML frame-
works handle them differently [8]. Furthermore, developers
should not face the complexity of modern memory technol-
ogy [61] and instead should request memory declaratively.
This declarative approach is a paradigm shift for many pro-
gramming languages (PL), where memory is managed man-
ually or by a language runtime [46]. Consequently, the PL

should either (1) allow programmers to provide different ver-
sions of code targeting different memory types or (2) provide
a central compilation service that JIT compiles the program-
mer’s declarative description of memory accesses. The latter
–a mixture of declarative and imperative code– is actively
researched [44, 55] and could be adapted for our approach.
Challenge 8: What are the potential limitations? Rais-
ing the abstraction level leads to new questions our approach
does not yet solve: (1) How canwe debug, profile, and optimize
dataflow applications with multiple abstraction layers for
performance when the runtime system hides performance-
relevant details? Fortunately, the system community has
already shown that – despite intricacies and difficulties –
debugging [32] and profiling [16] across multiple abstrac-
tion layers is possible. (2) Legacy applications might not
adopt a new programmingmodel requiring significant source
code modifications. A similar approach has been recently
proposed by the Mojo programming language, which is a
superset of Python and uses declarative programming to
enable hardware acceleration with GPUs and FPGAs for AI
and ML workloads. (3) How to mitigate faults and report
them to the user? Network errors, corrupted memory, and
planned and unplanned node faults such as kernel updates
or power outages are common in data centers having thou-
sands of interconnected compute and memory devices. If not
handled properly, failures may lead to data loss and force
applications to stop and restart. Therefore, our programming
model and its runtime systemmust implement suitable mech-
anisms that guarantee fault tolerance and are compute- and
storage-efficient. Several ideas have been recently discussed
by the systems community, including replication-based ap-
proaches [12, 27, 53] and the striping of memory pages across
multiple memory nodes [36]. The runtime system could also
implement a combination of erasure-coding, one-sided re-
mote memory accesses and compaction, and off-loadable
parity calculations, as it is used by Carbink, a state-of-the-art
approach for fault-tolerant far memory [62].
Conclusion. With our envisioned programming model, ap-
plication developers can fully utilize emerging new hardware
more easily without being concerned about the specifics of
the underlying hardware or the complexity of memory co-
herency models. Building a distributed RTS is a complex
task requiring support from the systems, compiler, and lan-
guage community (cf. Legion [15]). However, the advantages
of our proposal in terms of complexity reduction, resource
utilization, and flexibility will make this effort worthwhile.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back. This work was funded by the German Research Founda-
tion (DFG) within the SPP2037 under grant no. Ke 401/22-2.

193



Programming Fully Disaggregated Systems HOTOS ’23, June 22–24, 2023, Providence, RI, USA

References
[1] 2013. PrestoDB. https://prestodb.io/ Last Accessed: 2023/05/17.
[2] 2014. Apache Spark. https://spark.apache.org/ Last Accessed:

2023/05/17.
[3] 2015. Tensorflow. https://www.tensorflow.org/ Last Accessed:

2023/05/17.
[4] 2016. PyTorch. https://pytorch.org/ Last Accessed: 2023/05/17.
[5] 2020. CXL and GEN-Z iron out a coherent interconnect strat-

egy. https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-
out-a-coherent-interconnect-strategy/ Last Accessed: 2023/05/17.

[6] 2020. Data Processing Units. https://www.nvidia.com/
en-us/networking/products/data-processing-unit/ Last Accessed:
2023/05/17.

[7] 2023. 4th Generation Intel® Xeon® Scalable Processors. https:
//ark.intel.com/content/www/us/en/ark/products/series/228622/4th-
generation-intel-xeon-scalable-processors.html Last Accessed:
2023/05/17.

[8] 2023. Apache Arrow. https://github.com/apache/arrow/pull/34972
Last Accessed: 2023/05/17.

[9] 2023. Compute Express Links. https://www.computeexpresslink.org/
download-the-specification Last Accessed: 2023/05/17.

[10] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud
Moshref, Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gau-
tam Kumar, Sylvia Ratnasamy, David E. Culler, and Amin Vahdat.
2022. Understanding host interconnect congestion. In HotNets. ACM,
198–204.

[11] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. 2018. Remote regions: a simple abstraction for remote
memory. In USENIX Annual Technical Conference. USENIX Association,
775–787.

[12] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In
EuroSys. ACM, 14:1–14:16.

[13] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai,
Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J
Green, Monish Gupta, Sebastian Hillig, et al. 2022. Amazon Redshift
re-invented. In Proceedings of the 2022 International Conference on
Management of Data. 2205–2217.

[14] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, István
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, and HughWilliams. 2020. Sirius: A Flat Datacenter Network
with Nanosecond Optical Switching. In SIGCOMM. ACM, 782–797.

[15] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.
Legion: expressing locality and independence with logical regions. In
SC. IEEE/ACM, 66.

[16] Alexander Beischl, Timo Kersten, Maximilian Bandle, Jana Giceva,
and Thomas Neumann. 2021. Profiling dataflow systems on multiple
abstraction levels. In EuroSys. ACM, 474–489.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: programming protocol-
independent packet processors. Comput. Commun. Rev. 44, 3 (2014),
87–95.

[18] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu,
Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu,
Feng Zhu, and Tong Zhang. 2020. POLARDB Meets Computational
Storage: Efficiently Support Analytical Workloads in Cloud-Native
Relational Database. In FAST. USENIX Association, 29–41.

[19] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. 2016. A cloud-scale acceleration architecture.
In MICRO. IEEE Computer Society, 7:1–7:13.

[20] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Mae
Milano. 2021. New Directions in Cloud Programming. In CIDR.
www.cidrdb.org.

[21] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In NSDI. USENIX
Association, 401–414.

[22] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David E.
Culler, Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey,
Danijela Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang
Ren, Greg Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ran-
ganathan, and Amin Vahdat. 2023. Towards an Adaptable Systems
Architecture for Memory Tiering at Warehouse-Scale. In ASPLOS (3).
ACM, 727–741.

[23] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan S. Milo-
jicic. 2015. Beyond Processor-centric Operating Systems. In HotOS.
USENIX Association.

[24] Georges Gardarin, Fei Sha, and Zhao-Hui Tang. 1996. Calibrating the
Query Optimizer Cost Model of IRO-DB, an Object-Oriented Federated
Database System. In VLDB. Morgan Kaufmann, 378–389.

[25] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam,Manuel Costa, DerekGordonMurray,
Steven Hand, and Michael Isard. 2015. Broom: Sweeping Out Garbage
Collection from Big Data Systems. In HotOS. USENIX Association.

[26] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-
han A. Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning
Input Data Processing as a Service. In USENIX Annual Technical Con-
ference. USENIX Association, 689–706.

[27] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with Infin-
iswap. In NSDI. USENIX Association, 649–667.

[28] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: A hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems. 417–433.

[29] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[30] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan
Boden, et al. 2017. In-Datacenter Performance Analysis of a Tensor
Processing Unit. In ISCA. ACM, 1–12.

[31] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing
an Open Framework for Query Optimization and Compilation. Proc.
VLDB Endow. 15, 11 (2022), 2389–2401.

[32] Timo Kersten and Thomas Neumann. 2020. On another level: how to
debug compiling query engines. In DBTest@SIGMOD. ACM, 2:1–2:6.

[33] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kostic, Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021.
LineFS: Efficient SmartNIC Offload of a Distributed File System with
Pipeline Parallelism. In SOSP. ACM, 756–771.

[34] Peter M. Kogge and John Shalf. 2013. Exascale Computing Trends:
Adjusting to the "New Normal"’ for Computer Architecture. Comput.
Sci. Eng. 15, 6 (2013), 16–26.

194

https://prestodb.io/
https://spark.apache.org/
https://www.tensorflow.org/
https://pytorch.org/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://github.com/apache/arrow/pull/34972
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification


HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

[35] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastruc-
ture for the End of Moore’s Law. CoRR abs/2002.11054 (2020).

[36] Youngmoon Lee, Hassan Al Maruf, Mosharaf Chowdhury, and Kang G.
Shin. 2019. Mitigating the Performance-Efficiency Tradeoff in Resilient
Memory Disaggregation. CoRR abs/1910.09727 (2019).

[37] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. 2018. LeanStore: In-Memory Data Management beyond Main
Memory. In ICDE. IEEE Computer Society, 185–196.

[38] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar
Agarwal, et al. 2023. Pond: Cxl-based memory pooling systems for
cloud platforms. In ASPLOS.

[39] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and
Guy M. Lohman. 2013. NUMA-aware algorithms: the case of data
shuffling. In CIDR. www.cidrdb.org.

[40] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit O. Kanaujia, and Prakash Chauhan. 2023. TPP: Trans-
parent Page Placement for CXL-Enabled Tiered-Memory. In ASPLOS
(3). ACM, 742–755.

[41] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system.
In SOSP. ACM, 439–455.

[42] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with In-Memory Performance. In CIDR. www.cidrdb.org.

[43] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anas-
tasia Ailamaki. 2023. HetCache: Synergising NVMe Storage
and GPU-acceleration for Memory-Efficient Analytics. In CIDR.
www.cidrdb.org.

[44] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden,
and Matei Zaharia. 2018. Evaluating End-to-End Optimization for
Data Analytics Applications in Weld. Proc. VLDB Endow. 11, 9 (2018),
1002–1015.

[45] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muham-
mad Mukarram Bin Tariq, Rui Wang, Jianan Zhang, Virginia Beaure-
gard, Patrick Conner, Steve D. Gribble, Rishi Kapoor, Stephen Kratzer,
Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawh-
ney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang,
Junlan Zhou, and Amin Vahdat. 2022. Jupiter evolving: transforming
google’s datacenter network via optical circuit switches and software-
defined networking. In SIGCOMM. ACM, 66–85.

[46] Paula Pufek, H. Grgic, and Branko Mihaljevic. 2019. Analysis of
Garbage Collection Algorithms and Memory Management in Java.
In MIPRO. IEEE, 1677–1682.

[47] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,

Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. 2014. A reconfigurable fabric for accelerat-
ing large-scale datacenter services. In ISCA. IEEE Computer Society,
13–24.

[48] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In OSDI. USENIX Association, 315–332.

[49] Enrico Russo, Maurizio Palesi, Salvatore Monteleone, Davide Patti,
Giuseppe Ascia, and Vincenzo Catania. 2022. MEDEA: A Multi-
objective Evolutionary Approach to DNNHardwareMapping. InDATE.
IEEE, 226–231.

[50] David Reinsel-John Gantz-John Rydning, J Reinsel, and J Gantz. 2018.
The digitization of the world from edge to core. Framingham: Interna-
tional Data Corporation 16 (2018).

[51] Ian Schneider. 2022. Building low-carbon computer systems:
when does carbon diverge from cost? [Talk]. https://youtu.be/
W7uTbxCxmPg Last Accessed: 2023/05/17.

[52] Boris M Shabanov and Oleg I Samovarov. 2019. Building the software-
defined data center. Programming and Computer Software 45 (2019),
458–466.

[53] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2019.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In USENIX ATC. USENIX Association.

[54] Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang. 2022. Towards
a fully disaggregated and programmable data center. In APSys. ACM,
18–28.

[55] Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators:
Efficiently Integrating Custom Algorithms into Modern Databases.
Proc. VLDB Endow. 15, 5 (2022), 1119–1131.

[56] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the next generation. In EuroSys. ACM, 30:1–30:14.

[57] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2020. Building blocks for persistent memory.
VLDB J. 29, 6 (2020), 1223–1241.

[58] Lukas Vogel, Daniel Ritter, Danica Porobic, Pınar Tözün, Tianzheng
Wang, and Alberto Lerner. 2023. Data Pipes: Declarative Control over
Data Movement. In CIDR. www.cidrdb.org.

[59] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Viktor Leis,
Thomas Neumann, and Alfons Kemper. 2020. Mosaic: A Budget-
Conscious Storage Engine for Relational Database Systems. Proc.
VLDB Endow. 13, 11 (2020), 2662–2675.

[60] StephanieWang, Benjamin Hindman, and Ion Stoica. 2021. In reference
to RPC: it’s time to add distributed memory. In HotOS. ACM, 191–198.

[61] Yiying Zhang, Ardalan Amiri Sani, and Guoqing Harry Xu. 2021. User-
defined cloud. In HotOS. ACM, 33–40.

[62] Yang Zhou, Hassan M. G.Wassel, Sihang Liu, Jiaqi Gao, James Mickens,
Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M.
Levy, and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory. In
OSDI. USENIX Association, 55–71.

195

https://youtu.be/W7uTbxCxmPg
https://youtu.be/W7uTbxCxmPg

	Abstract
	1 Introduction
	2 Vision
	2.1 Foundations
	2.2 Mapping to Disaggregated Systems
	2.3 Programming Model
	2.4 Mapping Application Types

	3 Discussion
	Acknowledgments
	References

