The Case for Performance Interfaces

for Hardware Accelerators

Rishabh Iyer!, Jiacheng Ma!, Katerina Argyraki!, George Candea!, Sylvia Ratnasamy?
L EPFL, Switzerland ? UC Berkeley

Abstract

While systems designers are increasingly turning to hard-
ware accelerators for performance gains, realizing these
gains is painstaking and error-prone. It can take several
person-months to determine if a given accelerator is a good
fit for a given piece of code, and accelerators that cost mil-
lions of dollars to build can slow down the very systems they
were designed to accelerate.

We argue that hardware accelerators must come with per-
formance interfaces—interfaces that provide usable informa-
tion about the accelerator’s performance behavior just like
semantic interfaces do for functionality—to facilitate their
correct use. Since accelerators do not provide new function-
ality and are only useful if they improve system performance,
performance interfaces are as integral to their correct use as
semantic interfaces.

ACM Reference Format:

Rishabh Iyer, Jiacheng Ma, Katerina Argyraki, George Candea,
Sylvia Ratnasamy. 2023. The Case for Performance Interfaces for
Hardware Accelerators. In Workshop on Hot Topics in Operating Sys-
tems (HOTOS °23), June 22-24, 2023, Providence, RI, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3593856.3595904

1 Introduction

With the decline of Moore’s law [59], system designers are in-
creasingly reliant on hardware accelerators for performance
improvements. From datacenters to hand-held devices, hard-
ware accelerators are used to speed up a wide variety of
applications such as machine learning [4, 33, 34, 45], video
processing [21, 54], compression, encryption [14, 29] and
system infrastructure tasks [5, 22, 26, 36].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTOS °23, June 22-24, 2023, Providence, RI, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0195-5/23/06....$15.00
https://doi.org/10.1145/3593856.3595904

38

However, designing and building systems that use acceler-
ators correctly (i.e., fully extract their performance benefits)
is a challenging task, because developers have little to no vis-
ibility into an accelerator’s expected performance behavior.
Every accelerator bakes certain design choices into silicon,
such as optimizing throughput over latency [49] or mak-
ing assumptions about the typical workload [36], and if the
software is a poor fit for these choices, running it on the
accelerator may result in worse performance [37, 40, 41].
Since building an accelerator requires large teams and takes
years, such efforts that miss their mark cost several million
dollars [2].

The goal of this work is to facilitate the correct use of ac-
celerators by enabling developers to answer three frequently
asked questions about accelerator performance. During the
system design phase, when no code has been written, de-
velopers should be able to answer: “What throughput and
latency can I expect from this accelerator for my expected work-
load?” and “Which of these accelerators is the best fit for my
expected workload?”. Finally, when trying to optimize the per-
formance of an existing implementation, developers should
be able to answer: “What performance can I expect from my
code if I offload (a part of it) to this accelerator?”

The only way developers can answer these questions today
is by porting the code to the accelerator, writing representa-
tive tests, and benchmarking it—a process that ranges from
tedious to impossible. In the best case, this takes several
person-months [48, 51, 52] since each accelerator exposes a
different Application Programming Interface (API) and Soft-
ware Development Kit (SDK). In other cases, such as during
the system design stage when no code has yet been written,
or when the accelerator is built by a manufacturer without
access to the code that would be offloaded, it is downright
impossible [23].

We argue that accelerators must come with performance
interfaces [30]—constructs that summarize performance be-
havior just like semantic interfaces summarize functionality—
to ensure their correct use. Semantic interfaces (e.g., code
documentation, header files) enable developers to quickly
and correctly answer the above questions for functionality.
Developers routinely use such interfaces to determine the
functionality of third-party libraries, which library is best
suited to their requirements, or how incorporating a library
will affect their system’s functionality as a whole. Since an

https://doi.org/10.1145/3593856.3595904
https://doi.org/10.1145/3593856.3595904

accelerator’s currency is performance—all functionality can
be implemented on general-purpose hardware—we argue
that performance interfaces are as integral to their correct
use as semantic interfaces.

What should performance interfaces for accelerators look
like? Who provides them? We propose three candidate repre-
sentations: (1) natural language text akin to code documen-
tation, (2) simple executable programs akin to specifications,
and (3) a Petri-net [47] based model akin to a precise inter-
mediate representation (IR). Each representation provides a
different balance between human readability and precision,
allowing users to pick the one best suited to their use case.
We envision these interfaces being provided by accelerator
vendors and shipping with the accelerator, just like semantic
interfaces are provided today.

Are such performance interfaces for accelerators feasi-
ble? Our initial experiences and discussions with accelerator
builders give us three reasons to be optimistic. First, since
accelerators are much simpler than today’s general-purpose
hardware, we can rely on high-fidelity models from the 80s
and 90s (summarized in [19]). Second, since a performance
interface only describes performance and not functional-
ity [30], it can abstract away all implementation details that
are only relevant to functionality, and it could be much sim-
pler than the underlying implementation. Finally, discussions
with accelerator builders indicate that they have an intuitive
understanding of the factors that impact performance. So,
we believe that, for them, writing a performance interface
for their hardware is on par (in terms of difficulty) with a
software developer writing a semantic interface for their
software.

In summary, we argue that performance interfaces for ac-
celerators are both necessary and feasible. Hardware today
provides us with semantic modularity and interfaces that
provide firm foundations for the design of complex systems.
In contrast, we do not have equivalent performance mod-
ularity or interfaces, and that ship has arguably sailed for
general-purpose hardware. Accelerators provide a golden op-
portunity to correct this and ensure that hardware provides
reliable performance interfaces that systems software can
build upon. We believe that the widespread adoption of such
interfaces could be the first step towards a future where we
can build systems with well-understood performance, just
like types and object-oriented programming enabled us to
build programs that were orders of magnitude bigger, better,
yet safer than any that came before.

2 System developers are flying blind!

We now describe three scenarios that depict how lack of
visibility into accelerators’ expected performance, makes de-
signing and building systems that use them a challenging

39

task. We use the term “accelerators” to refer to fixed-function
ASICs whose functionality is baked into silicon, such as the
TPU [34], the accelerators available on SoC-based Smart-
NICs [7], Protoacc [36], and Inferentia [4]. We do not con-
sider reprogrammable hardware such as FPGAs and GPUs.

Example #1: System on Chip (SoC) designer

Imagine you are leading the design of the SoC for a Smart-
NIC. A SmartNIC usually comprises a few general-purpose
cores along with hardware accelerators for compression, en-
cryption, RDMA, NVMe virtualization, NVMe-over-fabrics,
hardware clock synchronization, etc. These accelerators are
usually designed by third-party entities and sold as IP blocks
which are put together as an SoC [28].

The early stages of any SoC design requires answering
the question: “Which accelerator implementations (IP blocks)
should my SoC include and how big (area) must each be?”

There is no good way to answer this question today [27].
Simulating each configuration by porting example work-
loads is typically infeasible or outright impossible. In the
best-case scenario, the search space of all possible IP block
combinations is too large. In the worst case, you might not
even have access to the code you are building the accelerator
for. For instance, cloud providers (e.g., AWS, Azure) who
have custom accelerators manufactured for them typically
do not share their proprietary code with the manufacturer
(e.g., Intel, NVIDIA).

As aresult, SoC designers typically rely on heuristics and
accumulated wisdom to decide SoC configurations [27]. This
can lead to expensive mistakes because designing an SoC
typically takes 2-3 years and costs several million dollars [2].

Example #2: Infrastructure stack developer

Imagine you are the engineer responsible for managing the
RPC stack at an enterprise datacenter. Currently, your stack
runs on commodity servers, but you are considering offload-
ing it to an accelerator. Your candidate hardware platforms in-
clude new servers with accelerators for RPC serialization/de-
serialization, such as Protoacc [36] or Optimus Prime [49]
or one of several SmartNICs.

Ideally, you want to answer questions such as: “Which
available accelerator/SmartNIC offers me the best performance
per dollar?”, “How many CPU cores can I save with an offloaded
stack?”, and “What is the performance impact of offloading
different portions of my stack?”

The only way to gain any intuition with respect to the
above questions is to purchase every candidate accelerator,
port the code, and benchmark it—a process that can take sev-
eral person-months per accelerator [48, 51, 52]. Most com-
mercial accelerators only describe the functionality they ac-
celerate [7] and the few that describe expected performance

only provide upper/lower bounds (e.g., maximum sustain-
able throughput) or performance for standard benchmarks
(e.g., OVS for SmartNICs) [43]. Even once you purchase the
accelerator, you do not gain access to any additional per-
formance details; you must port your code and benchmark
it. This is typically a painstaking process given that each
accelerator exposes a vendor-specific API and SDK [52].
We want to emphasize that acquiring any accelerator
and blindly offloading the code is not only suboptimal but
can also degrade system performance. Every accelerator
trades off generality for efficiency and bakes certain as-
sumptions about the workload into silicon. Among RPC data
(de)serialization accelerators for example, Optimus Prime
is best suited for small data objects (<= 300B), while Pro-
toacc is best suited for larger data objects (>= 4KB) [36]. For
workloads comprising small data objects (e.g., short strings),
Protoacc can perform worse than a regular Xeon due to the
cost of transferring the data to and from the accelerator [36].
Thus, system designers cannot blindly deploy any particular
accelerator and hope to reap performance benefits.

Example #3: Compilers for accelerators

Just like the developers above, toolchains that use accelera-
tors also suffer from the lack of performance visibility. We
demonstrate this using the example of TVM [12], a widely
used state-of-the-art compiler for machine learning.

To optimize the latency of deep-learning inference, TVM
“auto-tunes” [13] code to available accelerators using a two-
step process. In the first step, the compiler extensively pro-
files the accelerator using multiple candidate instruction
sequences and extracts a program-specific cost model. In the
second, the compiler leverages a learning-based search algo-
rithm that generates optimized code based on the extracted
model.

However, autotuning code is time-consuming and is bot-
tlenecked by the first (profiling) step. This is because the
compiler has no way to quickly and accurately answer the
question: “What latency can I expect when running this se-
quence of instructions on the accelerator?”. The compiler is
forced to treat the accelerator as a black box and profile it
either by running cycle-accurate simulations or by synthe-
sizing and running the code directly on the accelerator. Since
both the above options are known to be slow [6] autotuning
code can take several minutes to a few hours.

In summary, the design (examples #1 and #2) and imple-
mentation (example #3) of systems that use accelerators is
impaired by the lack of usable information about their per-
formance behavior. We believe that the status quo is equiva-
lent to writing software without semantic interfaces. With
accelerators expected to become ubiquitous in the near fu-
ture [44, 62], this status quo must change.

40

3 Performance Interfaces for Accelerators

We now describe our proposal for what performance in-
terfaces for accelerators should look like. Throughout this
section, we use 4 open-source accelerators as running ex-
amples: a Bitcoin miner [8], a JPEG decoder [35], an RPC
message (de)serializer from Google named Protoacc [36] and
the VTA deep-learning accelerator [42].

We propose three candidate representations for perfor-
mance interfaces: (1) natural language (English), (2) simple,
executable programs (Python), and (3) a Petri net [47]. We
picked these three representations as counterparts to widely
used representations for semantic interfaces: we expect the
English text to resemble semantic interfaces extracted from
code documentation by frameworks such as Doxygen [18]
and Javadoc [32], the Python programs to resemble func-
tional specifications, and the Petri nets to resemble an inter-
mediate representation like LLVM.

Each representation provides a different balance between
human readability (being smaller and simpler than the imple-
mentation) and precision (being accurate enough to reason
about the several factors that impact performance). Natu-
ral language interfaces are the easiest to read but can only
describe a few key performance properties. Programs are
harder for developers to read but can provide more details
such as the specific request types the accelerator is best
suited for. Finally, Petri nets are not human-readable but
can accurately (< 2% average error in our experiments) pre-
dict the accelerator’s throughput and latency for arbitrary
workloads.

We expect the first two representations to be most useful
during the system design stage, when either no code has
been written (example #1 in §2) or when developers and
tools do not have access to the accelerator (example #2). We
expect the Petri-net IR to be most useful during the system
implementation and optimization stages (example #3).

Natural language interfaces

Fig. 1 illustrates three interfaces as natural language text
for the JPEG decoder, Bitcoin miner, and Protoacc. All three
interfaces describe only the key performance aspects at a
high level. For the JPEG decoder, the latency is inversely
output_image_size
input_image_size
the accelerator must perform a similar computation on every
input byte. For the Bitcoin miner, a user can simultaneously
configure both the latency and size of the accelerator using
the parameter Loop. This is because the accelerator imple-
ments a SHA-256 hash calculation with Loop controlling the
extent to which the hash function’s loop is unrolled in hard-
ware. Finally, Protoacc’s throughput decreases as the degree
of nesting within a message increases, since each nesting
involves a pointer-chasing operation.

proportional to the compression rate () since

Latency is inversely proportional to the input image’s compression rate

Latency (cycles) is equal to the configuration parameter Loop. However,
the area occupied by accelerator grows inversely with Loop.

Throughput decreases as the degree of nesting in a messages increases

Figure 1: Example interfaces as English text for the JPEG
decoder, Bitcoin miner, and Protoacc (top to bottom).

This simple representation of performance has two ben-
efits: (1) It helps developers understand how performance
varies across inputs for what are otherwise black boxes. For
instance, the SoC designer in example #1 could use the inter-
face of the Bitcoin miner to decide how much area on the chip
she should allocate to it while knowing how that impacts
overall latency. (2) It offers the lowest barrier to adoption. In
all our discussions with accelerator builders, they were able
to produce such interfaces within seconds. We envision such
interfaces being similar to the Big-O notation, which, despite
providing only asymptotic bounds, continues to be used even
in today’s microsecond-scale systems (e.g., Redis [55]).

Interfaces as executable programs

Figures 2,3 provides examples of latency interfaces as Python
programs for two accelerators: the JPEG decoder and Pro-
toacc. Just like a specification, the programs take the same
inputs as the accelerator—an image and the message to be
serialized, respectively—but instead of describing how the
accelerator computes the correct output, they only describe
the accelerator’s latency and throughput as a function of the
input.

Such interfaces provide a more precise characterization
of accelerator performance than the natural language inter-
faces above. For example, the JPEG decoder’s latency inter-
face not only provides the constant factors in the latency
expression but also indicates that latency has an upper bound
(size * 136.5). Similarly, Protoacc’s throughput interface tells
us the achievable throughput for each of its read and write
stages, allowing developers to identify which messages are
bottlenecked by each stage. Providing a closed-form for-
mula for Protoacc’s latency is hard. This is because the read
and write latencies for a single message overlap in com-
plex, message-dependent ways. Hence the latency interfaces
in Fig. 3 only provide an upper and lower bound, which is
still much better than no information at all.

Interfaces as Python programs can provide reasonably
accurate performance predictions. We evaluated JPEG’s la-
tency and throughput interfaces using 1500 random images
and observed an average (maximum) prediction error of 2.1%
(10.3%) and 2.2% (11.2%) respectively. Similarly, when evalu-
ating Protoacc’s throughput and latency interfaces using 32
message formats from its test suite, we observed an average

1 def latency_jpeg_decode(img):
2 size = img.orig_size/64

3 return max(sizex136.5,

4 size/64*((5/img.compress_rate)*3+6)*1.5)
6

def tput_jpeg_decode(img):
Images are processed one-by-one
8 return 1/latency_jpeg_decode (img)

Figure 2: Interfaces as Python programs for the JPEG decoder.

1 def read_cost(msg):

2 cost=0

3 for sub_msg in msg:

4 cost+= read_cost(sub_msg)

5 return cost+6 + avg_mem_latency*2 + (4+

avg_mem_latency) * ceil(msg.num_fields/32)

6

7 def tput_protoacc_ser(msg):

8 sub_msg_cost = @

9 for sub_msg in msg:

10 sub_msg_cost+= read_cost(sub_msg)

11 read_tput = 1/((4+avg_mem_latency)*ceil(msg.
num_fields/32) + sub_msg_cost)

write_tput = 1/(5+msg.num_writes)

return min(read_tput,write_tput)

def min_latency_protoacc_ser(msg):
6 return (5+msg.num_writes)*avg_mem_latency

18 def max_latency_protacc_ser (msg):

19 sub_msg_cost = @

20 for sub_msg in msg:

21 sub_msg_cost += read_cost(sub_msg)

22 return min_latency_protoacc_ser (msg) + (4+
avg_mem_latency)xceil (msg.num_fields/32) +
sub_msg_cost

Figure 3: Interfaces as Python programs for Protoacc.

(maximum) error of 5.9% (13.3%) for throughput, while the
latency was always within the predicted bounds.

We envision such interfaces being used during the sys-
tem design stage to (1) quickly compute the speedup for the
computation offloaded to the accelerator and (2) compare
multiple accelerator implementations that provide identical
functionality. For instance, the infrastructure stack designer
in example #2 could use such interfaces to compute which
RPC data transformation accelerator or SmartNIC gives her
the maximum speedup per dollar for her expected work-
load, by running the corresponding Python programs on
representative RPC objects.

Formal Petri net interfaces

With this representation, we seek to create a “performance
IR” for accelerators, i.e., an abstraction that enables tools (as
opposed to humans) to precisely reason about accelerator
performance, just like how LLVM IR [39] enables compilers
to reason about code semantics. We cannot reuse existing IRs
because they are designed for software’s sequential execution
model. In contrast, accelerators typically comprise multiple
pipeline stages operating in parallel, leading to complexities
such as backpressure, internal queueing, and asynchronous
processing.

41

Acce- | Avg (max) prediction error | Complexity

lerator | Latency \ Throughput | w.r.t implem.
JPEG | 0.09% (0.50%) | 0.09% (0.51%) 2.5%
VTA 1.49% (9.3%) | 1.44% (8.55%) 2.6%

Table 1: Prediction accuracy and complexity of interfaces as
Petri nets. Complexity is measured as the ratio of LOC in the
Petri net as compared to the LOC in the implementation.

We therefore choose to represent the performance IR as
Petri nets [47], a class of graphs designed for modeling paral-
lel asynchronous systems. Petri nets consist of four elements:
places, tokens, transitions, and edges. Places represent data
queues (e.g., buffers, registers), tokens represent individual
data units flowing through the system, transitions represent
data transformations (e.g., an ALU computation) and edges
connect places and transitions. The flow of data through the
net is determined by the firing of its transitions. Transitions
fire whenever all their input places have sufficient tokens;
when they do, they consume tokens from their input places
and produce tokens in their output places.

We model accelerators using Petri nets as follows: For
each processing element in the accelerator, we write a tran-
sition function that a) captures its delay, i.e., how long it
takes to process input data (tokens) and b) transforms the
tokens to ensure that downstream transition functions can
accurately compute their delays. Since multiple transitions
can fire simultaneously, and edges capture inter-element de-
pendencies, our Petri net-based performance IR accurately
captures both the accelerator’s parallel execution model and
factors such as internal queuing and backpressure. Thus, the
Petri net represents a circuit that is “performance equivalent”
to the accelerator’s circuit.

We manually derived Petri net interfaces for two acceler-
ators: the JPEG decoder and VTA. We evaluated their pre-
diction accuracy using 50 random images and 1500 random
code sequences respectively (Table 1). We observed that the
JPEG decoder’s Petri net predicted both latency and through-
put with an average and maximum error of 0.09% and 0.5%
respectively, both of which are about 20X lower than the
corresponding errors of the Python programs. For the more
complex VTA, the average and maximum prediction error
is higher, about ~ 1.5% and ~ 9% respectively. These errors
arise due to us deliberately cutting corners to make the man-
ual derivation of the Petri nets easier. We are confident that
with extra effort, the Petri nets can be fully precise.

To show how the Petri net-based IR can be immediately
useful, we added support for it in TVM’s auto-tuning engine
and used it to profile VTA for the 1500 code sequences. We
observed that the Petri-net interfaces lead to a maximum
(minimum) speedup of 1,312 X (2.1x) over state-of-the-art
cycle-accurate simulation [64]. This speedup stems from the

42

fact that the Petri net does not concern itself with the seman-
tics of the accelerator, but rather it only aims to have the
same performance properties. This makes it much simpler
than the accelerator’s internal circuit (Table 1) and enables
it to run much faster.

A natural question at this point is: “Why propose the pre-
vious representations when we can have a precise IR?” The
answer is that Petri nets are hard to understand for a de-
veloper unfamiliar with the accelerator’s internal circuitry.
Such developers (which we expect to be the majority) can
only use tools to analyze or run the Petri net. In contrast, de-
velopers can quickly eyeball the human-readable interfaces
in English or Python and tell how performance will vary
across inputs.

In summary, we propose three representations for acceler-
ator performance interfaces that enable developers and tools
to reason about latency and throughput at different levels
of precision. Our initial experiences make us optimistic that
such interfaces are both useful and feasible. However, there
remain several challenges that must be overcome for this
vision to become a reality; we discuss these further in §5.

4 Related Work

Performance modeling: While traditional approaches to
summarizing performance (such as upper bounds and bench-
mark scores) are useful, they are ill-suited to being perfor-
mance interfaces because they cannot tell developers what to
expect for their code and workload. For instance, an acceler-
ator like Optimus Prime can sustain a maximum throughput
of 33 Gbps, but this drops to 14 Gbps for realistic workloads.
Similarly, while standardized benchmark suites have been
widely used in the computer architecture (e.g., SPEC [60]),
databases (e.g., TPC-C [63]) and machine learning (e.g., Dawn-
bench [17]) communities, developers must divinate how sim-
ilar their code is to each program in the benchmark suite if
they are to know what performance to expect [50].

We were heavily inspired by more recent work on per-
formance modeling of both software [15, 16, 24, 25, 30, 31,
38, 52, 56, 65, 66] and hardware [9, 10, 19, 20, 27, 28, 37]. In
particular, we borrowed the notion of performance interfaces
as programs from PIX [30] and Freud [56], although both
use such interfaces for software running on general-purpose
hardware and neither can reason about throughput.

Better compilers for accelerators: To eliminate the effort
of porting code across accelerators, researchers have pro-
posed several compilers that automatically generate code
that runs on different accelerators [12, 46, 53, 57]. We see
such compilers as being complementary to interfaces be-
cause they are only useful once the developer has both an
implementation and access to the accelerator, and cannot

answer questions during the system design stage. Further-
more, compilers themselves can benefit from performance
interfaces to generate better code, as shown in example #3.

5 Open Questions

Are performance interfaces for accelerators feasible as
accelerator complexity increases? Our initial experience
with Petri nets makes us optimistic. After all, VTA is a fairly
complex accelerator with internal queuing, parallelism, and
deep pipelines, and our Petri net model was able to sum-
marize its throughput and latency for arbitrary instruction
sequences with an average prediction error of < 2%.

That said, there are still several open challenges, most of
which do not arise from the accelerator’s internal circuitry,
but rather from how it interacts with other hardware struc-
tures, such as the TLB and interconnects. For example, since
co-processors like Protoacc access memory via the TLB [36],
the Petri net model would need to include the TLB state
to be able to reason precisely about memory access laten-
cies. Similarly, a Petri net for a SmartNIC will likely need to
include a model of the interconnect, since it can have a sig-
nificant impact on performance [41]. One possible solution
to this challenge could be to develop individual Petri nets
for such components once and reuse them across multiple
accelerators.

How should accelerator vendors produce performance
interfaces for their hardware? As a start, we believe that
accelerator designers can manually produce performance
interfaces, akin to how software developers are responsible
for writing semantic interfaces. We found that accelerator
builders usually possess an intuitive understanding of the fac-
tors that impact the performance of their hardware and can
immediately come up with natural language interfaces that
describe whether their accelerators are memory-/compute-
bound and what aspects of the input workload are likely
to lead to performance variability. Producing the other two
representations is harder and typically took us ~ 2 person-
days to extract and test, once we had fully understood the
accelerator’s implementation. Contrary to our expectations,
the Python programs took as long as the Petri nets, since it
was often hard to decide what level of abstraction to expose
in the program while translating a circuit into a Petri net
was a fairly mechanical process.

That said, we believe that building tools that can automati-
cally extract interfaces as Petri nets or Python programs from
accelerator implementations is a promising direction for fu-
ture work. While there has been recent work on tools for
automatic (semantic) analysis of Verilog code [1, 3, 11, 58, 61],
using these tools to analyze the performance of production
ASICs remains an open question.

43

How can one use performance interfaces to reason
about end-to-end performance? Predicting the impact of
a partial offload on end-to-end application performance is a
hard problem. To do so accurately, one must take into account
factors such as how the original codebase will need to change,
data movement costs, etc. which will vary from application to
application. Merely plugging performance interfaces into the
original code is not sufficient; while the interface can return
performance, it will not return a semantically meaningful
response and may cause the calling code to behave arbitrarily.

Nevertheless, we believe that executable performance in-
terfaces such as Python programs and Petri nets can enable
developers to answer this question with a little extra effort. A
strawman solution would work as follows: The application is
first run with a software implementation of the accelerator’s
API and all requests and responses are saved. The application
is then re-run with a simple simulator that spins idly for the
latency computed by the interface for the input request and
then returns the correct, saved response. Since accelerator
invocations are typically pure functions, such a strawman
should work, at least for deterministic applications.

6 Conclusion

We argue that hardware accelerators should ship with inter-
faces that provide usable information about their expected
performance behavior and that such interfaces are as inte-
gral to their correct use as semantic interfaces that describe
functionality. We believe that such interfaces can be the
first step toward a future where we build systems with well-
understood performance, just like types and object-oriented
programming enabled us to build programs that were orders
of magnitude bigger, yet safer than any that came before.

However, any such interfaces will have to come from hard-
ware vendors, and they will only do so if there is sufficient
pressure from their primary customers, i.e., the systems com-
munity. Hence, we invite the community to actively pursue
research on what performance information these interfaces
should expose, how they can be used, and how they can be
provided by hardware vendors.

7 Acknowledgements

We thank our shepherd Jialin Li and the HotOS reviewers
for their detailed feedback that significantly improved the
paper. We are also grateful to the many people whose in-
puts helped shape our thoughts—Thomas Bourgeat, Mahyar
Emami, Narek Galstyan, Siddharth Gupta, Sagar Karandikar,
Sahand Kashani, and James Larus.

References

[1] ANDRAUS, Z. S., LIFFITON, M. H., AND SAKALLAH, K. A. Reveal: A

(12

[13

(14

[15

[16

[21

]

]

[l

—_ =

—

Formal Verification Tool for Verilog Designs. In Logic for Programming,
Artificial Intelligence, and Reasoning (2008).

The Economics of ASICs. https://www.electronicdesign.com/
technologies/embedded-revolution/article/21808278/ensilica-the-
economics-of-asics-at-what-point-does-a-custom-soc-become-
viable. Last accessed on 2023-05-16.

ATHALYE, A., KAASHOEK, M. F., AND ZELDOVICH, N. Verifying Hardware
Security Modules with Information-Preserving Refinement. In Symp.
on Operating Sys. Design and Implem. (2022).

AWS Inferentia Accelerators for Deep Learning Inference. https://aws.
amazon.com/machine-learning/inferentia/. Last accessed on 2023-05-
16.

AWS Nitro System. https://aws.amazon.com/ec2/nitro/. Last accessed
on 2023-05-16.

BEAMER, S. A Case for Accelerating Software RTL Simulation. In IEEE
Micro (2020).

NVIDIA Bluefield-2 DPU. https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield- 2-
dpu.pdf. Last accessed on 2023-05-16.

Open Source Bitcoin Miner. https://github.com/progranism/Open-
Source-FPGA-Bitcoin-Miner. Last accessed on 2023-05-16.

BoraN, N. K, Yapav, D. K., AND IYER, R. Performance Modelling and
Dynamic Scheduling on Heterogeneous-ISA Multi-core Architectures.
In Intl. Symp. on VLSI Design and Test (2019).

Boran, N. K., Yapav, D. K., AND IYER, R. Classification based scheduling
in Heterogeneous ISA Architectures. In Intl. Symp. on VLSI Design and
Test (2020).

CHATTOPADHYAY, S., LONSING, F., PiccoLBONI, L., Son1, D., WEI, P.,
ZHANG, X., ZHOU, Y., CARLONI, L. P., CHEN, D., CoNgG, J., KARRI, R,,
ZHANG, Z., TRIPPEL, C., BARRETT, C. W., AND MITRA4, S. Scaling Up
Hardware Accelerator Verification using A-QED with Functional De-
composition. In Formal Methods in Computer Aided Design (2021).
CHEN, T, MoREAU, T, JIANG, Z., ZHENG, L., YAN, E. Q., SHEN, H., CowAN,
M., WANG, L., Hu, Y., CEzE, L., GUESTRIN, C., AND KRISHNAMURTHY,
A. TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning. In Symp. on Operating Sys. Design and Implem. (2018).
CHEN, T., ZHENG, L., YAN, E., JIANG, Z., MOREAU, T., CEZE, L., GUESTRIN,
C., AND KRISHNAMURTHY, A. Learning to Optimize Tensor Programs.
In Advances in Neural Information Processing Systems (2018).

CHI10SA, M., MAscHI, F., MULLER, I, ALONSO, G., AND MAY, N. Hardware
Acceleration of Compression and Encryption in SAP HANA. In Intl.
Conf. on Very Large Databases (2022).

Corpa, E., DEMETRESCU, C., AND FINoccH, L. Input-sensitive Profiling.
In Intl. Conf. on Programming Language Design and Implem. (2012).
Coppra, E., DEMETRESCU, C., FINOCCHI, I., AND MAROTTA, R. Estimating
the Empirical Cost Function of Routines with Dynamic Workloads. In
Intl. Symp. on Code Generation and Optimization (2014).
DAWNBench: An End-to-End Deep Learning Benchmark and Com-
petition. https://dawn.cs.stanford.edu/benchmark/. Last accessed on
2023-05-16.

Doxygen. https://www.doxygen.nl. Last accessed on 2023-05-16.
EecknOUT, L. Computer Architecture Performance Evaluation Meth-
ods. In Synthesis Lectures on Computer Architecture (2010).

EveErmaN, S., EEckHOUT, L., KARKHANIS, T., AND SmITH, J. E. A Per-
formance Counter Architecture for Computing Accurate CPI Com-
ponents. In Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (2006).

Facebook: Video transcoding with Mount Shasta.
//engineering.fb.com/2019/03/14/data-center-engineering/

https:

44

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

accelerating-infrastructure/. Last accessed on 2023-05-16.
FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D., DABAGH, A.,
ANDREWARTHA, M., ANGEPAT, H., BHANU, V., CAULFIELD, A. M., CHUNG,
E. S., CHANDRAPPA, H. K., CHATURMOHTA, S., HUMPHREY, M., LAVIER,
J.,Lam, N., L1u, F., OvrcHAROV, K., PADHYE, J., POPURI, G., RAINDEL,
S., SAPRE, T., SHAW, M., S1iLvA, G., SIVAKUMAR, M., SRIVASTAVA, N.,
VERMA, A., ZUHAIR, Q., BANsAL, D., BURGER, D., VaIp, K., MaLTz, D. A,
AND GREENBERG, A. G. Azure Accelerated Networking: SmartNICs in
the Public Cloud. In Symp. on Networked Systems Design and Implem.
(2018).

Formal Methods Only Solve Half My Problems. https://brooker.co.za/
blog/2022/06/02/formal.html. Last accessed on 2023-05-16.

Fu, S, GupTa, S., MITTAL, R., AND RATNASAMY, S. On the use of ML
for blackbox system performance prediction. In Symp. on Networked
Systems Design and Implem. (2021).

GOLDSMITH, S., AIKEN, A., AND WILKERSON, D. S. Measuring empirical
computational complexity.

Google-Intel Infrastructure Processing Unit (IPU). https:
//www.intel.com/content/www/us/en/products/details/network-
io/ipu/e2000-asic.html. Last accessed on 2023-05-16.

HiLr, M., AND JANAPA REDDI, V. Gables: A Roofline Model for Mobile
SoCs. In Intl. Symp. on High-Performance Computer Architecture (2019).
Hirr, M. D., AND REDDL, V. J. Accelerator-level parallelism. In Commu-
nications of the ACM (2021).

Intel QAT: Accelerating Data Compression and Encryption.
https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-quick-assist-technology-overview.html. Last
accessed on 2023-05-16.

IYER, R., ARGYRAKI, K., AND CANDEA, G. Performance Interfaces for
Network Functions. In Symp. on Networked Systems Design and Implem.
(2022).

IYER, R., PEDROSA, L., ZAOSTROVNYKH, A., PIRELLI, S., ARGYRAKI, K.,
AND CANDEA, G. Performance Contracts for Software Network Func-
tions. In Symp. on Networked Systems Design and Implem. (2019).
Javadoc. https://docs.oracle.com/javase/8/docs/technotes/tools/
windows/javadoc.html. Last accessed on 2023-05-16.

Jouppr, N. P,, YooN, D. H., AsHCRAFT, M., GOTTSCHO, M., JABLIN, T. B.,
Kurian, G., Laupon, J., L1, S., Ma, P. C,, Ma, X., NoRRIE, T., PAaTIL, N.,
PRASAD, S., YOUNG, C., ZHOU, Z., AND PATTERSON, D. A. Ten Lessons
From Three Generations Shaped Google’s TPUv4i : Industrial Product.
In Intl. Symp. on Computer Architecture (2021).

Jouprr, N. P,, YoUuNg, C., PaT1L, N., PATTERSON, D. A., AGRAWAL, G.,
Bajwa, R, BATES, S., BHATIA, S., BODEN, N., BORCHERS, A., BOYLE,
R., CANTIN, P., CHAO, C., CLARK, C., CORIELL, J., DALEY, M., DAU, M.,
DEAN, J., GELB, B., GHAEMMAGHAMI, T. V., GOTTIPATI, R., GULLAND,
W., HaemANN, R., Ho, C. R., HoGBERG, D., Hu, J., HunDT, R., HURT, D.,
IBARZ,]., JAFFEY, A., JAWORSKI, A., KAPLAN, A., KHAITAN, H., KILLE-
BREW, D., KocH, A., KuMmAR, N, Lacy, S., Laupon, J., Law,], LE, D.,
LEARY, C., L1u, Z., Luckk, K., LUNDIN, A., MACKEAN, G., MAGGIORE,
A., MAHONY, M., MILLER, K., NAGARAJAN, R., NARAYANASWAMI, R., N1,
R., N1x, K., NORRIE, T., OMERNICK, M., PENUKONDA, N., PHELPS, A.,
Ross, J., Ross, M., SALEK, A., SAMADIANT, E., SEVERN, C., S1zikov, G.,
SNELHAM, M., SOUTER, J., STEINBERG, D., SWING, A., TAN, M., THORSON,
G., T1aN, B, Toma, H., TUTTLE, E., VASUDEVAN, V., WALTER, R., WANG,
W., WiLcox, E., AND YooN, D. H. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Intl. Symp. on Computer Architecture
(2017).

High throughput, pipelined JPEG decoder. https://github.com/
ultraembedded/core_jpeg. Last accessed on 2023-05-16.
KARANDIKAR, S., LEARY, C., KENNELLY, C., ZHAO,]., PARIMI, D., NIKOLIC,
B., Asanovic, K., AND RANGANATHAN, P. A Hardware Accelerator for
Protocol Buffers. In IEEE/ACM Intl. Symp. on Microarchitecture (2021).

https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/ec2/nitro/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://dawn.cs.stanford.edu/benchmark/
https://www.doxygen.nl
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://brooker.co.za/blog/2022/06/02/formal.html
https://brooker.co.za/blog/2022/06/02/formal.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://github.com/ultraembedded/core_jpeg
https://github.com/ultraembedded/core_jpeg

(37]

(38]

[39

[

(40]

[41]

[42

—

[43

=

[44]

(45

[’

(46

—

[47

—
'S
)

[

[49

—

(50

[t

(51]

(52]

(53]

(54]

Kim, M. A., AND EDWARDs, S. A. Computation vs. Memory Systems:
Pinning down Accelerator Bottlenecks. In Intl. Symp. on Computer
Architecture (2010).

KRUDE, J., RUTH, J., SCHEMMEL, D., RATH, F., FOLBORT, 1., AND WEHRLE,
K. Determination of Throughput Guarantees for Processor-based
SmartNICs. In Intl. Conf. on Emerging Networking Experiments and
Technologies (2021).

LATTNER, C., AND ADVE, V. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Intl. Symp. on Code
Generation and Optimization (2004).

Liu, J., MALTZAHN, C., ULMER, C. D., AND CURRY, M. L. Performance
Characteristics of the BlueField-2 SmartNIC. arxiv.org/cs (2021).

Liu, M, Cur, T.,, ScHUH, H., KRISHNAMURTHY, A., PETER, S., AND GUPTA,
K. Offloading Distributed Applications onto SmartNICs Using IPipe.
In ACM SIGCOMM Conf. (2019).

Moreau, T., CHEN, T., VEGA, L., RoEscH, J., YaN, E. Q., ZHENG, L.,
FromM, J., JIANG, Z., CEZE, L., GUESTRIN, C., AND KRISHNAMURTHY, A.
A Hardware-Software Blueprint for Flexible Deep Learning Specializa-
tion. In IEEE Micro (2019).

Netronome Agilio OVS Benchmarking. https://www.netronome.com/
media/documents/WP_OVS-TC_40G.pdf. Last accessed on 2023-05-
16.

NIDER, J., AND FEDOROVA, A. S. The last CPU. In Workshop on Hot
Topics in Operating Systems (2021).

Norrig, T., PaTii, N, Yoon, D. H., Kurian, G, L1, S., LAuDoN, J.,
Young, C., Jouppl, N. P., AND PATTERSON, D. A. Google’s Training
Chips Revealed: TPUv2 and TPUv3. In IEEE Hot Chips Symposium
(2020).

PEREIRA, F., MATOS, G., SADOK, H., Kim, D., MARTINS, R., SHERRY, J.,
Ramos, F. M. V., AND PEDROSA, L. Automatic Generation of Network
Function Accelerators using Component-based Synthesis.

PETERSON, J. L. Petri nets. In ACM Computing Survey (1977).
PHOTHILIMTHANA, P. M., L1iu, M., KAUFMANN, A., PETER, S., BoDiK,
R., AND ANDERSON, T. E. Floem: A Programming System for NIC-
Accelerated Network Applications. In Symp. on Operating Sys. Design
and Implem. (2018).

PoURHABIBI, A., GUPTA, S., KASSIR, H., SUTHERLAND, M., TIAN, Z., DRU-
MOND, M. P., FarsaFi, B., AND Kocs, C. Optimus Prime: Accelerating
Data Transformation in Servers. In Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (2020).

The Problem with Benchmarking Hardware. https://semiengineering.
com/the-problem-with-benchmarks/. Last accessed on 2023-05-16.
Qru, Y., KaNG, Q., L1u, M., AND CHEN, A. Clara: Performance Clarity
for SmartNIC Offloading. In ACM Workshop on Hot Topics in Networks
(2020).

Qr1u, Y., XING, J., Hsu, K.-F., KaNG, Q., L1u, M., NARAYANA, S., AND CHEN,
A. Automated SmartNIC Offloading Insights for Network Functions.
In Symp. on Operating Systems Principles (2021).

RAGAN-KELLEY, J., BARNES, C., ADAMS, A., PARIs, S., DURAND, F., AND
AMARASINGHE, S. P. Halide: a Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines.
In Intl. Conf. on Programming Language Design and Implem. (2013).
RANGANATHAN, P., SToDOLSKY, D., CALOW, ., DORFMAN, J., HECHTMAN,
M. G., SMULLEN, C., KUUSELA, A., LAURSEN, A. J., RAMIREZ, A., WIJAYA,
A. A, SALEK, A., CHEUNG, A., GELB, B., Fosco, B., Kyaw, C. M., Hg,
D., MUNDAY, D. A., WICKERAAD, D., PERSAUD, D., STARK, D., WALTON,
D., INpDUPALLI E., PERKINS-ARGUETA, E., Lou, F., Wu, H. K., CHONG,
1. S., JavaraMm, L, FENG, J., MAANINEN, J., LUCKE, K. A., MAHONY, M.,
WACHSLER, M. S., TAN, M., PENUKONDA, N., DASHARATHI, N., KONGE-
TIRA, P., CHAUHAN, P., BALASUBRAMANIAN, R., MAcias, R, Ho, R.,
SPRINGER, R., HUFFMAN, R. W,, Foss, S., BHATIA, S., GWIN, S. J., SEKAR,
S. K., SokorLov, S. N., MUROOR, S., RauTio, V.-M., RIPLEY, Y., HASE,

45

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

Y., AND L1, Y. Warehouse-Scale Video Acceleration: Co-design and
Deployment in the Wild. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (2021).

Redis Documentation including Big-O Time Complexity for each com-
mand. https://redis.io/commands. Last accessed on 2023-05-16.
ROGORA, D., CARZANIGA, A., DIWAN, A., HAUSWIRTH, M., AND SOULE,
R. Analyzing System Performance with Probabilistic Performance
Annotations. In ACM EuroSys European Conf. on Computer Systems
(2020).

SHARMA, H., PARK, J., MAHAJAN, D., AMARO, E., K1Mm, J. K., SHao, C.,
MIsHRA, A., AND EsMAEILZADEH, H. From high-level deep neural
models to FPGAs. In IEEE/ACM Intl. Symp. on Microarchitecture (2016).
SINGH, E., LONSING, F., CHATTOPADHYAY, S., STRANGE, M., WEL P.,
ZHANG, X., ZHOoU, Y., CHEN, D., CONG, J., RAINA, P., ZHANG, Z., BAR-
RETT, C., AND MITRA, S. A-QED Verification of Hardware Accelerators.
In Design Automation Conference (2020).

The Slowing of Moore’s Law and its Impact. https:
/Iwww.forbes.com/sites/tiriasresearch/2015/07/30/the-slowing-
of-moores-law-and-its-impact/. Last accessed on 2023-05-16.
Standard Performance Evaluation Corporation (SPEC). https://spec.
org/benchmarks.html. Last accessed on 2023-05-16.

SymbiYosys. https://github.com/YosysHQ/sby. Last accessed on 2023-
05-16.

ToRrK, M., MAUDLEJ, L., AND SILBERSTEIN, M. Lynx: A SmartNIC-driven
Accelerator-centric Architecture for Network Servers. In Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems (2020).

TPC-C: An On-Line Transaction Processing Benchmark. https://www.
tpc.org/tpee. Last accessed on 2023-05-16.

Verilator. https://www.veripool.org/verilator. Last accessed on 2023-
05-16.

WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HoLsTi, N., THESING, S.,
WHALLEY, D., BERNAT, G., FERDINAND, C., HECKMANN, R., MITRA, T.,
MUELLER, F., PUAUT, L., PUSCHNER, P., STASCHULAT, J., AND STENSTROM,
P. The Worst-case Execution-time Problem — Overview of Methods
and Survey of Tools. ACM Trans. Embed. Comput. Syst. (2008).
ZAPARANUKS, D., AND HauswirTH, M. Algorithmic Profiling. In Intl
Conf. on Programming Language Design and Implem. (2012).

https://www.netronome.com/media/documents/WP_OVS-TC_40G.pdf
https://www.netronome.com/media/documents/WP_OVS-TC_40G.pdf
https://semiengineering.com/the-problem-with-benchmarks/
https://semiengineering.com/the-problem-with-benchmarks/
https://redis.io/commands
https://www.forbes.com/sites/tiriasresearch/2015/07/30/the-slowing-of-moores-law-and-its-impact/
https://www.forbes.com/sites/tiriasresearch/2015/07/30/the-slowing-of-moores-law-and-its-impact/
https://www.forbes.com/sites/tiriasresearch/2015/07/30/the-slowing-of-moores-law-and-its-impact/
https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://github.com/YosysHQ/sby
https://www.tpc.org/tpcc
https://www.tpc.org/tpcc
https://www.veripool.org/verilator

	Abstract
	1 Introduction
	2 System developers are flying blind!
	3 Performance Interfaces for Accelerators
	4 Related Work
	5 Open Questions
	6 Conclusion
	7 Acknowledgements
	References

