
Jonathan S. Shapiro

Jonathan M. Smith

David J. Farber



• Priorities
1.Security & Integrity

2.High availability

3.Fault Tolerance

4.Evolvability

5.Performance

• This ordering has architectural and
performance implications.



• Pure capability system

• Transparently persistent

• Recovers rapidly (< 30 seconds)

• Thoroughly paranoid implementation
– Consistency checks to prevent snapshot of bad states

– Implementation tries to be “fail fast”

– Think: kernel always compiled for debugging

• Some emphasis on discretionary security



• A capability is an (object,
permissions) pair
– Unforgeable, so a basis for protection

– Transferable, so a basis for authorization

• This can be generalized to
(object, type)

• An object version number makes
reallocation simple.

• The resulting representation is
straightforward.

(myspace, {r, w})

(spaceroot, rw-space)
(spaceroot, node)

type misc bits
version

object identifier

32 bits

4 words



Comparison to Other Capability Systems
System HW/SW Store Persist Cap Prot Mem

Model
IPC

Cal TSS SW File Explicit Partition Byte
Segments

Buffered,
Unbounded

CAP HW Object Explicit Partition Byte
Segments

Prot.
Procedure Call

Hydra Mixed File Explicit Partition Byte
Segments

Prot.
Procedure Call

S/38
(AS/400)

HW +
Compiler

Object Transparent Tagging Byte
Segments

Prot.
Procedure Call

i432 HW Object Explicit Partition Byte
Segments

Prot.
Procedure Call

Mach SW App.
Defined

Explicit Partition Page
Regions

Buffered,
Unbounded

Amoeba SW Object Explicit Sparsity Page
Regions

Buffered,
Bounded

KeyKOS/
EROS

SW Object Transparent Partition Pages +
Nodes

Unbuffered,
Bounded



PTEPage Capability Page Table Entry:

Phys Page Number {w,s,v}

Object identifier Type

Capability

type misc bits
version

object identifier

32 bits

4 words

Node

Page



• Processes have user-mode
machine state plus supervisor-
implemented capability registers.

• Kernel implements a machine-
specific process table
– Used to cache active processes (c.f.

Cache Kernel, Fluke).

– Fast-path IPC uses this structure.

– General capability invocation path
uses both representations.

• Process state is recorded in nodes.

p0 p1 p2 p3 p4 p5 ... pn



• Everything (all resources) is named by a uniform naming
mechanism: capabilities.

• The protection state of the system can be directly realized
by the hardware.

• All user-visible state is stored in pages and nodes
– This plus “run list” is all you need to define a recoverable system

state.

• Object reference is a protected operation
– Conventional operating system services can therefore be

implemented outside the kernel.



Node, Page Cache (Main Memory)Node, Page Cache (Main Memory)

Write-ahead
Checkpoint Log

Permanent Store

Process
Table

Mapping
Structures

Invocation
Checkpoint,
Ageing

Page Faults

Checkpoint,
Ageing

Object
Faults

Migration
Object
Faults



• How might a system be structured on top of
this kind of platform?

• How does it perform?

• Given that it is unconventional, why should
you care?

• Where do we go from here?



Program

Address Space

Fault Handler

Other Services

Space Bank

Other Space
Banks

Prime Space
Bank



• Memory fault handlers

• Storage allocator (space bank)

• Files and Directories

• Pipes

• Constructor (confinement implementation)

• Reference monitor



• Initial Conditions:
– Client has exclusive access to

service.

– Confined entity has no
unauthorized channels.

• Confined entity can be a
complex subsystem.

• Client therefore completely
controls communication.



Reference Monitor w/Confinement

Kernel

Reference Monitor

Confined
Compartment

Sandbox

Process

• Reference monitor knows object semantics.

• Interposes transparent forwarding objects where
appropriate.

• Can be evolved as new object types are introduced.



 Reference Monitors

Kernel

Reference Monitor

Confined
Compartment

Sandbox

Process
Reference
Monitor

• Multiple reference monitors can securely manage
disjoint logical systems on the same hardware.

• Remote Hot Standby



8.34

3.85

1.92

1.26

3.174

6.7

0.7

5.66

3.56

0.664

1.19

2.042

0.367

1.6

0 2 4 6 8 10

Pipe Lat (us)

Pipe BW (s/GB)

Create Process (ms)

Ctxt Switch (us)

Grow Heap (us/10)

Pg Fault (us/10)

Triv. Syscall (us)

EROS
Linux 2.2.5

(2.0.34 kernel)

400 MHz P-II
512 Kbyte cache
192 MBytes

Note: 2.2.x kernel introduced a temporary
performance bug in page fault handling.



Property L4 EROS Issue

Registers
saved

Most All Covert Channel

Payload 31 x 4M 1 x 64k Resource
Exhaustion,

Target name Thread ID Capability Encapsulation

Authority
Xfer

Permissions for
Pages

Capabilities Access Control,
Channel audits

Atomicity No: Preemption,
Page Faults

Yes Bounding
resources and time

Missing
page strategy

Timeout, then
discard

Discard Covert Channel



Property L4 EROS Issue

Registers
saved

Most All Covert Channel

Payload 31 x 4M 1 x 64k Resource
Exhaustion,

Target name Thread ID Capability Encapsulation

Authority
Xfer

Permissions for
Pages

Capabilities Access Control,
Channel audits

Atomicity No: Preemption,
Page Faults

Yes Bounding
resources and time

Missing
page strategy

Timeout, then
discard

Discard Covert Channel

Latency 454 cycles 640 cycles Large spaces



• It appears possible to build a high-performance
capability system.

• Persistence greatly simplifies some components,
and therefore assurance.

• Capabilities provide a sufficient primitive
protection mechanism to implement other security
policies at user level.

• Using performance as the only evaluation criterion
can obscure important issues, including security.



• How can a capability system be distributed
securely and efficiently?

• How is multiparty administration and just-in-time
software provisioning to be managed?

• How can assurance be achieved using an open
development model?

• Compatibility and (r)evolution

• System structure – design and architecture

• Language integration: how to do it successfully



• IBM Research has started the Cougar project to
investigate secure, high-performance
underpinnings for pervasive devices and their
supporting servers.

• Cougar will be capability based, and will borrow
from both the L4 and the EROS architectures.


