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Transform high-performance service into 
high-performance and reliable service 



BFT state machine replication

BFT state-of-the-art

Practical Byzantine Fault Tolerance [OSDI’99, OSDI’00]

Generalized abstraction [SOSP’01]

Reduced replication cost [SOSP’03]

High Throughput [DSN’04] 

Applications: Farsite[OSDI’02], Oceanstore[FAST’03] 

Quorum based approaches: Q/U[SOSP’05], HQ[OSDI’06]

Promising approach to build reliable systems
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Zyzzyva: Rethinks BFT state machine replication

Outperform existing BFT approaches

High performance: Comparable to unreplicated services 

Low overhead: Approaches lower bounds 

BFT? 
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Zyzzyva: Outline 

Speculative BFT: Double edged sword

Implementation and Optimizations

Speculation: Avoiding explicit replica agreement

Rethink state machine replication

Evaluation



State Machine Replication  

Service is replicated to tolerate failures

Requirement: Applications observe centralized service

How: Replicas execute requests in the same order
Agreement: Replicas agree on the request order
Execution: Replicas execute requests in agreed order



Traditional BFT state machine replication  

Request

    Agreement

Reply

    Execution

Replicas agree on the request order before executing
Cost: Agreement protocol overhead



Replicas execute requests without agreement
Cost: No explicit replica agreement 

Zyzzyva: Speculative BFT Replication 

    Speculative execution

Reply

Request



Avoid explicit replica agreement 

Idea: Leverage clients to avoid explicit agreement

Intuition: Output commit at the client
Sufficient: Client knows that system is consistent
Not required: Replicas know that they are consistent

How: Client commits output only if system is consistent 
Applications observe centralized service
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Speculative BFT: Leveraging client

Idea: Leverage clients to avoid explicit agreement

Intuition: Output commit at clients and not replicas
Replicas need not know if system is consistent

How: Client can verify if reply is stable
Before committing a reply to the application
Stable reply: Replicas are in consistent state



Speculative BFT: Request history

Request history allows client to verify stable reply

Replicas include request history in the replies
Request history: Ordered set of requests executed 

Replies include application response and request history

<Rik, Hik>: Reply from a replica i after executing request k



Stable: Unanimous reply 
R1k=R2k=..?,    H1k=H2k=..?

 Done

    Speculative execution

<Rc,k>

Request: Rc <R4k, H4k>Replies: <R1k, H1K>

Client commits the output when all replies match 
All correct replicas are in consistent state



Replies: Only majority match 

   Speculative  execution   
X

<R1k,H1K>Rc

2f+1?
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Majority of correct replicas share the same history

Client receives at least 2f+1 matching replies



Stable reply with failures

Client can make progress with additional work

Sufficient: Majority of correct replicas can prove
That they share request history to other replicas
Intuition: Eventually all correct replicas agree

Commit phase: Client deposits commit certificate
Commit certificate consists of 2f+1 matching histories
Client commits after receiving 2f+1 matching acks



Stable reply: Majority 

C:<H1k,...H3k>

2f+1 
 Done

   Speculative  execution     Commit
X

<R1k,H1K>Rc

2f+1 

<Rc,k>

Client deposits commit certificate
Client commits when it receives 2f+1 matching acks



Failures: Primary or Network 

   Speculative  execution   
X

<R1k,H1K>Rc

< 2f+1 ?

<Rc,k>

Client receives fewer than 2f+1 matching replies

View change: Client retransmissions act as hint

<R2k,H2K>



 Zyzzyva: Speculative BFT

Same consistency guarantees as traditional BFT

Application observes centralized service

Leverage clients to avoid explicit replica agreement

Significantly lower overhead
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By not depositing the commit certificate

Faulty clients cannot block other correct clients

Liveness: Correct clients ensure system progress

Protocol uses cumulative request histories

Correct clients commit all previous requests as well

Faulty client can only affect its own progress

  Can a faulty client block?



By committing inconsistent history?

Faulty clients cannot compromise safety

Faulty clients cannot deposit inconsistent histories

Safety:

Faulty clients cannot forge request histories

No two valid commit certificates can have varying prefixes 

  Can a faulty client compromise safety?
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Implementation details

Checkpoint protocol: Garbage collect histories

View change protocol: Elect new primary

Optimizations

Replace digital signatures with MACs 

Application state is replicated at only 2f+1 replicas 

Request batching



Optimization: Making faulty case faster

Zyzzyva5: Speeds up using 5f+1 replicas 
Completes in a single phase with f faulty replicas

  

4f+1 
 Done

Rc

2f+1 Commit

X
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Evaluation setup

Zyzzyva replication library

Compare with other protocols

PBFT[OSDI’99], QU[SOSP’05], HQ[OSDI’06], Unreplicated 

Client-server workload

Different request/reply payloads 

Configuration: Tolerate 1 faulty node in the system

20 Machines: 3.0 GHz running Linux 2.6 Kernel

LAN: 1 Gbps ethernet links



Throughput
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Speculation improves throughput significantly 
Zyzzyva within 35% of unreplicated service
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Throughput: With a faulty backup node 

Zyzzyva provides excellent performance
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Latency

Q/U: Quorum based optimistic approach
Latency: 4 or more with request contention

Zyzzyva Q/U 

Replication cost 
App replicas

2f+1  5f+1

  Latency (Updates)
Message delays 3 2



Latency: Best case for Q/U
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Not significant: Q/U is 15% better than Zyzzyva5
 No request/reply payloads, no contention, update

Zyzzyva outperforms Q/U: contention, reads, load



Zyzzyva approaches optimal

Throughput: Zyzzyva exploits batching 

Overhead reduces with increasing batch size 

Optimal Zyzzyva 

Replication cost 
Total replicas

3f+1  3f+1

Replication cost 
App. replicas

2f+1 2f+1

Throughput 
Overhead: Crypto. ops

2 2+3f/b

Latency
Message delays

3 3



Conclusion

Transform high-performance service to 
high-performance and reliable service 

Zyzzyva: Speculative BFT
Performance comparable to unreplicated service



Thank you!
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BACKUP SLIDES 



According to dictionary.com, a zyzzyva is “any of 
various tropical American weevils of the genus Zyzzyva, 

often destructive to plants.” 



Throughput: With a faulty backup node 

Failures: Zyzzyva outperforms other protocols
Zyzzyva5: 2+(5f+1)/b  Zyzzyva(with opt): 2+(5f+1)/b

Zyzzyva5

PBFT
HQ

Zyzzyva

Zyzzyva (B=10)

Zyzzyva5 (B=10)

PBFT (B=10)

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

20

40

60

80

100

0 20 40 60 80 100

Zyzzyva (B= 10)  with commit  optimization


