
Zyzzyva
Speculative Byzantine Fault Tolerance

Ramakrishna Kotla

 L. Alvisi, M. Dahlin, A. Clement, E. Wong
University of Texas at Austin

The Goal

Request

Replies

Servers

Client

Request

Reply

Server
Client

Transform high-performance service into
high-performance and reliable service

BFT state machine replication

BFT state-of-the-art

Practical Byzantine Fault Tolerance [OSDI’99, OSDI’00]

Generalized abstraction [SOSP’01]

Reduced replication cost [SOSP’03]

High Throughput [DSN’04]

Applications: Farsite[OSDI’02], Oceanstore[FAST’03]

Quorum based approaches: Q/U[SOSP’05], HQ[OSDI’06]

Promising approach to build reliable systems

Why another BFT protocol?
High

request
contention ?

Low latency?

NoYes

PBFT[OSDI’99]

QU[SOSP’05]

HQ [OSDI’06]

 Replication cost
 < 5f+1?

PBFT[OSDI’99]
Yes

Yes

No

No

BFT state-of-the-art is too complex
HQ[OSDI’06]

Zyzzyva: Rethinks BFT state machine replication

Outperform existing BFT approaches

High performance: Comparable to unreplicated services

Low overhead: Approaches lower bounds

BFT?

Zyzzyva
Yes

Zyzzyva: Outline

Speculative BFT: Double edged sword

Implementation and Optimizations

Speculation: Avoiding explicit replica agreement

Rethink state machine replication

Evaluation

State Machine Replication

Service is replicated to tolerate failures

Requirement: Applications observe centralized service

How: Replicas execute requests in the same order
Agreement: Replicas agree on the request order
Execution: Replicas execute requests in agreed order

Traditional BFT state machine replication

Request

 Agreement

Reply

 Execution

Replicas agree on the request order before executing
Cost: Agreement protocol overhead

Replicas execute requests without agreement
Cost: No explicit replica agreement

Zyzzyva: Speculative BFT Replication

 Speculative execution

Reply

Request

Avoid explicit replica agreement

Idea: Leverage clients to avoid explicit agreement

Intuition: Output commit at the client
Sufficient: Client knows that system is consistent
Not required: Replicas know that they are consistent

How: Client commits output only if system is consistent
Applications observe centralized service

Zyzzyva: Outline

Speculative BFT: Double edged sword

Implementation and Optimizations

Speculation: Avoiding explicit replica agreement

Rethink state machine replication

Evaluation

Speculative BFT: Leveraging client

Idea: Leverage clients to avoid explicit agreement

Intuition: Output commit at clients and not replicas
Replicas need not know if system is consistent

How: Client can verify if reply is stable
Before committing a reply to the application
Stable reply: Replicas are in consistent state

Speculative BFT: Request history

Request history allows client to verify stable reply

Replicas include request history in the replies
Request history: Ordered set of requests executed

Replies include application response and request history

<Rik, Hik>: Reply from a replica i after executing request k

Stable: Unanimous reply
R1k=R2k=..?, H1k=H2k=..?

 Done

 Speculative execution

<Rc,k>

Request: Rc <R4k, H4k>Replies: <R1k, H1K>

Client commits the output when all replies match
All correct replicas are in consistent state

Replies: Only majority match

 Speculative execution
X

<R1k,H1K>Rc

2f+1?

<Rc,k>

Majority of correct replicas share the same history

Client receives at least 2f+1 matching replies

Stable reply with failures

Client can make progress with additional work

Sufficient: Majority of correct replicas can prove
That they share request history to other replicas
Intuition: Eventually all correct replicas agree

Commit phase: Client deposits commit certificate
Commit certificate consists of 2f+1 matching histories
Client commits after receiving 2f+1 matching acks

Stable reply: Majority

C:<H1k,...H3k>

2f+1
 Done

 Speculative execution Commit
X

<R1k,H1K>Rc

2f+1

<Rc,k>

Client deposits commit certificate
Client commits when it receives 2f+1 matching acks

Failures: Primary or Network

 Speculative execution
X

<R1k,H1K>Rc

< 2f+1 ?

<Rc,k>

Client receives fewer than 2f+1 matching replies

View change: Client retransmissions act as hint

<R2k,H2K>

 Zyzzyva: Speculative BFT

Same consistency guarantees as traditional BFT

Application observes centralized service

Leverage clients to avoid explicit replica agreement

Significantly lower overhead

Zyzzyva: Outline

Speculative BFT: Double edged sword?

Implementation and Optimizations

Speculation: Avoiding explicit replica agreement

Rethink state machine replication

Evaluation

By not depositing the commit certificate

Faulty clients cannot block other correct clients

Liveness: Correct clients ensure system progress

Protocol uses cumulative request histories

Correct clients commit all previous requests as well

Faulty client can only affect its own progress

 Can a faulty client block?

By committing inconsistent history?

Faulty clients cannot compromise safety

Faulty clients cannot deposit inconsistent histories

Safety:

Faulty clients cannot forge request histories

No two valid commit certificates can have varying prefixes

 Can a faulty client compromise safety?

Zyzzyva: Outline

Speculative BFT: Double edged sword

Implementation and Optimizations

Speculation: Avoiding explicit replica agreement

Rethink state machine replication

Evaluation

Implementation details

Checkpoint protocol: Garbage collect histories

View change protocol: Elect new primary

Optimizations

Replace digital signatures with MACs

Application state is replicated at only 2f+1 replicas

Request batching

Optimization: Making faulty case faster

Zyzzyva5: Speeds up using 5f+1 replicas
Completes in a single phase with f faulty replicas

4f+1
 Done

Rc

2f+1 Commit

X

Zyzzyva: Outline

Speculative BFT: Double edged sword

Implementation and Optimizations

Speculation: Avoiding explicit replica agreement

Rethink state machine replication

Evaluation

Evaluation setup

Zyzzyva replication library

Compare with other protocols

PBFT[OSDI’99], QU[SOSP’05], HQ[OSDI’06], Unreplicated

Client-server workload

Different request/reply payloads

Configuration: Tolerate 1 faulty node in the system

20 Machines: 3.0 GHz running Linux 2.6 Kernel

LAN: 1 Gbps ethernet links

Throughput

Unreplicated

Zyzzyva5

PBFT
HQ

Q/U max throughput

Zyzzyva

20 40 60 80 100

20

40

60

80

100

120

140

Number of clients

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

0

Speculation improves throughput significantly

Speculation improves throughput significantly
Zyzzyva within 35% of unreplicated service

Throughput

Zyzzyva (B=10)
Zyzzyva5 (B=10)

PBFT (B=10)

Unreplicated

Zyzzyva5

PBFT
HQ

Q/U max throughput

Zyzzyva

20 40 60 80 100

20

40

60

80

100

120

140

Number of clients

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

0

Throughput: With a faulty backup node

Zyzzyva provides excellent performance

Zyzzyva5

PBFT
HQ

Zyzzyva

Zyzzyva (B=10)

Zyzzyva5 (B=10)

PBFT (B=10)

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

20

40

60

80

100

0 20 40 60 80 100

Latency

Q/U: Quorum based optimistic approach
Latency: 4 or more with request contention

Zyzzyva Q/U

Replication cost
App replicas

2f+1 5f+1

 Latency (Updates)
Message delays 3 2

Latency: Best case for Q/U

0

200

400

600

800

La
te

nc
y

(m
ic
ro

 s
ec

)

Un
re

pl
ic
at

ed

Q
/U Zy

zz
yv

a

Zy
zz

yv
a5

PB
FT

HQ

Not significant: Q/U is 15% better than Zyzzyva5
 No request/reply payloads, no contention, update

Zyzzyva outperforms Q/U: contention, reads, load

Zyzzyva approaches optimal

Throughput: Zyzzyva exploits batching

Overhead reduces with increasing batch size

Optimal Zyzzyva

Replication cost
Total replicas

3f+1 3f+1

Replication cost
App. replicas

2f+1 2f+1

Throughput
Overhead: Crypto. ops

2 2+3f/b

Latency
Message delays

3 3

Conclusion

Transform high-performance service to
high-performance and reliable service

Zyzzyva: Speculative BFT
Performance comparable to unreplicated service

Thank you!

Acknowledgements:
Hewlett-Packard - Travel grant

NSF research grants

BACKUP SLIDES

According to dictionary.com, a zyzzyva is “any of
various tropical American weevils of the genus Zyzzyva,

often destructive to plants.”

Throughput: With a faulty backup node

Failures: Zyzzyva outperforms other protocols
Zyzzyva5: 2+(5f+1)/b Zyzzyva(with opt): 2+(5f+1)/b

Zyzzyva5

PBFT
HQ

Zyzzyva

Zyzzyva (B=10)

Zyzzyva5 (B=10)

PBFT (B=10)

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Number of clients

20

40

60

80

100

0 20 40 60 80 100

Zyzzyva (B= 10) with commit optimization

