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The Goal

Transform high-performance service into
high-performance and reliable service
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BFT state machine replication

@ BFT state-of-the-art
¢ Practical Byzantine Fault Tolerance [0SDI'99, OSDI'00]
¢ Generalized abstraction [SOSP’01]
¢ Reduced replication cost [SOSP’03]
¢ High Throughput [DSN'04]
¢ Applications: Farsite[OSDI'02], Oceanstore[FAST 03]
¢ Quorum based approaches: Q/U[SOSP'05], HQ[OSDI'06]

@ Promising approach to build reliable systems



Why another BFT protocol?

PBFT[OSDI'99]

PBFT[OSDI'99]

HQ[OSDI'06]

@ BFT state-of-the-art is too complex




Zyzzyva: Rethinks BFT state machine replication

@ Outperform existing BFT approaches
@ High performance: Comparable to unreplicated services

@ Low overhead: Approaches lower bounds



Zyzzyva: Outline

¢ Rethink state machine replication
¢ Speculation: Avoiding explicit replica agreement
¢ Speculative BFT: Double edged sword

¢ Implementation and Optimizations

¢ Evaluation



State Machine Replication
@ Service is replicated fo tolerate failures

® Requirement: Applications observe centralized service

@ How: Replicas execute requests in the same order
¢ Agreement: Replicas agree on the request order

¢ Execution: Replicas execute requests in agreed order



Traditional BFT state machine replication
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@ Replicas agree on the request order before executing

¢ Cost: Agreement protocol overhead



Zyzzyva: Speculative BFT Replication

éa ey
N Vi
\ TR
s ol
Y

< >
Speculative execution

@ Replicas execute requests without agreement

¢ Cost: No explicit replica agreement



Avoid explicit replica agreement

o Idea: Leverage clients to avoid explicit agreement

@ Intuition: Output commit at the client
¢ Sufficient: Client knows that system is consistent
¢ Not required: Replicas know that they are consistent

@ How: Client commits output only if system is consistent

¢ Applications observe centralized service
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Speculative BFT: Leveraging client

@ Idea: Leverage clients to avoid explicit agreement

@ Intuition: Output commit at clients and not replicas
¢ Replicas need not know if system is consistent

@ How: Client can verify if reply is stable
¢ Before committing a reply to the application

¢ Stable reply: Replicas are in consistent state



Speculative BFT: Request history

@ Request history allows client to verify stable reply

@ Replicas include request history in the replies
¢ Request history: Ordered set of requests executed
¢ Replies include application response and request history

¢ <Rik, Hik>: Reply from a replica i after executing request k



Stable: Unanimous reply
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Speculative execution

@ Client commits the output when all replies match

¢ All correct replicas are in consistent state



Replies: Only majority match

Speculative execution

@ Majority of correct replicas share the same history

¢ Client receives at least 2f+1 matching replies



Stable reply with failures

@ Client can make progress with additional work

@ Sufficient: Majority of correct replicas can prove
¢ That they share request history fo other replicas
¢ Intuition: Eventually all correct replicas agree

@ Commit phase: Client deposits commit certificate

¢ Commit certificate consists of 2f+1l matching histories
¢ Client commits after receiving 2f+1 matching acks



Stable reply: Majority

Done
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Speculative execu’rlon Commit

@ Client deposits commit certificate
@ Client commits when it receives 2f+1 matching acks



Failures: Primary or Network

Speculative execution

@ Client receives fewer than 2f+l matching replies

@ View change: Client refransmissions act as hint



Zyzzyva: Speculative BFT

® Same consistency guarantees as traditional BFT

¢ Application observes centralized service

@ Leverage clients to avoid explicit replica agreement

¢ Significantly lower overhead
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Can a faulty client block?

@ By not depositing the commit certificate

@ Faulty clients cannot block other correct clients

@ Liveness: Correct clients ensure system progress
¢ Protocol uses cumulative request histories
¢ Correct clients commit all previous requests as well

¢ Faulty client can only affect its own progress



Can a faulty client compromise safety?

@ By committing inconsistent history?

@ Faulty clients cannot compromise safety

¢ Faulty clients cannot deposit inconsistent histories

@ Safety:
¢ Faulty clients cannot forge request histories

¢ No two valid commit certificates can have varying prefixes
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Implementation details

@ Checkpoint protocol: Garbage collect histories
@ View change protocol: Elect new primary
@ Optimizations

¢ Replace digital signatures with MACs

¢ Application state is replicated at only 2f+1 replicas

¢ Request batching



Optimization: Making faulty case faster
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® Zyzzyvab5: Speeds up using 5f+1 replicas

¢ Completes in a single phase with f faulty replicas
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Evaluation setup

@ Zyzzyva replication library
@ Compare with other protocols
¢ PBFT[OSDI'99], QU[SOSP'05], HQR[OSDI'06], Unreplicated
@ Client-server workload
o Different request/reply payloads
@ Configuration: Tolerate 1 faulty node in the system

¢ 20 Machines: 3.0 GHz running Linux 2.6 Kernel
¢ LAN: 1 Gbps ethernet links



Throughput

Unreplicated
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@ Speculation improves throughput significantly




Throughput

Unreplicated
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@ Speculation improves throughput significantly

@ Zyzzyva within 35% of unreplicated service



Throughput: With a faulty backup node

Zyzzyva5 (B=10)

PBFT (B=10
Zyzzyva (B=10)
2y

yzzyvab

:Zyzzyva

P o
(&
Q
wn
R~
(7]
Q.
(®)
N
)
T
o |
Q.
e
(@))
3
(%
o
|_

40 60
Number of clients

@ Zyzzyva provides excellent performance




Latency

Zyzzyva Q/U
Replication cost 2F41 564l
App replicas
Latency (Updates) . 5
Message delays

@ Q/U: Quorum based optimistic approach

¢ Latency: 4 or more with request contention



Latency: Best case for Q/U
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@ Not significant: Q/U is 15% better than Zyzzyva5

¢ No request/reply payloads, no contention, update

@ Zyzzyva outperforms Q/U: contention, reads, load



Zyzzyva approaches optimal
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@ Throughput: Zyzzyva exploits batching

¢ Overhead reduces with increasing batch size



Conclusion

Transform high-performance service to
high-performance and reliable service

@ Zyzzyva: Speculative BFT

¢ Performance comparable to unreplicated service
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Zyzzyva (B= 10) with commit optimization
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@ Failures: Zyzzyva outperforms other protocols
e Zyzzyva5: 2+(5f+1)/b Zyzzyva(with opt): 2+(5f+1)/b




