Zyzzyva

Speculative Byzantine Fault Tolerance

Ramakrishna Kotla

L. Alvisi, M. Dahlin, A. Clement, E. Wong
University of Texas at Austin



The Goal

Transform high-performance service into
high-performance and reliable service

Request

§§ Request
og(

Clients SR

&

Client

Replies

Server

Servers



BFT state machine replication

@ BFT state-of-the-art
¢ Practical Byzantine Fault Tolerance [0SDI'99, OSDI'00]
¢ Generalized abstraction [SOSP’01]
¢ Reduced replication cost [SOSP’03]
¢ High Throughput [DSN'04]
¢ Applications: Farsite[OSDI'02], Oceanstore[FAST 03]
¢ Quorum based approaches: Q/U[SOSP'05], HQ[OSDI'06]

@ Promising approach to build reliable systems



Why another BFT protocol?

PBFT[OSDI'99]

PBFT[OSDI'99]

HQ[OSDI'06]

@ BFT state-of-the-art is too complex




Zyzzyva: Rethinks BFT state machine replication

@ Outperform existing BFT approaches
@ High performance: Comparable to unreplicated services

@ Low overhead: Approaches lower bounds



Zyzzyva: Outline

¢ Rethink state machine replication
¢ Speculation: Avoiding explicit replica agreement
¢ Speculative BFT: Double edged sword

¢ Implementation and Optimizations

¢ Evaluation



State Machine Replication
@ Service is replicated fo tolerate failures

® Requirement: Applications observe centralized service

@ How: Replicas execute requests in the same order
¢ Agreement: Replicas agree on the request order

¢ Execution: Replicas execute requests in agreed order



Traditional BFT state machine replication

N7
&R 7
B \en

e P ’v 3
% R

@ Replicas agree on the request order before executing

¢ Cost: Agreement protocol overhead



Zyzzyva: Speculative BFT Replication

éa ey
N Vi
\ TR
s ol
Y

< >
Speculative execution

@ Replicas execute requests without agreement

¢ Cost: No explicit replica agreement



Avoid explicit replica agreement

o Idea: Leverage clients to avoid explicit agreement

@ Intuition: Output commit at the client
¢ Sufficient: Client knows that system is consistent
¢ Not required: Replicas know that they are consistent

@ How: Client commits output only if system is consistent

¢ Applications observe centralized service



Zyzzyva: Outline

¢ Rethink state machine replication
¢ Speculation: Avoiding explicit replica agreement
¢ Speculative BFT: Double edged sword

¢ Implementation and Optimizations

¢ Evaluation



Speculative BFT: Leveraging client

@ Idea: Leverage clients to avoid explicit agreement

@ Intuition: Output commit at clients and not replicas
¢ Replicas need not know if system is consistent

@ How: Client can verify if reply is stable
¢ Before committing a reply to the application

¢ Stable reply: Replicas are in consistent state



Speculative BFT: Request history

@ Request history allows client to verify stable reply

@ Replicas include request history in the replies
¢ Request history: Ordered set of requests executed
¢ Replies include application response and request history

¢ <Rik, Hik>: Reply from a replica i after executing request k



Stable: Unanimous reply

D?ne
@ wques’r: Rc Replies: <Ry, H% <Rak, Ha>

Neeo” &
N\ [
\ /

Speculative execution

@ Client commits the output when all replies match

¢ All correct replicas are in consistent state



Replies: Only majority match

Speculative execution

@ Majority of correct replicas share the same history

¢ Client receives at least 2f+1 matching replies



Stable reply with failures

@ Client can make progress with additional work

@ Sufficient: Majority of correct replicas can prove
¢ That they share request history fo other replicas
¢ Intuition: Eventually all correct replicas agree

@ Commit phase: Client deposits commit certificate

¢ Commit certificate consists of 2f+1l matching histories
¢ Client commits after receiving 2f+1 matching acks



Stable reply: Majority

Done

8 & e <R1k,HW:<H1k,...H3k> //"
X // " P
===

Speculative execu’rlon Commit

@ Client deposits commit certificate
@ Client commits when it receives 2f+1 matching acks



Failures: Primary or Network

Speculative execution

@ Client receives fewer than 2f+l matching replies

@ View change: Client refransmissions act as hint



Zyzzyva: Speculative BFT

® Same consistency guarantees as traditional BFT

¢ Application observes centralized service

@ Leverage clients to avoid explicit replica agreement

¢ Significantly lower overhead



Zyzzyva: Outline

¢ Rethink state machine replication
¢ Speculation: Avoiding explicit replica agreement
¢ Speculative BFT: Double edged sword?

¢ Implementation and Optimizations

¢ Evaluation



Can a faulty client block?

@ By not depositing the commit certificate

@ Faulty clients cannot block other correct clients

@ Liveness: Correct clients ensure system progress
¢ Protocol uses cumulative request histories
¢ Correct clients commit all previous requests as well

¢ Faulty client can only affect its own progress



Can a faulty client compromise safety?

@ By committing inconsistent history?

@ Faulty clients cannot compromise safety

¢ Faulty clients cannot deposit inconsistent histories

@ Safety:
¢ Faulty clients cannot forge request histories

¢ No two valid commit certificates can have varying prefixes



Zyzzyva: Outline

¢ Rethink state machine replication
¢ Speculation: Avoiding explicit replica agreement
¢ Speculative BFT: Double edged sword

¢ Implementation and Optimizations

¢ Evaluation



Implementation details

@ Checkpoint protocol: Garbage collect histories
@ View change protocol: Elect new primary
@ Optimizations

¢ Replace digital signatures with MACs

¢ Application state is replicated at only 2f+1 replicas

¢ Request batching



Optimization: Making faulty case faster

7/

N/

W
Ve

em

® Zyzzyvab5: Speeds up using 5f+1 replicas

¢ Completes in a single phase with f faulty replicas



Zyzzyva: Outline

¢ Rethink state machine replication
¢ Speculation: Avoiding explicit replica agreement
¢ Speculative BFT: Double edged sword

¢ Implementation and Optimizations

¢ Evaluation



Evaluation setup

@ Zyzzyva replication library
@ Compare with other protocols
¢ PBFT[OSDI'99], QU[SOSP'05], HQR[OSDI'06], Unreplicated
@ Client-server workload
o Different request/reply payloads
@ Configuration: Tolerate 1 faulty node in the system

¢ 20 Machines: 3.0 GHz running Linux 2.6 Kernel
¢ LAN: 1 Gbps ethernet links



Throughput

Unreplicated

—
N
o

—
o
o

o0
(@)

o
(@)

L
b

'Zyzzyva5

N
(@)

Q/U max throughput

P o
(&)
Q
(7p]
N
(7))
Q.
o
N
N’
e
T ]
Q.
i
(@)
w ]
o
(G
aC
—

N
o

.

-

40 60
Number of clients

@ Speculation improves throughput significantly




Throughput

Unreplicated

—
N
o

—
o
o

Zyzzyva (B=10)
Zyzzyvab (B=10)

/ PBFT (B=10)
Zyzgva :

lZyzzyva5

(o8]
o
T

o
o
T

N
o
T

Q/U max throughput

P o
(&)
Q
(7p]
N
(7))
Q.
o
N
N’
e
T ]
Q.
i
(@)
w ]
o
(G
aC
—

N
o
T

—y

4 60
Number of clients

@ Speculation improves throughput significantly

@ Zyzzyva within 35% of unreplicated service



Throughput: With a faulty backup node

Zyzzyva5 (B=10)

PBFT (B=10
Zyzzyva (B=10)
2y

yzzyvab

:Zyzzyva

P o
(&
Q
wn
R~
(7]
Q.
(®)
N
)
T
o |
Q.
e
(@))
3
(%
o
|_

40 60
Number of clients

@ Zyzzyva provides excellent performance




Latency

Zyzzyva Q/U
Replication cost 2F41 564l
App replicas
Latency (Updates) . 5
Message delays

@ Q/U: Quorum based optimistic approach

¢ Latency: 4 or more with request contention



Latency: Best case for Q/U

800

HQ

600

Unreplicated
Q/U
Zyzzyva
Zyzzyva5

o
o
o

Latency (micro sec)

o)

@ Not significant: Q/U is 15% better than Zyzzyva5

¢ No request/reply payloads, no contention, update

@ Zyzzyva outperforms Q/U: contention, reads, load



Zyzzyva approaches optimal

Opflmal ZYZZYVG
Replication cost 3F4l o
Total replicas
Replication cost 24 A
App. replicas
Throughput
Overhead: Crypto. ops 2 2+3f/b
Latency - :
Messaqe delays

@ Throughput: Zyzzyva exploits batching

¢ Overhead reduces with increasing batch size



Conclusion

Transform high-performance service to
high-performance and reliable service

@ Zyzzyva: Speculative BFT

¢ Performance comparable to unreplicated service



Thank youl

@ Acknowledgements:
¢ Hewlett-Packard - Travel grant

¢ NSF research grants









Throughput: With a Faulf}{___bgékup node

==

Zyzzyva (B= 10) with commit optimization

ZﬁzyvaS (B=10)

PBFT (B=10
Zyzzyva (B=10)
—2

yzzyvab

+Zyzzyva

e
O
\))
(7p]
TS
(7))
o
(@)
b "
<
=
>
£
e
(@)
3
®)
(&5
o
|_

40 60
Number of clients

@ Failures: Zyzzyva outperforms other protocols
e Zyzzyva5: 2+(5f+1)/b Zyzzyva(with opt): 2+(5f+1)/b




