Zyzzyva Speculative Byzantine Fault Tolerance

Ramakrishna Kotla

L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin

The Goal

Transform high-performance service into high-performance and reliable service

BFT state machine replication

- BFT state-of-the-art
 - Practical Byzantine Fault Tolerance [OSDI'99, OSDI'00]
 - Generalized abstraction [SOSP'01]
 - Reduced replication cost [SOSP'03]
 - High Throughput [DSN'04]
 - Applications: Farsite[OSDI'02], Oceanstore[FAST'03]
 - Quorum based approaches: Q/U[SOSP'05], HQ[OSDI'06]
- Promising approach to build reliable systems

Why another BFT protocol?

BFT state-of-the-art is too complex

Zyzzyva: Rethinks BFT state machine replication

- Outperform existing BFT approaches
- High performance: Comparable to unreplicated services
- Low overhead: Approaches lower bounds

Zyzzyva: Outline

- Rethink state machine replication
- Speculation: Avoiding explicit replica agreement
- Speculative BFT: Double edged sword
- Implementation and Optimizations
- Evaluation

State Machine Replication

Service is replicated to tolerate failures

Requirement: Applications observe centralized service

- How: Replicas execute requests in the same order
 - Agreement: Replicas agree on the request order
 - Execution: Replicas execute requests in agreed order

Traditional BFT state machine replication

- Replicas agree on the request order before executing
 - Cost: Agreement protocol overhead

Zyzzyva: Speculative BFT Replication

- Replicas execute requests without agreement
 - ◆ Cost: No explicit replica agreement

Avoid explicit replica agreement

Idea: Leverage clients to avoid explicit agreement

- Intuition: Output commit at the client
 - Sufficient: Client knows that system is consistent
 - Not required: Replicas know that they are consistent

- How: Client commits output only if system is consistent
 - Applications observe centralized service

Zyzzyva: Outline

- Rethink state machine replication
- Speculation: Avoiding explicit replica agreement
- Speculative BFT: Double edged sword
- Implementation and Optimizations
- Evaluation

Speculative BFT: Leveraging client

- Idea: Leverage clients to avoid explicit agreement
- Intuition: Output commit at clients and not replicas
 - Replicas need not know if system is consistent

- How: Client can verify if reply is stable
 - ◆ Before committing a reply to the application
 - ◆ Stable reply: Replicas are in consistent state

Speculative BFT: Request history

Request history allows client to verify stable reply

- Replicas include request history in the replies
 - Request history: Ordered set of requests executed
 - Replies include application response and request history
 - <Rik, Hik>: Reply from a replica i after executing request k

Stable: Unanimous reply

- Client commits the output when all replies match
 - ◆ All correct replicas are in consistent state

Replies: Only majority match

- Majority of correct replicas share the same history
 - ◆ Client receives at least 2f+1 matching replies

Stable reply with failures

- Client can make progress with additional work
- Sufficient: Majority of correct replicas can prove
 - ◆ That they share request history to other replicas
 - ◆ Intuition: Eventually all correct replicas agree
- Commit phase: Client deposits commit certificate
 - ◆ Commit certificate consists of 2f+1 matching histories
 - Client commits after receiving 2f+1 matching acks

Stable reply: Majority

- Client deposits commit certificate
- Client commits when it receives 2f+1 matching acks

Failures: Primary or Network

- Client receives fewer than 2f+1 matching replies
- View change: Client retransmissions act as hint

Zyzzyva: Speculative BFT

- Same consistency guarantees as traditional BFT
 - Application observes centralized service

- Leverage clients to avoid explicit replica agreement
 - Significantly lower overhead

Zyzzyva: Outline

- Rethink state machine replication
- Speculation: Avoiding explicit replica agreement
- Speculative BFT: Double edged sword?
- Implementation and Optimizations
- Evaluation

Can a faulty client block?

By not depositing the commit certificate

Faulty clients cannot block other correct clients

- Liveness: Correct clients ensure system progress
 - Protocol uses cumulative request histories
 - ◆ Correct clients commit all previous requests as well
 - Faulty client can only affect its own progress

Can a faulty client compromise safety?

By committing inconsistent history?

- Faulty clients cannot compromise safety
 - Faulty clients cannot deposit inconsistent histories

- Safety:
 - Faulty clients cannot forge request histories
 - No two valid commit certificates can have varying prefixes

Zyzzyva: Outline

- Rethink state machine replication
- Speculation: Avoiding explicit replica agreement
- Speculative BFT: Double edged sword
- Implementation and Optimizations
- Evaluation

Implementation details

- Checkpoint protocol: Garbage collect histories
- View change protocol: Elect new primary
- Optimizations
 - Replace digital signatures with MACs
 - ◆ Application state is replicated at only 2f+1 replicas
 - Request batching

Optimization: Making faulty case faster

- Zyzzyva5: Speeds up using 5f+1 replicas
 - ◆ Completes in a single phase with f faulty replicas

Zyzzyva: Outline

- Rethink state machine replication
- Speculation: Avoiding explicit replica agreement
- Speculative BFT: Double edged sword
- Implementation and Optimizations
- Evaluation

Evaluation setup

- Zyzzyva replication library
- Compare with other protocols
 - ◆ PBFT[OSDI'99], QU[SOSP'05], HQ[OSDI'06], Unreplicated
- Client-server workload
 - Different request/reply payloads
- Configuration: Tolerate 1 faulty node in the system
 - ◆ 20 Machines: 3.0 GHz running Linux 2.6 Kernel
 - ◆ LAN: 1 Gbps ethernet links

Throughput

Speculation improves throughput significantly

Throughput

- Speculation improves throughput significantly
- Zyzzyva within 35% of unreplicated service

Throughput: With a faulty backup node

Zyzzyva provides excellent performance

Latency

	Zyzzyva	Q/U
Replication cost App replicas	2f+1	5f+1
Latency (Updates) Message delays	3	2

- - ◆ Latency: 4 or more with request contention

Latency: Best case for Q/U

- Not significant: Q/U is 15% better than Zyzzyva5
 - No request/reply payloads, no contention, update
- Zyzzyva outperforms Q/U: contention, reads, load

Zyzzyva approaches optimal

	Optimal	Zyzzyva
Replication cost Total replicas	3f+1	3f+1
Replication cost App. replicas	2f+1	2f+1
Throughput Overhead: Crypto. ops	2	2+3f/b
Latency Message delays	3	3

- Throughput: Zyzzyva exploits batching
 - Overhead reduces with increasing batch size

Conclusion

Transform high-performance service to high-performance and reliable service

- Zyzzyva: Speculative BFT
 - ◆ Performance comparable to unreplicated service

Thank you!

- Acknowledgements:
 - ♦ Hewlett-Packard Travel grant
 - ♦ NSF research grants

BACKUP SLIDES

According to dictionary.com, a zyzzyva is "any of various tropical American weevils of the genus Zyzzyva, often destructive to plants."

Throughput: With a faulty backup node

- Failures: Zyzzyva outperforms other protocols
 - ◆ Zyzzyva5: 2+(5f+1)/b Zyzzyva(with opt): 2+(5f+1)/b