
sinfonia: a new paradigm for
building scalable distributed systems

marcos k. aguilera
arif merchant

mehul shah
alistair veitch

christos karamanolis

hp labs
hp labs
hp labs
hp labs
vmware



2

motivation

corporate data centers are growing quickly
– companies building large data centers
– 10000s servers and more
– businesses want to serve the world

need distributed applications that scale well



3current distributed applications
often involve complex protocols

p1
p2
p3
p4
p5
p6
p7

timeline
of messages



4

wouldn’t it be nice to
avoid such protocols?

p1
p2
p3
p4
p5
p6
p7



5

focus

systems within a data center
– network latencies usually small and predictable
– nodes may crash, sometimes all of them
– stable storage may crash too 

infrastructure applications
– applications that support other applications
– reliable, fault-tolerant, consistent
– examples: cluster file systems, distributed lock 

managers, group communication services, distributed 
name services



6our approach
to developing distributed applications

• developers use sinfonia, a data sharing service
– data stored in memory nodes, each exporting a linear address space
– no structure on data imposed by sinfonia
– streamlined minitransactions

• transform problem of protocol design into
easier problem of shared data structure design

application
node

application
node

application
node

application
node

minitransactions

sin
fo

ni
a user
library

memory
node

memory
node

memory
node



7example application: cluster file system
details later



8

sinfonia minitransactions

• operate on data at memory nodes
• provide ACID properties

– atomicity, consistency, isolation, durability

• designed to balance power and efficiency
• efficiency

– few network roundtrips to execute

• power
– flexible, general-purpose, easy to understand and use

• result
– a lightweight, short-lived type of transaction

over unstructured data



9

minitransaction in detail



10

power of minitransactions

examples of what one minitransaction can do
1. atomic swap operation
2. atomic read of many data
3. try to acquire a lease
4. try to acquire multiple leases atomically
5. change data if lease is held
6. validate cache then change data

(e.g., optimistic concurrency control)



11

minitransaction efficiency:
piggybacking execution onto two-phase commit



12minitransaction efficiency:
running at application node

• commit coordinator runs at application node
to save a network roundtrip

• problem: coordinator may crash and not recover
application node outside of sinfonia control

• cannot block transactions forever in this case
• 3-phase commit expensive
• solution: a new two-phase commit protocol



13

new two-phase commit
• transaction committed iff

all participant memory nodes log “yes” vote
compare: transaction committed iff coordinator logs “commit” decision

• but: transaction blocks while memory node is crashed
• recovery and garbage collection more involved (see paper)



14other features of sinfonia
not covered in detail in this talk

configurable fault tolerance
cost, performance, resiliency trade offs

memory node replication
can have mirrors of memory nodes for better availability

transactional backups
way to capture a transactionally consistent full image

debugging facilities
transaction log (gc disabled) to review past



15

using sinfonia: applications

two complex distributed applications

1. sinfoniaFS: cluster file system
– hosts share the same set of files, files stored in sinfonia
– fault tolerant
– scalable: performance improves with more memory nodes

2. sinfoniaGCS:
group communication service [birman, joseph 1987]

– “chat room” for distributed applications
– nodes can join or leave the room, notifications of who joins/leaves
– nodes can broadcast messages to room, messages totally ordered



16

1. sinfoniaFS design

• exports NFS interface

• each NFS operation:
one minitransaction

• general template:
- validate cache (cmp items)
- modify data (write items)



17

2. sinfoniaGCS design
• each member has

private queue in sinfonia

• broadcast msg:
1. copy msg to queue
2. thread msg in global

order

• join or leave:
1. acquire lease
2. update member list
3. release lease



18

evaluation

sinfonia service
– scalability
– performance under contention
– ease of use
– paper: benefits of streamlined minitransactions

(1.4x to 11.1x throughput improvement)

cluster file system application
– performance and scalability

group communication application
– performance and scalability



19

sinfonia service: scalability

minitransaction
spread=2:

usually within
85% of ideal

scalability

minitransaction
spread=all memory 

nodes (increases with
system size):

no scalability

minitransaction
spread: number of
memory nodes in
a minitransaction



20

sinfonia service: contention
two workloads

– compare-and-swap (cas) – direct minitransaction support
– increment (inc) – requires caching and retrying (optimistic

concurrency control)



21

sinfonia: ease of use

4121
major 

versions

years2 monthsunknown1 monthdevelop 
time

22,148
(C)

2,492
(C++)

5,900
(C)

3,855 
(C++)

lines of 
code 

(language)

spread toolkitsinfoniaGCSlinuxNFSsinfoniaFS

software engineering metrics



22

sinfonia: ease of use

• advantages
– transactions: relief from concurrency, failure issues
– no distributed protocols, no timeout worries
– correctness verified by checking minitransactions
– minitransaction log useful for debugging

• drawbacks
– address space is low-level abstraction
– had to lay out data structures manually
– had to find efficient layout to avoid contention

(data structure design problem)



23

sinfoniaFS: base performance

• first considered 1-memory-node system
• benchmarks

– modified andrew (tcl source code)
– connectathon nfs testsuite

• sinfoniaFS performs as well as linuxNFS
(details in paper)



24

sinfoniaFS: scalability



25

sinfoniaGCS: scalability



26

related work
• database systems
• distributed shared memory

– lots, plurix [fakler et al 2005], perdis [ferreira et al 2000]
• camelot, coda
• mime [chao et al 1992]
• berkeleyDB
• thor [liskov et al 1999]
• sdds [gribble et al 2000]
• boxwood [maccormick et al 2004]
• stasis [sears, brewer 2006]
• gfs, bigtable, chubby, mapreduce [200x]



27

conclusion

• sinfonia: a scalable data sharing service
for building distributed applications

• main characteristics
– unstructured address spaces: no unnecessary structure
– streamlined minitransactions

• general paradigm: built very different apps with it
• main benefits

– minitransactions hide complexities of concurrency and failures
(while providing good performance, fault tolerance and scalability)

– no protocols to worry about


