CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

SecVisor: A Tiny Hypervisor
for
Lifetime Kernel Code Integrity

Arvind Seshadri, Mark Luk,
Ning Qu, Adrian Perrig

Carnegie Mellon University

CyLab$+% Carnegie Mellon

www.cylab.cmu.edu

Motivation

= Kernel rootkits
 Malware inserted into OS kernels

Anti Virus

Hardware

CyLab$#% Carnegie Mellon

www.cylab.cmu.edu

Motivation

= Kernels increasingly vulnerable
* Increasing code sizes

* New attack methods
* DMA-based attacks

= Current security tools insufficient
* Assume kernel integrity

e Detection-based

 Cannot find all attacks

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

b.cmu.ed

Objective

= Security hypervisor that

* Prevents attacker injected code from executing at
kernel privilege

* Permits only user-approved code to execute at
kernel privilege
« User can specify approval policy
= Design goals
« Security
» Ease of porting commodity OS kernels

CyLab$+% Carnegie Mellon

www.cylab.cmu.edu

SecVisor

= Tiny (~1100 line runtime) hypervisor

= Enforce approved code
execution in kernel mode

= Property holds over

system lifetime Hardware

= Amenable to formal verification
or manual audit

CyLab$#%

www.cylab.cmu.edu

Carnegie Mellon

Attacker Model

= Attacker can perform all attacks except HW attacks
against CPU and memory subsystem

= Examples

« Employ malicious code to modify memory contents
« Employ malicious peripherals to perform DMA writes

* Modify system firmware (BIOS)

= Attacker can have knowledge of zero-day kernel
exploits

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

Assumptions

= Single CPU
= CPU has hardware virtualization support
« AMD SVM and Intel TXT (LT)

= OS kernel

» Executes in 32-bit mode
* Does not use self-modifying code

= SecVisor does not have any vulnerabilities
« Amenable to formal verification or manual audit

CyLab$#% Carnegie Mellon

Outline

= Conceptual Design

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Required Properties

= Constrained Instruction Pointer (IP)

* |P should point within approved code regions as
long as CPU executes in kernel mode

= Approved code regions immutable

« Approved code regions cannot be modified by
attacker

CyLab%#% Carnegie Mellon

www.cylab.cmu.edu

Constraining IP

= Each kernel mode entry
sets |IP within approved

Kernel code regions
APP mode exit

= |P is within approved
code regions as long as
CPU is in kernel mode

= Each kernel mode exit
sets CPU privilege level
to user mode

CylLab$#% Carnegie Mellon

www.cylab.cmu.edu

Constraining IP

= Each kernel mode entry
sets |IP within approved

Kernel code regions
App mode exit

CylLab$#% Carnegie Mellon

www.cylab.cmu.edu

Kernel Mode Entry

Interrupt or
Exception

Check: All CPU entry pointers point to approved code

App

-

CylLab$#% Carnegie Mellon

www.cylab.cmu.edu

Constraining IP

Kernel

App mode exit

= |P is within approved
code regions as long as
CPU is in kernel mode

CyLab%#% Carnegie Mellon

www.cylab.cmu. edu

Kernel Mode Execution

-
-
’/
-
-
’/
-

Data (RW)

= W ® X protection over kernel memory
= Ensures that kernel data is not executable

= Additional steps needed...

CyLab%#

www.cylab.cmu.edu

Carnegie Mellon

Problem: Shared Address Space

= Attack: Attacker can
execute application code
with kernel privilege!

= Solution: Mark all app

memory non-executable
on kernel entry

= Requires: Intercept all
user-to-kernel mode
switches

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Intercepting User-to-Kernel Switch
= All CPU entry pointers point to approved
code

= Mark approved code regions non-executable

during user mode execution

= All user-to-kernel switches throw exceptions

CylLab$#% Carnegie Mellon

www.cylab.cmu.edu

Constraining IP

Kernel

App mode exit

= Each kernel mode exit
sets CPU privilege level
to user mode

CyLab$#%

www.cylab.cmu.edu

Carnegie Mellon

Kernel Mode Exit

Application (RW)

Kernel Data (RW)

Kernel Mode

Requires: Intercept all

kernel-to-user mode switch

App memory non-executable in

kernel mode

Exception on mode switch from

kernel to user

Set privilege level of CPU to user

mode by intercepting exception

CyLab%#% Carnegie Mellon

www.cylab.cmu. edu

Summary: Control Flow

Application Application
(RWX) (RW)
Kernel mode
entry
Kernel Data (RW) Kernel Data (RW)
User Mode _ .. Kernel Mode
Exception odify

Perm.

CyLab%#% Carnegie Mellon

www.cylab.cmu. edu

Summary: Control Flow

Application Application
(RWX) (RW)
Kernel mode
exit
Kernel Data (RW) Kernel Data (RW)
User Mode Modify Xcelc)tiori‘(ernel Mode

Perm.

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Required Properties

= Approved code regions immutable

« Approved code regions cannot be modified by
attacker

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

Immutable Approved Code

= Memory regions can be written by:
« SW executing on CPU
 DMA writes by peripherals

= Memory protections mark approved code
regions read-only

= |OMMU protection against DMA writes to
approved code regions

CyLab$#% Carnegie Mellon

www.cylab.cmu.edu
O t I]

= Implementation

« Setting memory protections
 Intercept user—kernel switches
» Protect approved code from modification

« Checking and protecting entry pointers
« Constrains IP on kernel mode entry

CyLab$# Carnegie Mellon

www.cylab.cmu.edu

Setting Memory Protections

= Set memory permissions independent of OS
 Virtualization is a convenient mechanism

= Virtualize physical memory to set permissions
« SW virtualization: Shadow page tables
« HW virtualization: Nested page tables

= AMD SVM-based implementation platform

* |ntel TXT can also be used

= DMA exclusion vector (DEV) for DMA-write
protection

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Setting Memory Protections

« SW virtualization: Shadow page tables

CyLab$#% Carnegie Mellon

www.cylab.cmu.edu

Memory Virtualization

KPT

Virtual Physical

KPT HPT

Virtual Guest Host
Physical Physical

Requires CPU to support three kinds of address spaces

CyLab$#% Carnegie Mellon

www.cylab.cmu.edu

Shadow Page Tables (SPT)

KPT HPT
Virtual Guest Host
Physical Physical
Kernel: VMM: >
KPT HPT
Virtual Guest Guest Host

Physical Physical Physical

CyLab$#% Carnegie Mellon

www.cylab.cmu.edu

Shadow Page Tables (SPT)

Kernel: VMM:
KPT HPT

Virtual Guest Gues Host
sical Physjfal Physical

CPU:

SPT

Virtual Host
Physical

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Shadow Page Tables (SPT)

= SecVisor uses SPT to set memory

protections
* |ntercept user—kernel switches

* Protect approved code from modification

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Protecting Approved Code

= Set approved code regions read-only in SPT

= Use DEV to prevent DMA writes to approved
code regions

= Prevent aliasing of approved code physical
pages (not mentioned in the paper)

CyLab$#% Carnegie Mellon

www.cylab.cmu.edu
O t I]

= Implementation

« Checking and protecting entry pointers
« Constrains IP on kernel mode entry

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

Checking Entry Pointers

= On the x86, entry pointers can exist in GDT,
LDT, IDT, and MSRs

= Entry pointers are all virtual addresses
= Two checks are needed:

1.

2.

Entry pointers contain virtual addresses of
approved code

Entry pointer virtual pages must translate to
physical pages containing approved code (not
mentioned in paper)

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Protecting Entry Pointers

= Attacker could modify entry pointers in
memory during user mode execution

* Could use DMA writes, for example

= Protect in-memory entry pointers by
shadowing GDT, LDT, and IDT

= Detalls in paper

CyLab$#% Carnegie Mellon

Outline

= Experiments and Results

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

b.cmu.ed

Experimental Setup

= HP Compaqg dc5750 Microtower PC
= 2.2 GHz AMD Athlon64 X2 (dualcore CPU)
= 2 GBRAM

= Two sources of overhead:
1. Intercepting user—kernel mode switches

2. SPT synchronization and KPT checks

= |/O intensive workloads with rapidly changing
working sets will be most affected

CyLabs#% Carnegie Mellon

Results — Specint 2006

Bl SecVisor
[|SecVisor New|.

—
(o)

—
o

—
~

—
)

= = =
~ o oo

Runtime (Normalized to native Linux, lower is better)

=
N

perll;anch bzi_p2 g?c mef gogmk hmmer sjt;g Iibqu;ntum h264ref

CyLabs#% Carnegie Mellon

www.cylab.cmu.edu

Results — Applications

Bl SecVisor
[]SecVisor New

=
N

—
w N

-

—
N R O

—

Runtime (Normalized to native Linux, lower is better)

S 9 9 D
o N A » ®

kernel Build Kernel Unzip Postmark

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Related Work

= Kernel integrity protection
* IBM 4758, Program Shepherding, Livewire, SVA

= Small VMMs
* Terra, TVMM, Iguest

= Kernel rootkit detection
o Software-based: AskStrider, Pioneer...

« Hardware-based: Copilot...

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

Cool Things Not Mentioned

= Secure startup

= Dealing with BIOS

= Whitelist-based approval policy

= Implementation using nested page tables

= |dentifying entry pointers on x86

= Protecting GDT, LDT, and IDT on x86

= Allocating and protecting SecVisor memory

= Application to code attestation

CyLab$#% Carnegie Mellon
www.cylab.cmu.edu

Future Work

= Release source code
= Update paper to describe new defenses

= Finish up formal verification of SecVisor code

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

b.cmu.ed

Conclusions

= SecVisor prevents code injection attacks
against commodity kernels

 All other techniques are detection-based
» Defends against powerful attackers

= Amenable to formal verification and manual
audit

CyLab$# Carnegie Mellon
www.cylab.cmu.edu S

Acknowledgements

= Shepherd - Richard Draves
= Anonymous reviewers

= Bernhard Kauer, Benjamin Serebrin,
Leendert van Doorn, Elsie Wahlig,
Daniel Wendlandt

= ARO, NSF, AMD, KDDI for research grants
= NSF for SOSP student travel grant

