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Motivation
 Kernel rootkits

• Malware inserted into OS kernels
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Motivation
 Kernels increasingly vulnerable

• Increasing code sizes

• New attack methods
• DMA-based attacks

 Current security tools insufficient
• Assume kernel integrity

• Detection-based
• Cannot find all attacks



Objective
 Security hypervisor that

• Prevents attacker injected code from executing at
kernel privilege

• Permits only user-approved code to execute at
kernel privilege

• User can specify approval policy

 Design goals
• Security
• Ease of porting commodity OS kernels



SecVisor
 Tiny (~1100 line runtime) hypervisor

 Enforce approved  code
execution in kernel mode

 Property holds over
system lifetime

 Amenable to formal verification
or manual audit
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Attacker Model
 Attacker can perform all attacks except HW attacks

against CPU and memory subsystem

 Examples
• Employ malicious code to modify memory contents

• Employ malicious peripherals to perform DMA writes

• Modify system firmware (BIOS)

 Attacker can have knowledge of zero-day kernel
exploits



Assumptions
 Single CPU
 CPU has hardware virtualization support

• AMD SVM and Intel TXT (LT)
 OS kernel

• Executes in 32-bit mode
• Does not use self-modifying code

 SecVisor does not have any vulnerabilities
• Amenable to formal verification or manual audit



Outline
 Introduction
 Conceptual Design
 Implementation
 Experiments and Results
 Related Work and Conclusion



Required Properties
 Constrained Instruction Pointer (IP)

• IP should point within approved code regions as
long as CPU executes in kernel mode

 Approved code regions immutable
• Approved code regions cannot be modified by

attacker



Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode
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Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode
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Kernel Mode Entry
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Check: All CPU entry pointers point to approved code



Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode
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Kernel Mode Execution

 W ⊕ X protection over kernel memory

 Ensures that kernel data is not executable

 Additional steps needed…
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Problem: Shared Address Space
 Attack: Attacker can

execute application code
with kernel privilege!

 Solution: Mark all app
memory non-executable
on kernel entry

 Requires: Intercept all
user-to-kernel mode
switches
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Intercepting User-to-Kernel Switch
 All CPU entry pointers point to approved

code

 Mark approved code regions non-executable

during user mode execution

 All user-to-kernel switches throw exceptions



Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode
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Return

Application (RW)

Approved Code (RX)

Kernel Data (RW)

Kernel Mode Exit
 Requires: Intercept all

kernel-to-user mode switch

 App memory non-executable in

kernel mode

 Exception on mode switch from

kernel to user

 Set privilege level of CPU to user

mode by intercepting exceptionKernel Mode



Summary: Control Flow
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Required Properties
 Constrained Instruction Pointer (IP)

• IP should point within approved code regions as
long as CPU executes in kernel mode

 Approved code regions immutable
• Approved code regions cannot be modified by

attacker



Immutable Approved Code
 Memory regions can be written by:

• SW executing on CPU

• DMA writes by peripherals

 Memory protections mark approved code
regions read-only

 IOMMU protection against DMA writes to
approved code regions



Outline
 Introduction
 Conceptual Design
 Implementation

• Setting memory protections
• Intercept user↔kernel switches
• Protect approved code from modification

• Checking and protecting entry pointers
• Constrains IP on kernel mode entry

 Experiments and Results
 Related Work and Conclusion



 Set memory permissions independent of OS
• Virtualization is a convenient mechanism

 Virtualize physical memory to set permissions
• SW virtualization: Shadow page tables
• HW virtualization: Nested page tables

 AMD SVM-based implementation platform
• Intel TXT can also be used

 DMA exclusion vector (DEV) for DMA-write
protection

Setting Memory Protections
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Memory Virtualization

Virtual Physical

KPT

Virtual Guest
Physical

KPT HPT
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Physical

Requires CPU to support three kinds of address spaces



Shadow Page Tables (SPT)
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Shadow Page Tables (SPT)
 SecVisor uses SPT to set memory

protections
• Intercept user↔kernel switches

• Protect approved code from modification



Protecting Approved Code
 Set approved code regions read-only in SPT

 Use DEV to prevent DMA writes to approved
code regions

 Prevent aliasing of approved code physical
pages (not mentioned in the paper)
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Checking Entry Pointers
 On the x86, entry pointers can exist in GDT,

LDT, IDT, and MSRs
 Entry pointers are all virtual addresses
 Two checks are needed:

1. Entry pointers contain virtual addresses of
approved code

2. Entry pointer virtual pages must translate to
physical pages containing approved code (not
mentioned in paper)



Protecting Entry Pointers
 Attacker could modify entry pointers in

memory during user mode execution
• Could use DMA writes, for example

 Protect in-memory entry pointers by
shadowing GDT, LDT, and IDT

 Details in paper
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Experimental Setup
 HP Compaq dc5750 Microtower PC

 2.2 GHz AMD Athlon64 X2 (dualcore CPU)

 2 GB RAM

 Two sources of overhead:
1. Intercepting user↔kernel mode switches

2. SPT synchronization and KPT checks

 I/O intensive workloads with rapidly changing
working sets will be most affected



Results – Specint 2006



Results – Applications



Related Work
 Kernel integrity protection

• IBM 4758, Program Shepherding, Livewire, SVA

 Small VMMs
• Terra, TVMM, lguest

 Kernel rootkit detection
• Software-based: AskStrider, Pioneer…

• Hardware-based: Copilot…



Cool Things Not Mentioned
 Secure startup

 Dealing with BIOS

 Whitelist-based approval policy

 Implementation using nested page tables

 Identifying entry pointers on x86

 Protecting GDT, LDT, and IDT on x86

 Allocating and protecting SecVisor memory

 Application to code attestation



Future Work
 Release source code

 Update paper to describe new defenses

 Finish up formal verification of SecVisor code



Conclusions
 SecVisor prevents code injection attacks

against commodity kernels
• All other techniques are detection-based

 Defends against powerful attackers

 Amenable to formal verification and manual
audit
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