
SecVisor: A Tiny Hypervisor
for

Lifetime Kernel Code Integrity

Arvind Seshadri, Mark Luk,
Ning Qu, Adrian Perrig
Carnegie Mellon University

Motivation
 Kernel rootkits

• Malware inserted into OS kernels

Hardware

Anti Virus

OS Kernel

M

R

Motivation
 Kernels increasingly vulnerable

• Increasing code sizes

• New attack methods
• DMA-based attacks

 Current security tools insufficient
• Assume kernel integrity

• Detection-based
• Cannot find all attacks

Objective
 Security hypervisor that

• Prevents attacker injected code from executing at
kernel privilege

• Permits only user-approved code to execute at
kernel privilege

• User can specify approval policy

 Design goals
• Security
• Ease of porting commodity OS kernels

SecVisor
 Tiny (~1100 line runtime) hypervisor

 Enforce approved code
execution in kernel mode

 Property holds over
system lifetime

 Amenable to formal verification
or manual audit

Hardware

OS Kernel
SecVisor

App1 App2 App3

Attacker Model
 Attacker can perform all attacks except HW attacks

against CPU and memory subsystem

 Examples
• Employ malicious code to modify memory contents

• Employ malicious peripherals to perform DMA writes

• Modify system firmware (BIOS)

 Attacker can have knowledge of zero-day kernel
exploits

Assumptions
 Single CPU
 CPU has hardware virtualization support

• AMD SVM and Intel TXT (LT)
 OS kernel

• Executes in 32-bit mode
• Does not use self-modifying code

 SecVisor does not have any vulnerabilities
• Amenable to formal verification or manual audit

Outline
 Introduction
 Conceptual Design
 Implementation
 Experiments and Results
 Related Work and Conclusion

Required Properties
 Constrained Instruction Pointer (IP)

• IP should point within approved code regions as
long as CPU executes in kernel mode

 Approved code regions immutable
• Approved code regions cannot be modified by

attacker

Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode

Return
 OS Kernel

App

Kernel
mode entry

Kernel
mode exit

Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode

Return
 OS Kernel

App

Kernel
mode entry

Kernel
mode exit

Kernel Mode Entry

Return
OS Kernel

App Interrupt or
ExceptionIP

CPU

IVT

Check: All CPU entry pointers point to approved code

Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode

Return
 OS Kernel

App

Kernel
mode entry

Kernel
mode exit

Kernel Mode Execution

 W ⊕ X protection over kernel memory

 Ensures that kernel data is not executable

 Additional steps needed…

Return
OS Kernel

App
Code (RX)

Data (RW)

Problem: Shared Address Space
 Attack: Attacker can

execute application code
with kernel privilege!

 Solution: Mark all app
memory non-executable
on kernel entry

 Requires: Intercept all
user-to-kernel mode
switches

Return
OS Kernel

App
Code

Intercepting User-to-Kernel Switch
 All CPU entry pointers point to approved

code

 Mark approved code regions non-executable

during user mode execution

 All user-to-kernel switches throw exceptions

Constraining IP
 Each kernel mode entry

sets IP within approved
code regions

 IP is within approved
code regions as long as
CPU is in kernel mode

 Each kernel mode exit
sets CPU privilege level
to user mode

Return
 OS Kernel

App

Kernel
mode entry

Kernel
mode exit

Return

Application (RW)

Approved Code (RX)

Kernel Data (RW)

Kernel Mode Exit
 Requires: Intercept all

kernel-to-user mode switch

 App memory non-executable in

kernel mode

 Exception on mode switch from

kernel to user

 Set privilege level of CPU to user

mode by intercepting exceptionKernel Mode

Summary: Control Flow

Return

Kernel ModeUser Mode

Application
(RW)

Approved Code (RX)

Kernel Data (RW)

SecVisor

Kernel mode
entry

Exception Modify
Perm.

Application
(RWX)

Approved Code (R)

Kernel Data (RW)

Summary: Control Flow

Return

Kernel ModeUser Mode

Application
(RW)

Approved Code (RX)

Kernel Data (RW)

SecVisor

Kernel mode
exit

ExceptionModify
Perm.

Application
(RWX)

Approved Code (R)

Kernel Data (RW)

Required Properties
 Constrained Instruction Pointer (IP)

• IP should point within approved code regions as
long as CPU executes in kernel mode

 Approved code regions immutable
• Approved code regions cannot be modified by

attacker

Immutable Approved Code
 Memory regions can be written by:

• SW executing on CPU

• DMA writes by peripherals

 Memory protections mark approved code
regions read-only

 IOMMU protection against DMA writes to
approved code regions

Outline
 Introduction
 Conceptual Design
 Implementation

• Setting memory protections
• Intercept user↔kernel switches
• Protect approved code from modification

• Checking and protecting entry pointers
• Constrains IP on kernel mode entry

 Experiments and Results
 Related Work and Conclusion

 Set memory permissions independent of OS
• Virtualization is a convenient mechanism

 Virtualize physical memory to set permissions
• SW virtualization: Shadow page tables
• HW virtualization: Nested page tables

 AMD SVM-based implementation platform
• Intel TXT can also be used

 DMA exclusion vector (DEV) for DMA-write
protection

Setting Memory Protections

 Set memory permissions independent of OS
• Virtualization is a convenient mechanism

 Virtualize physical memory to set permissions
• SW virtualization: Shadow page tables
• HW virtualization: Nested page tables

 AMD SVM-based implementation platform
• Intel TXT can also be used

 DMA exclusion vector (DEV) for DMA-write
protection

Setting Memory Protections

Memory Virtualization

Virtual Physical

KPT

Virtual Guest
Physical

KPT HPT

Host
Physical

Requires CPU to support three kinds of address spaces

Shadow Page Tables (SPT)

Virtual Guest
Physical

KPT HPT

Host
Physical

Virtual Guest
Physical

KPT
Kernel:

Guest
Physical

HPT

Host
Physical

VMM:

Shadow Page Tables (SPT)

Virtual Guest
Physical

KPT
Kernel:

Guest
Physical

HPT

Host
Physical

VMM:

Virtual Host
Physical

SPT
CPU:

Shadow Page Tables (SPT)
 SecVisor uses SPT to set memory

protections
• Intercept user↔kernel switches

• Protect approved code from modification

Protecting Approved Code
 Set approved code regions read-only in SPT

 Use DEV to prevent DMA writes to approved
code regions

 Prevent aliasing of approved code physical
pages (not mentioned in the paper)

Outline
 Introduction
 Conceptual Design
 Implementation

• Setting memory protections
• Intercept user↔kernel switches
• Protect approved code from modification

• Checking and protecting entry pointers
• Constrains IP on kernel mode entry

 Experiments and Results
 Related Work and Conclusion

Checking Entry Pointers
 On the x86, entry pointers can exist in GDT,

LDT, IDT, and MSRs
 Entry pointers are all virtual addresses
 Two checks are needed:

1. Entry pointers contain virtual addresses of
approved code

2. Entry pointer virtual pages must translate to
physical pages containing approved code (not
mentioned in paper)

Protecting Entry Pointers
 Attacker could modify entry pointers in

memory during user mode execution
• Could use DMA writes, for example

 Protect in-memory entry pointers by
shadowing GDT, LDT, and IDT

 Details in paper

Outline
 Introduction
 Conceptual Design
 Implementation
 Experiments and Results
 Related Work and Conclusion

Experimental Setup
 HP Compaq dc5750 Microtower PC

 2.2 GHz AMD Athlon64 X2 (dualcore CPU)

 2 GB RAM

 Two sources of overhead:
1. Intercepting user↔kernel mode switches

2. SPT synchronization and KPT checks

 I/O intensive workloads with rapidly changing
working sets will be most affected

Results – Specint 2006

Results – Applications

Related Work
 Kernel integrity protection

• IBM 4758, Program Shepherding, Livewire, SVA

 Small VMMs
• Terra, TVMM, lguest

 Kernel rootkit detection
• Software-based: AskStrider, Pioneer…

• Hardware-based: Copilot…

Cool Things Not Mentioned
 Secure startup

 Dealing with BIOS

 Whitelist-based approval policy

 Implementation using nested page tables

 Identifying entry pointers on x86

 Protecting GDT, LDT, and IDT on x86

 Allocating and protecting SecVisor memory

 Application to code attestation

Future Work
 Release source code

 Update paper to describe new defenses

 Finish up formal verification of SecVisor code

Conclusions
 SecVisor prevents code injection attacks

against commodity kernels
• All other techniques are detection-based

 Defends against powerful attackers

 Amenable to formal verification and manual
audit

Acknowledgements
 Shepherd - Richard Draves
 Anonymous reviewers
 Bernhard Kauer, Benjamin Serebrin,

Leendert van Doorn, Elsie Wahlig,
Daniel Wendlandt

 ARO, NSF, AMD, KDDI for research grants
 NSF for SOSP student travel grant

