
Tolerating Hardware Device Failures in
Software

Asim Kadav, Matthew J. Renzelmann, Michael M. Swift
University of Wisconsin-Madison

Current state of OS-hardware interaction

• Many device drivers assume device perfection
» Common Linux network driver: 3c59x .c

10/12/2009 Tolerating Hardware Device Failures in Software

While (ioread16(ioaddr + Wn7_MasterStatus))
& 0x8000)

;

Hardware dependence bug: Device malfunction can crash the system

HANG!

void hptitop_iop_request_callback(...) {

arg= readl(...);
...

if (readl(&req->result) == IOP_SUCCESS) {
arg->result = HPT_IOCTL_OK;

}
}

Current state of OS-hardware interaction

• Hardware dependence bugs across driver classes

10/12/2009 Tolerating Hardware Device Failures in Software

*Code simplified for presentation purposes

Highpoint SCSI driver(hptiop.c)

How do the hardware bugs manifest?

• Drivers often trust hardware to always work correctly
» Drivers use device data in critical control and data paths
» Drivers do not report device malfunctions to system log
» Drivers do not detect or recover from device failures

10/12/2009 Tolerating Hardware Device Failures in Software

An example: Windows servers

• Transient hardware failures caused 8% of all crashes
and 9% of all unplanned reboots[1]

» Systems work fine after reboots
» Vendors report returned device was faultless

• Existing solution is hand-coded hardened driver:
» Crashes reduced from 8% to 3%

• Driver isolation systems not yet deployed

10/12/2009 Tolerating Hardware Device Failures in Software

[1] Fault resilient drivers for Longhorn server, May 2004. Microsoft Corp.

Carburizer

• Goal: Tolerate hardware device failures in software
through hardware failure detection and recovery

• Static analysis tool - analyze and insert code to:
» Detect and fix hardware dependence bugs
» Detect and generate missing error reporting information

• Runtime
» Handle interrupt failures
» Transparently recover from failures

10/12/2009 Tolerating Hardware Device Failures in Software

Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Hardware unreliability

• Sources of hardware misbehavior:
» Device wear-out, insufficient burn-in
» Bridging faults
» Electromagnetic radiation
» Firmware bugs

• Result of misbehavior:
» Corrupted/stuck-at inputs
» Timing errors/unpredictable DMA
» Interrupt storms/missing interrupts

10/12/2009 Tolerating Hardware Device Failures in Software

Vendor recommendations for driver developers

10/12/2009 Tolerating Hardware Device Failures in Software

Recommendation Summary Recommended by

Intel Sun MS Linux

Validation Input validation   

Read once& CRC data   

DMA protection  

Timing Infinite polling   

Stuck interrupt 

Lost request 

Avoid excess delay in OS 

Unexpected events  

Reporting Report all failures   

Recovery Handle all failures  

Cleanup correctly  

Do not crash on failure   

Wrap I/O memory access    

Goal: Automatically implement as many recommendations as
possible in commodity drivers

Carburizer architecture

10/12/2009 Tolerating Hardware Device Failures in Software

OS Kernel

If (c==0) {
.
print
(“Driver
init”);
}
.
.

Driver

Carburizer

If (c==0) {
.
print (“Driver
init”);
}
.
.

Compile-time components Run-time components

Hardened
Driver Binary

Faulty
Hardware

Carburizer
Runtime

Kernel Interface

Compiler

Outline

• Background
• Hardening drivers

» Finding sensitive code
» Repairing code

• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Hardening drivers

• Goal: Remove hardware dependence bugs
» Find driver code that uses data from device
» Ensure driver performs validity checks

• Carburizer detects and fixes hardware bugs from
» Infinite polling
» Unsafe static/dynamic array reference
» Unsafe pointer dereferences
» System panic calls

10/12/2009 Tolerating Hardware Device Failures in Software

Hardening drivers

• Finding sensitive code
» First pass: Identify tainted variables

10/12/2009 Tolerating Hardware Device Failures in Software

Finding sensitive code

First pass: Identify tainted variables

10/12/2009 Tolerating Hardware Device Failures in Software

int test () {
a = readl();
b = inb();
c = b;
d = c + 2;
return d;

}
int set() {

e = test();
}

Tainted
Variables

a
b
c
d

test()
e

Detecting risky uses of tainted variables

• Finding sensitive code
» Second pass: Identify risky uses of tainted variables

• Example: Infinite polling
» Driver waiting for device to enter particular state
» Solution: Detect loops where all terminating

conditions depend on tainted variables

10/12/2009 Tolerating Hardware Device Failures in Software

Example: Infinite polling

Finding sensitive code

10/12/2009 Tolerating Hardware Device Failures in Software

static int amd8111e_read_phy(………)
{
...
reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE)

reg_val = readl(mmio + PHY_ACCESS)
.

}

AMD 8111e network driver(amd8111e.c)

Not all bugs are obvious

10/12/2009 Tolerating Hardware Device Failures in Software

while (DAC960_PD_StatusAvailableP(ControllerBaseAddress))
{

DAC960_V1_CommandIdentifier_T CommandIdentifier= DAC960_PD_ReadStatusCommandIdentifier
(ControllerBaseAddress);

DAC960_Command_T *Command = Controller ->Commands [CommandIdentifier-1];
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandOpcode_T CommandOpcode=CommandMailbox->Common.CommandOpcode;
Command->V1.CommandStatus =DAC960_PD_ReadStatusRegister(ControllerBaseAddress);
DAC960_PD_AcknowledgeInterrupt(ControllerBaseAddress);
DAC960_PD_AcknowledgeStatus(ControllerBaseAddress);
switch (CommandOpcode)
{
case DAC960_V1_Enquiry_Old:

DAC960_P_To_PD_TranslateReadWriteCommand(CommandMailbox);
…

}

DAC960 Raid Controller(DAC960.c)

Detecting risky uses of tainted variables

• Example II: Unsafe array accesses
» Tainted variables used as array index into static or

dynamic arrays
» Tainted variables used as pointers

10/12/2009 Tolerating Hardware Device Failures in Software

Example: Unsafe array accesses

Unsafe array accesses

10/12/2009 Tolerating Hardware Device Failures in Software

static void __init attach_pas_card(...)
{

if ((pas_model = pas_read(0xFF88)))
{
...
sprintf(temp, “%s rev %d”,
pas_model_names[(int) pas_model], pas_read(0x2789));

...
}

Pro Audio Sound driver (pas2_card.c)

Analysis results over the Linux kernel
• Analyzed drivers in 2.6.18.8 Linux kernel

» 6300 driver source files
» 2.8 million lines of code
» 37 minutes to analyze and compile code

• Additional analyses to detect existing validation
code

10/12/2009 Tolerating Hardware Device Failures in Software

Analysis results over the Linux kernel

• Found 992 bugs in driver code
• False positive rate: 7.4% (manual sampling of 190 bugs)

10/12/2009 Tolerating Hardware Device Failures in Software

Driver class Infinite
polling

Static array Dynamic
array

Panic calls

net 117 2 21 2

scsi 298 31 22 121

sound 64 1 0 2

video 174 0 22 22

other 381 9 57 32

Total 860 43 89 179

Many cases of poorly written drivers with hardware dependence bugs

Repairing drivers

• Hardware dependence bugs difficult to test
• Carburizer automatically generates repair code

» Inserts timeout code for infinite loops
» Inserts checks for unsafe array/pointer references
» Replaces calls to panic() with recovery service
» Triggers generic recovery service on device failure

10/12/2009 Tolerating Hardware Device Failures in Software

Carburizer automatically fixes infinite loops

10/12/2009 Tolerating Hardware Device Failures in Software

timeout = rdstcll(start) + (cpu/khz/HZ)*2;
reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE) {

reg_val = readl(mmio + PHY_ACCESS);

if (_cur < timeout)
rdstcll(_cur);

else
__recover_driver();

}

*Code simplified for presentation purposes

Timeout code
added

AMD 8111e network driver(amd8111e.c)

Carburizer automatically adds bounds checks

10/12/2009 Tolerating Hardware Device Failures in Software

static void __init attach_pas_card(...)
{

if ((pas_model = pas_read(0xFF88)))
{
...
if ((pas_model< 0)) || (pas_model>= 5))

__recover_driver();
.
sprintf(temp, “%s rev %d”,
pas_model_names[(int) pas_model], pas_read(0x2789));

}

*Code simplified for presentation purposes

Array bounds
check added

Pro Audio Sound driver (pas2_card.c)

Runtime fault recovery

• Low cost transparent recovery
» Based on shadow drivers
» Records state of driver
» Transparent restart and state

replay on failure

• Independent of any isolation
mechanism (like Nooks)

10/12/2009 Tolerating Hardware Device Failures in Software

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
Interface

Device/Driver Original Driver Carburizer

Behavior Detection Behavior Detection Recovery

3COM 3C905 CRASH None RUNNING Yes Yes

DEC DC 21x4x CRASH None RUNNING Yes Yes

Experimental validation

10/12/2009 Tolerating Hardware Device Failures in Software

• Synthetic fault injection on network drivers
• Results

Carburizer failure detection and transparent recovery work
well for transient device failures

Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Reporting errors

• Drivers often fail silently and fail to report device errors
» Drivers should proactively report device failures
» Fault management systems require these inputs

• Driver already detects failure but does not report them

• Carburizer analysis performs two functions
» Detect when there is a device failure
» Report unless the driver is already reporting the failure

10/12/2009 Tolerating Hardware Device Failures in Software

Detecting driver detected device failures

• Detect code that depends on tainted variables
» Perform unreported loop timeouts
» Returns negative error constants
» Jumps to common cleanup code

10/12/2009 Tolerating Hardware Device Failures in Software

while (ioread16 (regA) == 0x0f) {
if (timeout++ == 200) {

sys_report(“Device timed out %s.\n”, mod_name);
return (-1);

}
}

Reporting code
added by

Carburizer

Detecting existing reporting code

Carburizer detects function calls with string arguments

10/12/2009 Tolerating Hardware Device Failures in Software

static u16 gm_phy_read(...)
{

...
if (__gm_phy_read(...))

printk(KERN_WARNING "%s: ...\n”, ...);

Carburizer
detects existing
reporting code

SysKonnect network driver(skge.c)

Evaluation

• Manual analysis of drivers of different classes

• No false positives
• Fixed 1135 cases of unreported timeouts and 467 cases of

unreported device failures in Linux drivers

10/12/2009 Tolerating Hardware Device Failures in Software

Driver Class Driver detected
device failures

Carburizer
reported failures

bnx2 network 24 17

mptbase scsi 28 17

ens1371 sound 10 9

Carburizer automatically improves the fault diagnosis
capabilities of the system

Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Runtime failure detection

• Static analysis cannot detect all device failures
» Missing interrupts: expected but never arrives
» Stuck interrupts (interrupts storm): interrupt cleared

by driver but continues to be asserted

10/12/2009 Tolerating Hardware Device Failures in Software

Tolerating missing interrupts

10/12/2009 Tolerating Hardware Device Failures in Software

Driver

Hardware
Device

Request

Interrupt
responses

• Detect when to expect interrupts
» Detect driver activity via referenced bits
» Invoke ISR when bits referenced but no
interrupt activity

• Detect how often to poll
» Dynamic polling based on previous
invocation result

Tolerating stuck interrupts

• Driver interrupt handler is called too many times
• Convert the device from interrupts to polling

10/12/2009 Tolerating Hardware Device Failures in Software

Driver Type Driver Name Throughput reduction due to polling

Disk ide-core,ide-disk, ide-generic Reduced by 50%

Network e1000 Reduced from 750 Mb/s to 130 Mb/s

Sound ens1371 Sounds plays with distortion

Carburizer ensures system and device make forward progress

Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Throughput overhead

10/12/2009 Tolerating Hardware Device Failures in Software

940

721

935

720

0

200

400

600

800

1000

nVIDIA MCP 55 Intel Pro 1000

Th
ro

ug
hp

ut
 in

 M
bp

s

Network Card Type

Linux Kernel

Carburizer
Kernel

netperf on 2.2 GHz AMD machines

CPU overhead

10/12/2009 Tolerating Hardware Device Failures in Software

31

16

36

16

31

16

0
5

10
15
20
25
30
35
40

nVIDIA MCP 55 Intel Pro 1000

CP
U

 U
til

iz
at

io
n

(%
)

Network Card Type

Linux Kernel

Carburizer Kernel
with recovery

Carburizer Kernel
w/o recovery

Almost no overhead from hardened drivers and automatic recovery

netperf on 2.2 GHz AMD machines

Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Recommendation Summary Recommended by

Intel Sun MS Linux

Validation Input validation   

Read once& CRC data   

DMA protection  

Timing Infinite polling   

Stuck interrupt 

Lost request 

Avoid excess delay in OS 

Unexpected events  

Reporting Report all failures   

Recovery Handle all failures  

Cleanup correctly  

Do not crash on failure   

Wrap I/O memory access    

Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Recommendation Summary Recommended by Carburizer
EnsuresIntel Sun MS Linux

Validation Input validation    

Read once& CRC data   

DMA protection  

Timing Infinite polling    

Stuck interrupt  

Lost request  

Avoid excess delay in OS 

Unexpected events  

Reporting Report all failures    

Recovery Handle all failures   

Cleanup correctly   

Do not crash on failure    

Wrap I/O memory access    

Carburizer improves system reliability by automatically ensuring
that hardware failures are tolerated in software

Thank You

• Contact
» kadav@cs.wisc.edu

• Visit our website for research on drivers
» http://cs.wisc.edu/~swift/drivers

10/12/2009 Tolerating Hardware Device Failures in Software

OS
Kernel

If
(c==0) {
.
print
(“Driver
init”);
}
.
.

Driver

Carburizer
If (c==0) {
.
print (“Driver
init”);
}
.
.

Compile-time components Run-time components

Hardened
Driver Binary

Faulty
Hardware

Carburizer
Runtime

Kernel Interface

Compiler

Backup slides

10/12/2009 Tolerating Hardware Device Failures in Software

Improving analysis accuracy

• Detect existing driver validation code
» Track variable taint history
» Detect existing timeout code
» Detect existing sanity checks

10/12/2009 Tolerating Hardware Device Failures in Software

while ((inb(nic_base + EN0_ISR) & ENISR_RDC) == 0)
if (jiffies - dma_start> 2) {

...
break;

}

ne2000 network driver (ne2k-pci.c)

Trend of hardware dependence bugs

• Many drivers either had one or two hardware bugs
» Developers were mostly careful but forgot in a few places

• Small number of drivers were badly written
» Developers did not account H/W dependence; many bugs

10/12/2009 Tolerating Hardware Device Failures in Software

Implementation efforts

• Carburizer static analysis tool
» 3230 LOC in OCaml

• Carburizer runtime (Interrupt Monitoring)
» 1030 lines in C

• Carburizer runtime (Shadow drivers)
»19000 LOC in C
»~70% wrappers – can be automatically generated by scripts

10/12/2009 Tolerating Hardware Device Failures in Software

	Tolerating Hardware Device Failures in Software	
	Current state of OS-hardware interaction
	Current state of OS-hardware interaction
	How do the hardware bugs manifest?
	An example: Windows servers
	Carburizer
	Outline
	Hardware unreliability
	Vendor recommendations for driver developers
	Carburizer architecture
	Outline
	Hardening drivers
	Hardening drivers
	Finding sensitive code
	Detecting risky uses of tainted variables
	Example: Infinite polling
	Not all bugs are obvious
	Detecting risky uses of tainted variables
	Example: Unsafe array accesses
	Analysis results over the Linux kernel
	Analysis results over the Linux kernel
	Repairing drivers
	Carburizer automatically fixes infinite loops
	Carburizer automatically adds bounds checks
	Runtime fault recovery
	Experimental validation
	Outline
	Reporting errors
	Detecting driver detected device failures
	Detecting existing reporting code
	Evaluation
	Outline
	Runtime failure detection
	Tolerating missing interrupts
	Tolerating stuck interrupts
	Outline
	Throughput overhead
	CPU overhead
	Conclusion
	Conclusion
	Thank You
	Backup slides
	Improving analysis accuracy
	Trend of hardware dependence bugs
	Implementation efforts

