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Current state of OS-hardware interaction

• Many device drivers assume device perfection
» Common Linux network driver: 3c59x .c
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While (ioread16(ioaddr + Wn7_MasterStatus))
& 0x8000)

;

Hardware dependence bug: Device malfunction can crash the system

HANG!



void hptitop_iop_request_callback(...) {

arg= readl(...);
...

if (readl(&req->result) == IOP_SUCCESS)  {
arg->result = HPT_IOCTL_OK;

}
}

Current state of OS-hardware interaction

• Hardware dependence bugs across driver classes
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*Code simplified for presentation purposes

Highpoint SCSI driver(hptiop.c)



How do the hardware bugs manifest?

• Drivers often trust hardware to always work correctly
» Drivers use device data in critical control and data paths
» Drivers do not report device malfunctions to system log
» Drivers do not detect or recover from device failures
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An example: Windows servers

• Transient hardware failures caused 8% of all crashes 
and 9% of all unplanned reboots[1]

» Systems work fine after reboots
» Vendors report returned device was faultless

• Existing solution is hand-coded hardened driver: 
» Crashes reduced from 8% to 3%

• Driver isolation systems not yet deployed
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[1] Fault resilient drivers for Longhorn server, May 2004. Microsoft Corp.



Carburizer

• Goal: Tolerate hardware device failures in software 
through hardware failure detection and recovery

• Static analysis tool - analyze and insert code to:
» Detect and fix hardware dependence bugs
» Detect and generate missing error reporting information

• Runtime
» Handle interrupt failures
» Transparently recover from failures
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Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion
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Hardware unreliability

• Sources of hardware misbehavior:
» Device wear-out, insufficient burn-in
» Bridging faults
» Electromagnetic radiation
» Firmware bugs

• Result of misbehavior: 
» Corrupted/stuck-at inputs
» Timing errors/unpredictable DMA 
» Interrupt storms/missing interrupts
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Vendor recommendations for driver developers
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Recommendation Summary Recommended by

Intel Sun MS Linux

Validation Input validation   

Read once& CRC data   

DMA protection  

Timing Infinite polling   

Stuck interrupt 

Lost request 

Avoid excess delay in OS 

Unexpected events  

Reporting Report all failures   

Recovery Handle all failures  

Cleanup correctly  

Do not crash on failure   

Wrap I/O memory access    

Goal: Automatically implement as many recommendations as 
possible in commodity drivers



Carburizer architecture
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OS Kernel

If (c==0) {
.
print 
(“Driver 
init”);
}
.
.

Driver

Carburizer

If (c==0) {
.
print (“Driver 
init”);
}
.
.

Compile-time components Run-time components

Hardened 
Driver Binary

Faulty 
Hardware

Carburizer 
Runtime

Kernel Interface

Compiler



Outline

• Background
• Hardening drivers

» Finding sensitive code
» Repairing code

• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion
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Hardening drivers

• Goal: Remove hardware dependence bugs 
» Find driver code that uses data from device
» Ensure driver performs validity checks

• Carburizer detects and fixes hardware bugs from
» Infinite polling
» Unsafe static/dynamic array reference 
» Unsafe pointer dereferences
» System panic calls
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Hardening drivers

• Finding sensitive code
» First pass: Identify tainted variables
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Finding sensitive code

First pass: Identify tainted variables
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int test () {
a = readl();
b = inb();
c = b;
d = c + 2;
return d;

}
int set() {

e = test();
}

Tainted 
Variables

a
b
c
d

test()
e



Detecting risky uses of tainted variables

• Finding sensitive code
» Second pass: Identify risky uses of tainted variables

• Example: Infinite polling
» Driver waiting for device to enter particular state
» Solution: Detect loops where all terminating 

conditions depend on tainted variables
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Example: Infinite polling

Finding sensitive code

10/12/2009 Tolerating Hardware Device Failures in Software

static int amd8111e_read_phy(………)
{
...
reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE)

reg_val = readl(mmio + PHY_ACCESS)
.

}

AMD 8111e network driver(amd8111e.c)



Not all bugs are obvious
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while (DAC960_PD_StatusAvailableP(ControllerBaseAddress))
{

DAC960_V1_CommandIdentifier_T CommandIdentifier= DAC960_PD_ReadStatusCommandIdentifier 
(ControllerBaseAddress);

DAC960_Command_T *Command = Controller ->Commands [CommandIdentifier-1];
DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox;
DAC960_V1_CommandOpcode_T CommandOpcode=CommandMailbox->Common.CommandOpcode;
Command->V1.CommandStatus =DAC960_PD_ReadStatusRegister(ControllerBaseAddress);
DAC960_PD_AcknowledgeInterrupt(ControllerBaseAddress);
DAC960_PD_AcknowledgeStatus(ControllerBaseAddress);
switch (CommandOpcode)
{
case DAC960_V1_Enquiry_Old:

DAC960_P_To_PD_TranslateReadWriteCommand(CommandMailbox);
…

}

DAC960 Raid Controller(DAC960.c)



Detecting risky uses of tainted variables

• Example II: Unsafe array accesses
» Tainted variables used as array index into static or 

dynamic arrays
» Tainted variables used as pointers
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Example: Unsafe array accesses

Unsafe array accesses

10/12/2009 Tolerating Hardware Device Failures in Software

static void __init attach_pas_card(...)
{

if ((pas_model = pas_read(0xFF88))) 
{ 
...
sprintf(temp, “%s rev %d”, 
pas_model_names[(int) pas_model], pas_read(0x2789)); 

...
}

Pro Audio Sound driver (pas2_card.c)



Analysis results over the Linux kernel
• Analyzed drivers in 2.6.18.8 Linux kernel

» 6300 driver source files
» 2.8 million lines of code
» 37 minutes to analyze and compile code

• Additional analyses to detect existing validation 
code
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Analysis results over the Linux kernel

• Found 992 bugs in driver code
• False positive rate: 7.4%  (manual sampling of 190 bugs)
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Driver class Infinite 
polling

Static array Dynamic
array

Panic calls

net 117 2 21 2

scsi 298 31 22 121

sound 64 1 0 2

video 174 0 22 22

other 381 9 57 32

Total 860 43 89 179

Many cases of poorly written drivers with hardware dependence bugs



Repairing drivers

• Hardware dependence bugs difficult to test
• Carburizer automatically generates repair code

» Inserts timeout code for infinite loops 
» Inserts checks for unsafe array/pointer references
» Replaces calls to panic() with recovery service
» Triggers generic recovery service on device failure
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Carburizer automatically fixes infinite loops
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timeout = rdstcll(start) + (cpu/khz/HZ)*2;
reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE) {

reg_val = readl(mmio + PHY_ACCESS);

if (_cur < timeout)
rdstcll(_cur);

else
__recover_driver();

}

*Code simplified for presentation purposes

Timeout code 
added

AMD 8111e network driver(amd8111e.c)



Carburizer automatically adds bounds checks
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static void __init attach_pas_card(...)
{

if ((pas_model = pas_read(0xFF88))) 
{ 
...
if ((pas_model< 0)) || (pas_model>= 5))

__recover_driver();   
.
sprintf(temp, “%s rev %d”, 
pas_model_names[(int) pas_model], pas_read(0x2789)); 

}

*Code simplified for presentation purposes

Array bounds 
check added

Pro Audio Sound driver (pas2_card.c)



Runtime fault recovery

• Low cost transparent recovery
» Based on shadow drivers
» Records state of driver
» Transparent restart and state 

replay on failure

• Independent of any isolation 
mechanism (like Nooks)
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Shadow 
Driver

Device 
Driver

Device

Taps

Driver-Kernel 
Interface



Device/Driver Original Driver Carburizer

Behavior Detection Behavior Detection Recovery

3COM 3C905 CRASH None RUNNING Yes Yes

DEC DC 21x4x CRASH None RUNNING Yes Yes

Experimental validation
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• Synthetic fault injection on network drivers
• Results

Carburizer failure detection and transparent recovery work 
well for transient device failures



Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion
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Reporting errors

• Drivers often fail silently and fail to report device errors
» Drivers should proactively report device failures
» Fault management systems require these inputs

• Driver already detects failure but does not report them

• Carburizer analysis performs two functions
» Detect when there is a device failure
» Report unless the driver is already reporting the failure
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Detecting driver detected device failures

• Detect code that depends on tainted variables
» Perform unreported loop timeouts
» Returns negative error constants
» Jumps to common cleanup code
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while (ioread16 (regA) == 0x0f) {
if (timeout++ == 200)  {

sys_report(“Device timed out %s.\n”, mod_name);
return (-1);

}
}

Reporting code 
added by 

Carburizer



Detecting existing reporting code

Carburizer detects function calls with string arguments
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static u16 gm_phy_read(...)
{

...
if (__gm_phy_read(...))

printk(KERN_WARNING "%s: ...\n”, ...);

Carburizer 
detects existing 
reporting code

SysKonnect network driver(skge.c)



Evaluation

• Manual analysis of drivers of different classes

• No false positives
• Fixed 1135 cases of unreported timeouts and 467 cases of 

unreported device failures in Linux drivers
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Driver Class Driver detected 
device failures

Carburizer 
reported failures

bnx2 network 24 17

mptbase scsi 28 17

ens1371 sound 10 9

Carburizer automatically improves the fault diagnosis 
capabilities of the system



Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion
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Runtime failure detection

• Static analysis cannot detect all device failures
» Missing interrupts: expected but never arrives
» Stuck interrupts (interrupts storm): interrupt cleared 

by driver but continues to be asserted
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Tolerating missing interrupts
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Driver

Hardware 
Device

Request

Interrupt 
responses

• Detect when to expect interrupts 
» Detect driver activity via referenced bits
» Invoke ISR when bits referenced but no 
interrupt activity 

• Detect how often to poll
» Dynamic polling based on previous 
invocation result



Tolerating stuck interrupts

• Driver interrupt handler is called too many times
• Convert the device from interrupts to polling
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Driver Type Driver Name Throughput reduction due to polling

Disk ide-core,ide-disk, ide-generic Reduced by 50%

Network e1000 Reduced from 750 Mb/s to 130 Mb/s

Sound ens1371 Sounds plays with distortion

Carburizer ensures system and device make forward progress



Outline

• Background
• Hardening drivers
• Reporting errors
• Runtime fault tolerance
• Cost of carburizing
• Conclusion
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Throughput overhead
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CPU overhead
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Conclusion
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Recommendation Summary Recommended by

Intel Sun MS Linux

Validation Input validation   

Read once& CRC data   

DMA protection  

Timing Infinite polling   

Stuck interrupt 

Lost request 

Avoid excess delay in OS 

Unexpected events  

Reporting Report all failures   

Recovery Handle all failures  

Cleanup correctly  

Do not crash on failure   

Wrap I/O memory access    



Conclusion

10/12/2009 Tolerating Hardware Device Failures in Software

Recommendation Summary Recommended by Carburizer
EnsuresIntel Sun MS Linux

Validation Input validation    

Read once& CRC data   

DMA protection  

Timing Infinite polling    

Stuck interrupt  

Lost request  

Avoid excess delay in OS 

Unexpected events  

Reporting Report all failures    

Recovery Handle all failures   

Cleanup correctly   

Do not crash on failure    

Wrap I/O memory access    

Carburizer improves system reliability by automatically ensuring 
that hardware failures are tolerated in software



Thank You

• Contact
» kadav@cs.wisc.edu

• Visit our website for research on drivers
» http://cs.wisc.edu/~swift/drivers
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OS 
Kernel

If 
(c==0) {
.
print 
(“Driver 
init”);
}
.
.

Driver

Carburizer
If (c==0) {
.
print (“Driver 
init”);
}
.
.

Compile-time components Run-time components

Hardened 
Driver Binary

Faulty 
Hardware

Carburizer 
Runtime

Kernel Interface

Compiler



Backup slides

10/12/2009 Tolerating Hardware Device Failures in Software



Improving analysis accuracy

• Detect existing driver validation code
» Track variable taint history
» Detect existing timeout code
» Detect existing sanity checks
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while ((inb(nic_base + EN0_ISR) & ENISR_RDC) == 0)
if (jiffies - dma_start> 2) {

...
break;

}

ne2000 network driver (ne2k-pci.c)



Trend of hardware dependence bugs

• Many drivers either had one or two hardware bugs
» Developers were mostly careful but forgot in a few places

• Small number of drivers were badly written
» Developers did not account H/W dependence; many bugs
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Implementation efforts

• Carburizer static analysis tool
» 3230 LOC in OCaml

• Carburizer runtime (Interrupt Monitoring)
» 1030 lines in C

• Carburizer runtime (Shadow drivers)
»19000 LOC in C
»~70% wrappers – can be automatically generated by scripts
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