
UC Berkeley

Detecting Large-Scale System Problems

by Mining Console Logs

Wei Xu* Ling Huang†

Armando Fox* David Patterson* Michael Jordan*

1

*UC Berkeley † Intel Labs Berkeley

Why console logs?

• Detecting problems in large scale Internet services

often requires detailed instrumentation

• Instrumentation can be costly to insert & maintain

• High code churn

• Often combine open-source building blocks that are not

all instrumented

• Can we use console logs in lieu of instrumentation?

+ Easy for developer, so nearly all software has them

– Imperfect: not originally intended for instrumentation

2

Result preview

200 nodes,

>24 million lines of logs
Abnormal log segments A single page visualization

3

Parse

Detect
Visualize

• Fully automatic process without any manual input

Our approach and contribution

4

Machine

Learning
VisualizationParsing

Feature

Creation

• A general methodology for processing console logs

automatically

• Validation on two real systems

Key insights for analyzing logs

• The log contains the necessary information to

create features

• Identifiers

• State variables

• Correlations among messages

5

NORMAL

receiving blk_1

received blk_1

receiving blk_2

ERROR

• Console logs are inherently structured

• Determined by log printing statement

• Non-trivial in object oriented languages

– Needs type inference on the entire source tree

• Highly accurate parsing results

Step 1: Parsing

• Free text → semi-structured text

• Basic ideas

6

Receiving block blk_1

Log.info(“Receiving block ” + blockId);

Receiving block (.*) [blockId]

Type: Receiving block

Variables: blockId(String)=blk_1

Step 2: Feature creation -

Message count vector

• Identifiers are widely used in logs

• Variables that identify objects manipulated by the

program

• file names, object keys, user ids

• Grouping by identifiers

• Similar to execution traces

• Identifiers can be discovered automatically

7

receiving blk_1

receiving blk_1

received blk_1

received blk_1

receiving blk_2

received blk_2

receiving blk_2

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Feature creation –

Message count vector example

Receiving blk_1

Receiving blk_2

Received blk_2

Receiving blk_1

Received blk_1

Received blk_1

Receiving blk_2

8

0 1 2 0 0 2 0 0 0 0 0 0 0 0 2 2

0 0 1 2 0 0 2 0 0 0 0 0 0 0 12

• Numerical representation of these “traces”

• Similar to bag of words model in information retrieval

blk_1

blk_2

Step 3: Machine learning

– PCA anomaly detection

• Most of the vectors are normal

• Detecting abnormal vectors

• Principal Component Analysis (PCA) based detection

• PCA captures normal patterns in these vectors

• Based on correlations among dimensions of the

vectors

9
NORMAL

receiving blk_1

received blk_1
receiving blk_2

ERROR

0 1 2 0 0 2 0 0 0 0 0 0 0 0 2 2

Evaluation setup

• Experiment on Amazon’s EC2 cloud

• 203 nodes x 48 hours

• Running standard map-reduce jobs

• ~24 million lines of console logs

• ~575,000 HDFS blocks

• 575,000 vectors

• ~ 680 distinct ones

• Manually labeled each distinct cases

• Normal/abnormal

• Tried to learn why it is abnormal

• For evaluation only 10

PCA detection results

11

Anomaly Description Actual Detected
1 Forgot to update namenode for deleted block 4297 4297

2 Write block exception then client give up 3225 3225

3 Failed at beginning, no block written 2950 2950

4 Over-replicate-immediately-deleted 2809 2788

5 Received block that does not belong to any file 1240 1228

6 Redundant addStoredBlock request received 953 953

7 Trying to delete a block, but the block no longer exists on data node 724 650

8 Empty packet for block 476 476

9 Exception in receiveBlock for block 89 89
10 PendingReplicationMonitor timed out 45 45

11 Other anomalies 108 107

Total anomalies 16916 16808
Normal blocks 558223

Description False Positives
1 Normal background migration 1397

2 Multiple replica (for task / jobdesc files) 349

Total 1746
False Positives

How can we make the results easy

for operators to understand?

Step 4: Visualizing

results with decision tree

12

OK

1

1

1

1

0

0

0

writeBlock # received exception

Starting thread to transfer block # to

#: Got exception while serving # to #:#

Unexpected error trying to delete block #\.

BlockInfo Not found in volumeMap

addStoredBlock request received for # on

size # But it does not belong to any file

starting thread to transfer block # to

#Verification succeeded for #

Receiving block # src: # dest: #

ERROR
0

<=2

0

0

0

0

0

>=3

>=1

>=3

>=1

>=1

>=1

>=1

>=1

<=2

ERROR

ERROR

ERROR

ERROR

OK

OK

OK

Future work

• Parsing

• Extract templates from program binaries

• Support more languages

• Feature creation and machine learning

• Allow online detection

• Cross application/layers logs

13

Summary

14

http://www.cs.berkeley.edu/~xuw/

Wei Xu <xuw@cs.berkeley.edu>

Machine

Learning
VisualizationParsing

Feature

Creation

