
Design Implications for Enterprise
Storage Systems via

Multi-Dimensional Trace Analysis

Yanpei Chen, Kiran Srinivasan∗,
Garth Goodson∗, Randy Katz

University of California, Berkeley, ∗NetApp Inc.

{ychen2, randy}@eecs.berkeley.edu,
∗{skiran, goodson}@netapp.com

ABSTRACT
Enterprise storage systems are facing enormous challenges due to increasing growth and
heterogeneity of the data stored. Designing future storage systems requires comprehensive
insights that existing trace analysis methods are ill-equipped to supply. In this paper, we
seek to provide such insights by using a new methodology that leverages an objective, multi-
dimensional statistical technique to extract data access patterns from network storage
system traces. We apply our method on two large-scale real-world production network
storage system traces to obtain comprehensive access patterns and design insights at user,
application, file, and directory levels. We derive simple, easily implementable, threshold-
based design optimizations that enable efficient data placement and capacity optimization
strategies for servers, consolidation policies for clients, and improved caching performance
for both.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; D.4.3 [Operating Systems]:
File Systems Management—Distributed file systems

1. INTRODUCTION
Enterprise storage systems are designed around a set of data access patterns. The storage
system can be specialized by designing to a specific data access pattern; e.g., a storage
system for streaming video supports different access patterns than a document repository.
The better the access pattern is understood, the better the storage system design. Insights
into access patterns have been derived from the analysis of existing file system workloads,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

typically through trace analysis studies [1, 3, 17, 19, 24]. While this is the correct general
strategy for improving storage system design, past approaches have critical shortcomings,
especially given recent changes in technology trends. In this paper, we present a new
design methodology to overcome these shortcomings.

The data stored on enterprise network-attached storage systems is undergoing changes due
to a fundamental shift in the underlying technology trends. We have observed three such
trends, including:

• Scale: Data size grows at an alarming rate [12], due to new types of social, business
and scientific applications [20], and the desire to “never delete” data.

• Heterogeneity : The mix of data types stored on these storage systems is becoming
increasingly complex, each having its own requirements and access patterns [22].

• Consolidation: Virtualization has enabled the consolidation of multiple applications
and their data onto fewer storage servers [6, 23]. These virtual machines (VMs) also
present aggregate data access patterns more complex than those from individual clients.

Better design of future storage systems requires insights into the changing access patterns
due to these trends. While trace studies have been used to derive data access patterns, we
believe that they have the following shortcomings:

• Unidimensional: Although existing methods analyze many access characteristics, they
do so one at a time, without revealing cross-characteristic dependencies.

• Expertise bias: Past analyses were performed by storage system designers looking for
specific patterns based on prior workload expectations. This introduces a bias that
needs to be revisited based on the new technology trends.

• Storage server centric: Past file system studies focused primarily on storage servers.
This creates a critical knowledge gap regarding client behavior.

To overcome these shortcomings, we propose a new design methodology backed by the
analysis of storage system traces. We present a method that simultaneously analyzes mul-
tiple characteristics and their cross dependencies. We use a multi-dimensional, statistical
correlation technique, called k-means [2], that is completely agnostic to the characteris-
tics of each access pattern and their dependencies. The K-means algorithm can analyze
hundreds of dimensions simultaneously, providing added objectivity to our analysis. To
further reduce expertise bias, we involve as many relevant characteristics as possible for
each access pattern. In addition, we analyze patterns at different granularities (e.g., at
the user session, application, file level) on the storage server as well as the client, thus ad-
dressing the need for understanding client patterns. The resulting design insights enable
policies for building new storage systems.

We analyze two recent, network-attached storage file system traces from a production
enterprise datacenter. Table 1 summarizes our key observations and design implications,
they will be detailed later in the paper. Our methodology leads to observations that
would be difficult to extract using past methods. We illustrate two such access patterns,
one showing the value of multi-granular analysis (Observation 1 in Table 1) and another
showing the value of multi-feature analysis (Observation 8).

First, we observe (Observation 1) that sessions with more than 128KB of data reads or
writes are either read-only or write-only. This observation affects shared caching and
consolidation policies across sessions. Specifically, client OSs can detect and co-locate cache
sensitive sessions (read-only) with cache insensitive sessions (write-only) using just one
parameter (read-write ratio). This improves cache utilization and consolidation (increased
density of sessions per server).

Client side observations and design implications Server side observations and design implications
1. Client sessions with IO sizes >128KB are

read only or write only. ⇒ Clients can con-
solidate sessions based on only the read-
write ratio.

7. Files with >70% sequential read or write have no
repeated reads or overwrites. ⇒ Servers should
delegate sequentially accessed files to clients to
improve IO performance.

2. Client sessions with duration >8 hours do
≈10MB of IO. ⇒ Client caches can already
fit an entire day’s IO.

8. Engineering files with repeated reads have ran-
dom accesses. ⇒ Servers should delegate repeat-
edly read files to clients; clients need to store
them in flash or memory.

3. Number of client sessions drops off linearly
by 20% from Monday to Friday. ⇒ Servers
can get an extra “day” for background tasks
by running at appropriate times during
week days.

9. All files are active (have opens, IO, and meta-
data access) for only 1-2 hours in a few months.
⇒ Servers can use file idle time to compress or
deduplicate to increase storage capacity.

4. Applications with <4KB of IO per file open
and many opens of a few files do only ran-
dom IO. ⇒ Clients should always cache the
first few KB of IO per file per application.

10. All files have either all random access or >70%
sequential access. (Seen in past studies too) ⇒
Servers can select the best storage medium for
each file based on only access sequentiality.

5. Applications with >50% sequential read or
write access entire files at a time. ⇒ Clients
can request file prefetch (read) or delegation
(write) based on only the IO sequentiality.

11. Directories with sequentially accessed files al-
most always contain randomly accessed files as
well. ⇒ Servers can change from per-directory
placement policy (default) to per-file policy
upon seeing any sequential IO to any files in a
directory.

6. Engineering applications with >50% se-
quential read and sequential write are doing
code compile tasks, based on file extensions.
⇒ Servers can identify compile tasks; server
has to cache the output of these tasks.

12. Some directories aggregate only files with re-
peated reads and overwrites. ⇒ Servers can del-
egate these directories entirely to clients, trade-
offs permitting.

Table 1: Summary of design insights, separated into insights derived from client access

patterns and server access patterns.

Similarly, we observe (Observation 8) that files with >70% sequential read or sequential
write have no repeated reads or overwrites. This access pattern involves four charac-
teristics: read sequentiality, write sequentiality, repeated read behavior, and overwrite
behavior. The observation leads to a useful policy: sequentially accessed files do not need
to be cached at the server (no repeated reads), which leads to an efficient buffer cache.

These observations illustrate that our methodology can derive unique design implications
that leverage the correlation between different characteristics. To summarize, our contri-
butions are:

• Identify storage system access patterns using a multi- dimensional, statistical analysis
technique.

• Build a framework for analyzing traces at different granularity levels at both server
and client.

• Analyze our specific traces and present the access patterns identified.
• Derive design implications for various storage system components from the access pat-

terns.

In the rest of the paper, we motivate and describe our analysis methodology (Sections 2 and
3), present the access patterns we found and the design insights (Section 4), provide the
implications on storage system architecture (Section 5), and suggest future work (Section
6).

2. MOTIVATION AND BACKGROUND
Past trace-based studies have examined a range of storage system protocols and use cases,
delivering valuable insights for designing storage servers. Table 2 summarizes the con-
tributions of past studies. Many studies predate current technology trends. Analysis of
real-world, corporate workloads or traces have been sparse, with only three studies among

Study Date
File
system

N/w
FS

Multi-
dim.

Multi-
layer

Data
set

Trace
info

Insights/contributions

Ousterhout,
et al. [17]

1985 BSD Eng Live

Seminal patterns
analysis: Large, se-
quential read access;
limited read-write;
bursty I/O; short
file lifetimes, etc.

Ramakrishnan,
et al. [18]

1988-
89

VAX/
VMS

�
Eng,
HPC,
Corp

Live

Relationship be-
tween files and
processes - on usage
patterns, sharing,
etc.

Baker,
et al. [3]

1991 Sprite � Eng Live

Analysis of dis-
tributed file system;
comparison to [17],
caching effects.

Gribble,
et al. [10]

1991-
97

Sprite,
NFS,
VxFS

� Eng,
Backup

Live,
Snap

Workload self-
similarity

Douceur,
et al. [7]

1998
FAT,
FAT32,
NTFS

Eng Snap

Analysis of file and
directory attributes:
size, age, lifetime, di-
rectory depth

Vogels [24] 1998
FAT,
NTFS

Eng,
HPC

Live,
Snap

Supported past
observations and
trends in NTFS

Zhou
et al. [25]

1999 VFAT PC Live
Analysis of personal
computer workloads

Roselli,
et al. [19]

1997-
00

VxFS,
NTFS

Eng,
Server

Live
Increased block
lifetimes, caching
strategies

Ellard,
et al. [8]

2001 NFS � Eng,
Email

Live
NFS peculiarities,
pathnames can aid
file layout

Agrawal,
et al. [1]

2000-
04

FAT,
FAT32,
NTFS

Eng Snap

Distribution of file
size and type in
namespace, change
in file contents over
time

Leung,
et al. [15]

2007 CIFS � Corp,
Eng

Live

File re-open, shar-
ing, activity char-
acteristics; changes
compared to previ-
ous studies

Kavalanekar,
et al. [13]

2007 NTFS
Web,
Corp

Live

Study of web (live
maps, web content,
etc.) workloads in
servers via events
tracing.

This paper 2007 CIFS � � � Corp,
Eng

Live Section 4

Table 2: Past studies of storage system traces. “Corp” stands for corporate use cases.

“Eng” stands for engineering use cases. “Live” implies live requests or events in traces were studied,

“Snap” implies snapshots of file systems were studied.

the ones listed [13, 15, 18]. A number of studies have focused on NFS trace analysis only [8,
10]. This focus somewhat neglects systems using the Common Internet File System (CIFS)
protocol [5], with only a single CIFS study [15]. CIFS systems are important since CIFS
is the network storage protocol for Windows, the dominant OS on commodity platforms.
Our work uses the same traces as [15], but we perform analysis using a methodology that
extracts multi-dimensional insights at different layers. This methodology is sufficiently
different from prior work as to make the analysis findings not comparable. The following
discusses the need for this methodology.

2.1 Need for Insights at Different Layers
We divide our view of the storage system into behavior at clients and servers. Storage
clients interface directly with users, who create and view content via applications. Sepa-
rately, servers store the content in a durable and efficient fashion over the network. Past
network storage system trace studies focus mostly on storage servers (Table 2). Storage
client behavior is underrepresented primarily due to the reliance on stateless NFS traces.
This leaves a knowledge gap about access patterns at storage clients. Specifically, these
questions are unanswered:

• Do applications exhibit clear access patterns?
• What are the user-level access patterns?
• Any correlation between users and applications?
• Do all applications interact with files the same way?

Insights on these access patterns lead to better design of both clients and servers. They
enable server capabilities such as per session quality of service (QoS), or per application
service level objectives (SLOs). They also inform various consolidation, caching, and
prefetching decisions at clients.

Each of these access patterns is visible only at a particular semantic layer within the client:
users or applications. We define each such layer as an access unit, with the observed
behaviors at each access unit being an access pattern. The analysis of client side access
units represents an improvement on prior work.

On the server side, we extend the previous focus on files. We need to also understand
how files are grouped within a directory, as well as cross-file dependencies and directory
organization. Thus, we perform multi-layer and cross-layer dependency analysis on the
server also. This is another improvement on past work.

2.2 Need for Multi-Dimensional Insights
Each access unit has certain inherent characteristics. Characteristics that can be quantified
are features of that access unit. For example, for an application, the read size in bytes
is a feature; the number of unique files accessed is another. Each feature represents an
independent mathematical dimension that describes an access unit. We use the terms
dimension, feature, and characteristic interchangeably. The global set of features for an
access unit is limitless. Picking a good feature set requires domain knowledge.

Many recent studies analyze access patterns only one feature at a time. This represents a
key limitation. The resulting insights, although valuable, lead to uniform policies around a
single design point. For example, study [15] revealed that most bytes are transferred from
larger files. Although this is an useful observation, it does not reveal other characteristics
of such large files: Do they have repeated reads? Do they have overwrites? Do they have
many metadata requests? And so on. Adding these dimensions breaks up the predominant
access pattern into smaller, minority access patterns, each may require a specific storage
policy.

Understanding minority access patterns is increasingly important, because the trend to-
ward data heterogeneity implies that no “common case” will dominate storage system
behavior. Minority access patterns become visible only upon analyzing multiple features
simultaneously, hence the need for multi-dimensional insights. We also need to select a
reasonable number of features. Doing so allows us to fully describe the access patterns
and reduce the bias in picking any one feature.

Manually identifying multi-feature dependencies is difficult, and can lead to an untenable
analysis. Therefore, we need techniques that analyze a large number of features, scale

to a high number of analysis data points, and do not require a priori knowledge of any
cross-feature dependencies. Multi-dimensional statistics techniques have solved similar
problems in other domains [4, 9, 21]. We can apply similar techniques and combine them
with domain specific knowledge of the storage systems being analyzed.

In short, the need for multi-layered and multi-dimensional insights motivates our method-
ology.

3. METHODOLOGY
In this section, we describe our analysis method in detail. We start with a description
of the traces we analyzed, followed by a description of the access units selected for our
study. Next, we describe key steps in our analysis process, including selecting the right
features for each access unit, using the k-means data clustering algorithm to identify access
patterns, and additional information needed to interpret and generalize the results.

3.1 Traces Analyzed
We collected CIFS traces from two large-scale, enterprise-class file servers deployed at
our corporate datacenters. One server covers roughly 1000 employees in marketing, sales,
finance, and other corporate roles. We call this the corporate trace. The other server covers
roughly 500 employees in various engineering roles. We call this the engineering trace. We
described the trace collecting infrastructure in [15].

The corporate trace reflects activities on 3TB of active storage from 09/20/2007 to 11/21/2007.
It contains activity from many Windows applications. The engineering trace reflects ac-
tivities on 19TB of active storage from 08/10/2007 to 11/14/2007. It interleaves activity
from both Windows and Linux applications. In both traces, many clients use virtualization
technologies. Thus, we believe we have representative traces with regards to the technol-
ogy trends in scale, heterogeneity, and consolidation. Also, since protocol-independent
users, applications, and stored data remain the primary factors affecting storage system
behavior, we believe our analysis is relevant beyond CIFS.

3.2 Access Units
As mentioned in Section 2.1, we analyze access patterns at multiple access units at the
server and the client. Selecting access units is subjective. We chose access units that form
clear semantic design boundaries. On the client side, we analyze two access units:

• Sessions: Sessions reflect aggregate behavior of an user. A CIFS session is bounded by
matching session connect and logoff requests. CIFS identifies it by a tuple - {client IP
address, session ID}.

• Application instance: Analysis at this level leads to application specific optimizations in
client VMs. CIFS identifies each application instance by the tuple - {client IP address,
session ID, and process ID}.

We also analyzed file open-closes, but obtained no useful insights. Hence we omit that
access unit from the paper.

We also examined two server side access units:

• File: Analyzing file level access patterns facilitates per-file policies and optimization
techniques. Each file is uniquely identified by its full path name.

• Deepest subtree: This access unit is identified by the directory path immediately con-
taining the file. Analysis at this level enables per-directory policies.

Session
App. Instance

App. Instance

Deepest subtree A

File

File

Deepest subtree A/B

File File

App. Instance

Figure 1: Access units analyzed. At clients, each session contains many application

instances. At servers, each subtree contains many files.

Figure 1 shows the semantic hierarchy among different access units. At clients, each session
contains many application instances. At servers, each subtree contains many files.

3.3 Analysis Process
Our method (Figure 2) involves the following steps:

1. Collect network storage system traces (Section 3.1).

2. Define the descriptive features for each access unit. This step requires domain knowl-
edge about storage systems (Section 3.3.1).

3. Extract multiple instances of each access unit, and compute from the trace the cor-
responding numerical feature values of each instance.

4. Input those values into k-means, a multi-dimensional statistical data clustering tech-
nique (Section 3.3.2).

5. Interpret the k-means output and derive access patterns by looking at only the rel-
evant subset of features. This step requires knowledge of both storage systems and
statistics. We also need to extract considerable additional information to support
our interpretations (Section 3.3.3).

6. Translate access patterns to design insights.

We give more details about Steps 2, 4, and 5 below.

3.3.1 Selecting features for each access unit
Selecting the set of descriptive features for each access unit requires domain knowledge
about storage systems (Step 2 in Figure 2). It also introduces some subjectivity, since the
choice of features limits on how one access pattern can differ from another. The human
designer needs to select some basic features initially, e.g., total IO size and read-write ratio
for a file. We will not know whether we have a good set of features until we have completed
the entire analysis process. If the analysis results leave some design choice ambiguities, we
need to add new features to clarify those ambiguities, again using domain knowledge. For
example, for the deepest subtrees, we compute various percentiles (25th, 50th, and 75th)
of certain features like read-write ratio because the average value for those features did not
clearly separate the access patterns. We then repeat the analysis process using the new
feature set. This iterative process leads to a long feature set for all access units, somewhat
reducing the subjective bias of a small feature set. We list in Section 4 the chosen features
for each access unit.

Most of the features used in our analysis (Section 4) are self-explanatory; some ambiguous
or complex features require precise definitions, such as:

IO: We use “IO” as a substitute for “read and write”.

Sequential reads or writes: We consider two read or writes requests to be sequential if they

1. Trace
collection

2. Select layers,
define features

3. Compute numerical
feature values

4. Identify access
patterns by k-means

5. Interpret
results

6. Design
implications

Figure 2: Methodology overview. The two-way arrows and the loop from Step 2 through

Step 5 indicate our many iterations between the steps.

are consecutive in time, and the file offset + request size of the first request equals the file
offset of the second request. A single read or write request is by definition not sequential.

Repeated reads or overwrites: We track accesses at 4KB block boundaries within a file,
with the offset of the first block being zero. A read is considered repeated if it accesses
a block that has been read in the past half hour. We use an equivalent definition for
overwrites.

3.3.2 Identifying access patterns via k-means
A key part of our methodology is the k-means multi-dimensional correlation algorithm. We
use it to identify access patterns simultaneously across many features (Step 4 in Figure 2).
K-means is a well-known, statistical correlation algorithm. It identifies sets of data points
that congregate around a region in n-dimensional space. These congregations are called
clusters. Given data points in an n-dimensional space, k-means picks k points at random as
initial cluster centers, assigns data points to their nearest cluster centers, and recomputes
new cluster centers via arithmetic means across points in the cluster. K-means iterates
the assignment-recompute process until the cluster centers become stationary. K-means
can run with multiple sets of initial cluster centers and return the best result [2].

For each access unit, we extract different instances of it from the trace, i.e., all session
instances, application instances, etc. For each instance, we compute the numerical values
of all its features. This gives us a data array in which each row correspond to an instance,
i.e., a data point, and each column correspond to a feature, i.e., a dimension. We input the
array into k-means, and the algorithm finds the natural clusters across all data points. We
consider all data points in a cluster as belonging to a single equivalence class, i.e., a single
access pattern. The numerical values of the cluster centers indicate the characteristics of
each access pattern.

We choose k-means for two reasons. First, k-means is algorithmically simple. This al-
lows rapid processing on large data sets. We used a modified version of the k-means C
library [14], in which we made some improvements to limits the memory footprint when
processing large data sizes. Second, k-means leads to intuitive labels of the cluster centers.
This helps us translate the statistical behavior extracted from the traces into tangible
insights. Thus, we prefer k-means to other clustering algorithms such as hierarchical clus-
tering and k-means derivatives [2].

K-means requires us to specify k, the number of clusters. This is a difficult task since we
do not know a priori the number of “natural” clusters in the data. We compute the intra-
cluster “residual” variance from the k-means results - the sum of squared distances from
each data point to its assigned cluster center. This is a standard metric for cluster quality,
and gives us a lower bound on k. We cannot set k so small that the residual variance forms
a large fraction of the total variance, i.e., residual variance ≈ the sum of squared distances
from each data point to the global average of all data points. We optionally increase k

beyond the lower bound until some key access patterns can be separated. Concurrently,
we take care not to increase k too high, to prevent having an unwieldy number of access
patterns and design targets. We applied this reasoning to set k at each client and server
access unit.

3.3.3 Interpreting and generalizing the results
The k-means algorithm gives us a set of access patterns with various characteristics. We
need additional information to understand the significance of the results. This information
comes from computing various secondary data outside of k-means analysis (Step 5 in Figure
2:

• We gathered the start and end times of each session instance, aggregated by times of
the day and days of the week. This gave us insight into how users launch and end
sessions.

• We examine filename extensions of files associated with every access pattern belonging
to these access units: application instances, files, and deepest subtrees. This informa-
tion connects the access patterns to more easily recognizable file extensions.

• We perform correlation analysis between the file and deepest subtrees access units.
Specifically, we compute the number of files of each file access pattern that is located
within directories in each deepest subtree access pattern. This information captures
the organizations of files in directories.

Such information gives us a detailed picture about the semantics of the access patterns,
resulting in human understandable labels to the access patterns. Such labels help us
translate observations to design implications.

Furthermore, after identifying the design implications, we explore if the design insights can
be extrapolated to other trace periods and other storage system use cases. We accomplish
this by repeating our exact analysis over multiple subsets of the traces, for example, a
week’s worth of traces at a time. This allow us to examine how our analysis would be
different had we obtained only a week’s trace. Access patterns that are consistent, stable
across different weeks would indicate that they are likely to be more general than just our
tracing period or our use cases.

4. ANALYSIS RESULTS & IMPLICATIONS
This section presents the access patterns we identified and the accompanying design in-
sights. We discuss client and serve side access patterns (Section 4.1, 4.2). We also check
if these patterns persist across time (Section 4.3).

For each access unit, we list the descriptive features (only some of which help separate
access patterns), outline how we derived the high-level name (label) for each access pattern,
and discuss relevant design insights.

4.1 Client Side Access Patterns
As mentioned in Section 3.2, we analyze sessions and application instances at clients.

4.1.1 Sessions
Sessions reflect aggregate behavior of human users. We used 17 features to describe sessions
(Table 3). The corporate trace has 509,076 sessions, and the engineering trace has 232,033.

In Table 3, we provide quantitative descriptions and short names for all the session access
patterns. We derive the names from examining the significant features: duration, read-
write ratio, and IO size.

(a). Descriptive features for each session
Duration Avg. time between IO requests Unique trees accessed
Total IO size Read sequentiality File opens
Read:write ratio by bytes Write sequentiality Unique files opened
Total IO requests Repeated read ratio Directories accessed
Read:write ratio by requests Overwrite ratio Application instances seen
Total metadata requests Tree connects

(b). Corporate session Full Half day Short Short Support- Support-
access patterns day content content content ing meta- ing read-

work viewing viewing generate data write
% of all sessions 0.5% 0.7% 1.2% 0.2% 96% 1.4%

Duration 8 hrs 4 hrs 10 min 70 min 7 sec 10 sec
Total IO size 11 MB 3 MB 128 KB 3 MB 0 420 B

Read:write ratio by bytes 3:2 1:0 1:0 0:1 0:0 1:1
Metadata requests 3000 700 230 550 1 20
Read sequentiality 70% 80% 0% - - 0%
Write sequentiality 80% - - 90% - 0%

File opens:files 200:40 80:15 30:7 50:15 0:0 6:3
Tree connect:Trees 5:2 3:2 2:2 2:2 1:1 2:2

Directories accessed 10 7 4 6 0 2
Application instances 4 3 2 2 0 1

(c). Engineering session Full Human App. Short Support- Machine
access patterns day edit small generated content ing meta- generated

work files backup generate data update
% of all sessions 0.4% 1.0% 4.4% 0.4% 90% 3.6%

Duration 1 day 2 hrs 1 min 1 hr 10 sec 10 sec
Total IO size 5 MB 5 KB 2 MB 2 MB 0 36 B

Read:write ratio 7:4 1:1 1:0 0:1 0:0 1:0
Metadata requests 1700 130 40 200 1 0
Read sequentiality 60% 0% 90% - - 0%
Write sequentiality 70% 0% - 90% - -

File opens:files 130:20 9:2 6:5 15:6 0:0 1:1
Tree connect:Trees 1:1 1:1 1:1 1:1 1:1 1:1

Directories accessed 7 2 1 3 0 1
Application instances 4 2 1 1 0 1

Table 3: Session access patterns. (a): Full list of descriptive features. (b) and (c): Short

names and descriptions of sessions in each access pattern; listing only the features that help

separate the access patterns.

We also looked at the aggregate session start and end times to get additional semantic
knowledge about each access pattern. Figure 3 shows the start and end times for selected
session access patterns. The start times of corporate full-day work sessions correspond
exactly to the U.S. work day – 9am start, 12pm lunch, 5pm end. Corporate content gen-
eration sessions show slight increase in the evening and towards Friday, indicating rushes
to meet daily or weekly deadlines. In the engineering trace, the application generated
backup and machine generated update sessions depart significantly from human workday
and work week patterns, leading us to label them as application and machine (client OS)
generated.

One surprise was that the ‘supporting metadata’ sessions account for >90% of all sessions
in both traces. We believe these sessions are not humanly generated. They last roughly
10 seconds, leaving little time for human mediated interactions. Also, the session start
rate averages to roughly one per employee per minute. We are certain that our colleagues
are not connecting and logging off every minute of the entire day. However, the shape of
the start time graphs have a strong correlation with the human work day and work week.
We call these supporting metadata sessions – machine generated in support of human
user activities. These metadata sessions form a sort of “background noise” to the storage
system. We observe the same background noise at other layers both at clients and servers.

Observation 1: The sessions with IO sizes greater than 128KB are either read-only or

0

200

400

600

800

0 8 16 24
hrs of the day

0

200

400

600

800

0 8 16 24
hrs of the day

0

700

1400

2100

2800

0 1 2 3 4 5 6
days of the week

0
500

1000
1500
2000
2500
3000
3500

0 1 2 3 4 5 6
days of the week

Eng application
generated backup or copy

Eng machine
generated update

0

200

400

600

0 8 16 24

of

 s
es

si
on

s

hrs of the day

start
end

0

40

80

120

0 8 16 24
hrs of the day

0

25000

50000

0 8 16 24
hrs of the day

0

200

400

600

800

0 1 2 3 4 5 6

of

 s
es

si
on

s

days of the week

0

100

200

300

0 1 2 3 4 5 6
days of the week

0

40000

80000

120000

0 1 2 3 4 5 6
days of the week

Corp full day work Corp short content
generation

Corp supporting
metadata

Figure 3: Number of sessions that start or ends at a particular time. Number of

session starts and ends in times of the day (top) and session starts in days of the week (bottom).

Showing only selected access patterns.

write-only, except for the full-day work sessions. Among these sessions, only read-only
sessions utilize buffer cache for repeated reads and prefetches. Write-only sessions only use
the cache to buffer writes. Thus, if we have a cache eviction policy that recognizes their
write-only nature and releases the buffers immediately on flushing dirty data, we can satisfy
many write-only sessions with relatively little buffer cache space. We can attain better
consolidation and buffer cache utilization by managing the ratio of co-located read-only
and write-only sessions. This insight can be used by virtualization managers and client
operating systems to manage a shared buffer cache between sessions. Recognizing such
read-only and write-only sessions is easy. Examining a session’s total read size and write
size reveals their read-only or write-only nature. Implication 1: Clients can consolidate
sessions efficiently based only on the read-write ratio.

Observation 2: The full-day work, content-viewing, and content-generating sessions all do
≈10MB of IO. This means that a client cache of 10s of MB can fit the working set of a day
for most sessions. Given the growth of flash devices on clients for caching, despite large-
scale consolidation, clients should easily cache a day’s worth of data for all users. In such
a scenario, most IO requests would be absorbed by the cache, reducing network latency
and bandwidth utilization, and load on the server. Moreover, complex cache eviction
algorithms are unnecessary. Implication 2: Clients caches can already fit an entire day’s
IO.

Observation 3: The number of human-generated sessions and supporting sessions peaks on
Monday and decreases steadily to 80% of the peak on Friday (Figure 3). This is true for all
human generated sessions, including the ones not shown in Figure 3. There is considerable
“slack” in the server load during evenings, lunch times, and even during working hours.
This implies that the server can perform background tasks such as consistency checks,
maintenance, or compression/deduplication, at appropriate times during the week. A
simple count of active sessions can serve as an effective start and stop signal. By computing
the area under the curve for session start times by days of the week, we estimate that
background tasks can squeeze out roughly one extra day’s worth of processing without
altering the peak demand on the system. This is a 50% improvement over a setup which
performs background tasks only during weekends. In the engineering trace, the application
generated backup or copy sessions seem to have been already designed this way. Implication
3: Servers get an extra “day” for background tasks by running them at appropriate times
during week-days.

4.1.2 Application instances
Application instance access patterns reflects application behavior, facilitating application
specific optimizations. We used 16 features to describe application instances (Table 4). The
corporate trace has 138,723 application instances, and the engineering trace has 741,319.

Table 4 provides quantitative descriptions and short names for all the application instance
access patterns. We derive the names from examining the read-write ratio, IO size, and
file extensions accessed (Figures 4 and 5).

We see again the metadata background noise. The supporting metadata application in-
stances account for the largest fraction, and often do not even open a file.

There are many files without a file extension, a phenomenon also observed in recent storage
system snapshot studies [16]. We notice that file extensions turn out to be poor indicators
of application instance access patterns. This is not surprising because we separate access
patterns based on read/write properties. A user could either view a .doc or create a
.doc. The same application software has different read/write patterns. This speaks to the
strength of our multi-layer framework. Aggregating IO by application instances gives clean
separation of patterns; while aggregating just by application software or file extensions will
not.

We also find it interesting that most file extensions are immediately recognizable. This
means that what people use network storage systems for, i.e., the file extensions, remains
easily recognizable, even though how people use network storage systems, i.e., the access
patterns, is ever changing and becoming more complex.

Observation 4: The small content viewing application and content update application in-
stances have <4KB total reads per file open and access a few unique files many times. The
small read size and multiple reads from the same files means that clients should prefetch
and place the files in a cache optimized for random access (flash/SSD/memory). The trend
towards flash caches on clients should enable this transfer.

Application instances have bi-modal total IO size - either very small or large. Thus, a
simple cache management algorithm suffices; we always keep the first 2 blocks of 4KB in
cache. If the application instance does more IO, it is likely to have IO size in the 100KB-
1MB range, so we evict it from the cache. We should note that such a policy makes sense
even though we proposed earlier to cache all 11MB of a typical day’s working set - 11MB of
cache becomes a concern when we have many consolidated clients. Implication 4: Clients
should always cache the first few KB of IO per file per application.

Observation 5: We see >50% sequential read and write ratio for the content update ap-
plications instances (corporate) and the content viewing applications instances for human-
generated content (both corporate and engineering). Dividing the total IO size by the
number of file opens suggest that these application instances are sequentially reading and
writing entire files for office productivity (.xls, .doc, .ppt, .pdf, etc.) and multimedia
applications.

This implies that the files associated with these applications should be prefetched and
delegated to the client. Prefetching means delivering the whole file to the client before the
whole file is requested. Delegation means giving a client temporary, exclusive access to a
file, with the client periodically synchronizing to server to ensure data durability. CIFS
does delegation using opportunistic locks, while NFSv4 has a dedicated operation for del-
egation. Prefetching and delegation of such files will improve read and write performance,
lower network traffic, and lighten server load.

(a). Descriptive features for each application instance
Total IO size Read sequentiality File opens
Read:write ratio by bytes Write sequentiality Unique files opened
Total IO requests by bytes Repeated read ratio Directories accessed
Read:write ratio by requests Overwrite ratio File extensions accessed
Total metadata requests Tree connects
Avg. time between IO requests Unique trees accessed

(b). Corp. app. instance Viewing app Support- App gen- Viewing hu- Content
access patterns generated ing meta- erated file man genera- update

content data updates ed content app
% of all app instances 16% 56% 14% 8.8% 5.1%

Total IO 100 KB 0 1 KB 800 KB 3.5 MB
Read:write ratio 1:0 0:0 1:1 1:0 2:3

Metadata requests 130 5 50 130 500
Read sequentiality 5% - 0% 80% 50%
Write sequentiality - - 0% - 80%

Overwrite ratio - - 0% - 5%
File opens:files 19:4 0:0 10:4 20:4 60:11

Tree connect:Trees 2:2 0:0 2:2 2:2 2:2
Directories accessed 3 0 3 3 4

File extensions accessed 2 0 2 2 3

(c). Eng. app. instance Compilation Support- Content up- Viewing hu- Content
access patterns app ing meta- date app - man genera- viewing

data small content app - small
% of all app instances 1.6% 93% 0.9% 2.0% 2.5%

Total IO 2 MB 0 2 KB 1 MB 3 KB
Read:write ratio 9:1 0:0 0:1 1:0 1:0

Metadata requests 400 1 14 40 15
Read sequentiality 50% - - 90% 0%
Write sequentiality 80% - 0% - -

Overwrite ratio 20% - 0% - -
File opens:files 145:75 0:0 3:1 5:4 2:1

Tree connect:Trees 1:1 0:0 1:1 1:1 1:1
Directories accessed 15 0 1 1 1

File extensions accessed 5 0 1 1 1

Table 4: Application instance access patterns. (a): Full list of descriptive features. (b)

and (c): Short names and descriptions of application instances in each access pattern; listing only

the features that help separate the access patterns.

The access patterns again offer a simple, threshold-based decision algorithm. If an appli-
cation instance does more than 10s of KB of sequential IO, and has no overwrite, then it
is likely to be a content viewing or update application instance; such files are prefetched
and delegated to the clients. Implication 5: Clients can request file prefetch (read) and
delegation (write) based on only IO sequentiality.

Observation 6: Engineering applications with >50% sequential reads and >50% sequential
writes are doing code compile tasks. We know this from looking at the file extensions in
Figure 5. These compile processes show read sequentiality, write sequentiality, a significant
overwrite ratio and large number of metadata requests. They rely on the server heavily
for data accesses. We need more detailed client side information to understand why client
caches are ineffective in this case. However, it is clear that the server cache needs to prefetch
the read files for these applications. The high percentage of sequential reads and writes
gives us another threshold-based algorithm to identify these applications. Implication 6:
Servers can identify compile tasks by the presence of both sequential reads and writes;
server has to cache the output of these tasks.

4.2 Server Side Access Patterns
As mentioned in Section 3.2, we analyzed two kinds of server side access units: files and
deepest subtrees.

n.f.e. + xls

no files opened

n.f.e.
n.f.e. + xls

n.f.e. + xls
n.f.e. + doc

n.f.e.

n.f.e. + xls
pdf

n.f.e. + doc

pdf

n.f.e. + xls

n.f.e. + doc

n.f.e. + doc

n.f.e. + lnk

ini

others

n.f.e. + htm

n.f.e. + ppt

n.f.e. + ppt

n.f.e. + ppt

n.f.e. + html

n.f.e. + pdf

n.f.e. + pdf

n.f.e. + lnk

others

others
others

others

0

0.2

0.4

0.6

0.8

1

content viewing
app - app
generated

content

supporting
metadata

app generated
file updates

content viewing
app - human

generated
content

content update
app

Fr
ac

tio
n

of
 a

pp
lic

at
io

n
in

st
an

ce
s

Figure 4: File extensions for corporate application instance access patterns. For each

access pattern (column), showing the fraction of the two most frequent file extensions that are

accessed together within a single application instance. “n.f.e.” denotes files with“no file extension”.

h + o

no files opened

rnd

jpg

xls + n.t.e.

h + c

n.f.e.

n.f.e.

bmp

rnd

h + dbo

others

n.f.e. + xls

pdf

pst

h + d txt

n.f.e.

n.f.e. + tmp

others
others

txt

d + h

others

others

0

0.2

0.4

0.6

0.8

1

compilation app supporting
metadata

content update
app - small

content viewing
app - human

generated
content

content viewing
app - small

Fr
ac

tio
n

of
 a

pp
lic

at
io

n
in

st
an

ce
s

Figure 5: File extensions for engineering application instance access patterns. For

each access pattern (column), showing the fraction of the two most frequent file extensions that are

accessed together within a single application instance. “n.f.e.” denotes files with“no file extension”.

4.2.1 Files
File access patterns help storage server designers develop per-file placement and optimiza-
tion techniques. We used 25 features to describe files (Table 5). Note that some of the
features include different percentiles of a characteristic, e.g., read request size as percentiles
of all read requests. We believe including different percentiles rather than just the average
would allow better separation of access patterns. The corporate trace has 1,155,099 files,
and the engineering trace has 1,809,571.

In Table 5, we quantitative descriptions and short names for all the file access patterns.

(a). Descriptive features for each file
Number of hours with 1, 2-3, or 4 file opens Read sequentiality
Number of hours with 1-100KB, 100KB-1MB, or >1MB reads Write sequentiality
Number of hours with 1-100KB, 100KB-1MB, or >1MB writes Read:write ratio by bytes
Number of hours with 1, 2-3, or 4 metadata requests Repeated read ratio
Read request size - 25th, 50th, and 75th percentile of all requests Overwrite ratio
Write request size - 25th, 50th, and 75th percentile of all requests
Avg. time between IO requests - 25th, 50th, and 75th percentile of all request pairs

(b). Corp. file Metadata Sequent- Sequent- Small Smallest Small
access patterns only ial write ial read random random random

write read read
% of all files 59% 4.0% 4.1% 4.7% 19% 9.2%

hrs with opens 2hrs 1hr 1hr 1hr 1hr 1hr
Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 1 open 1 open

hrs with reads 0 0 1hr 0 1hr 1hr
Reads per hr - - 100KB-1MB - 1-100KB 1-100KB

hrs with writes 0 1hr 0 1hr 0 0
Writes per hr - 100KB-1MB - 1-100KB - -

Read request size - - 4-32KB - 2KB 32KB
Write request size - 60KB - 4-22KB - -
Read sequentiality - - 70% - 0% 0%
Write sequentiality - 80% - 0% - -

Read:write ratio 0:0 0:1 1:0 0:1 1:0 1:0

(c). Eng. file Metadata Sequent- Small Edit Sequent- Read-
access patterns only ial write random code & tial read only log/

read compile backup
% of all files 42% 1.9% 32% 7.3% 8.3% 8.1%

hrs with opens 1hr 1hr 1hr 1hr 1hr 2hrs
Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 2-3 opens 2-3 opens

hrs with reads 0 0 1hr 1hr 1hr 2hrs
Reads per hr - - 1-100KB 1-100KB 1-100KB 1-100KB

hrs with writes 0 1hr 0 0 0 0
Writes per hr - >1MB - - - -

Read request size - - 3-4KB 4KB 8-16KB 1KB
Write request size - 64KB - - - -
Read sequentiality - - 0% 0% 70% 0%
Write sequentiality - 90% - - - -
Repeated read ratio - - 0% 50% 0% 0%

Read:write ratio 0:0 0:1 1:0 1:0 1:0 1:0

Table 5: File access patterns. (a): Full list of descriptive features. (b) and (c): Short names

and descriptions of files in each access pattern; listing only the features that help separate the

access patterns.

Figures 6 and 7 give the most common file extensions in each. We derived the names by
examining the read-write ratio and IO size. For the engineering trace, examining the file
extensions also proved useful, leading to labels such as “edit code and compile output”,
and “read only log/backup”.

We see that there are groupings of files with similar extensions. For example, in the corpo-
rate trace, the small random read access patterns include many file extensions associated
with web browser caches. Also, multi-media files like .mp3 and .jpg congregate in the
sequential read and write access patterns. In the engineering trace, code libraries group
under the sequential write files, and read only log/backup files contain file extensions .0

to .99. However, the most common file extensions in each trace still spread across many
access patterns, e.g., office productivity files in the corporate trace and code files in the
engineering trace.

Observation 7: For files with >70% sequential reads or sequential writes, the repeated read
and overwrite ratios are close to zero. This implies that there is little benefit in caching
these files at the server. They should be prefetched as a whole and delegated to the client.

no file ext. no file ext.
xls

no file ext.

xml
no file ext.

z xls
mp3

tmp

html

xls
xls mp3

jpg

doc

gif

doc

ico
pdf

doc

xls

zip

ppt

tmp
doc

pdf

others

htm

tmp

jpg

tmp

ppt

xls

html

xml

jpg

no file ext.

doc

others

others
others

others

swf

others

0

0.2

0.4

0.6

0.8

1

metadata
only files

seq write
files

seq read
files

small
random

write files

smallest
random

read files

small
random

read files

Fr
ac

tio
n

of
 fi

le
s

Figure 6: File extensions for corporate files. Fraction of file extensions in each file access

pattern.

Again, the bimodal IO sequentiality offers a simple algorithm for the server to detect which
files should be prefetched and delegated – if a file has any sequential access, it is likely to
have a high percentage of sequential access, therefore it should be prefetched and delegated
to the client. Future storage servers can suggest such information to clients, leading to
delegation requests. Implication 7: Servers should delegate sequentially accessed files to
clients to improve IO performance.

Observation 8: In the engineering trace, only the edit code and compile output files have
a high % of repeated reads. Those files should be delegated to the clients as well. The
repeated reads do not show up in the engineering application instances, possibly because a
compilation process launches many child processes repeatedly reading the same files. Each
child process reads “fresh data,” even though the server sees repeated reads. With larger
memory or flash caches at clients, we expect this behavior to drop. The working set issues
that lead to this scenario need to be examined. If the repeated reads come from a single
client, then the server can suggest that the client cache the appropriate files.

We can again employ a threshold-based algorithm. Detecting any repeated reads at the
server signals that the file should be delegated to the client. At worst, only the first few
reads will hit the server. Subsequent repeated reads are stopped at the client. Implication
8: Servers should delegate repeatedly read files to clients.

Observation 9: Almost all files are active (have opens, IO, and metadata access) for only
1-2 hours over the entire trace period, as indicated by the typical opens/read/write activity
of all access patterns. There are some regularly accessed files, but they are so few that
they do not affect the k-means analysis. The lack of regular access for most files means that
there is room for the server to employ techniques to increase capacity by doing compaction
on idle files.

Common techniques include deduplication and compression. The activity on these files in-
dicate that the IO performance impact should be small. Even if run constantly, compaction
has a low probability of affecting an active file. Since common libraries like gzip optimize
for decompression [11], decompressing files at read time should have only slight perfor-
mance impact. Implication 9: Servers can use file idle time to compress or deduplicate

no file ext.
jpg

no file ext. h c

0-99
o

mp3

h
c

o

bcq

bcf

dll

c

bcq

jpg

no file ext.

d
jar

html

d

h

others

c
wma

d

o

no file ext.

html doc
gif

others

html

h

others others
others

eth

others

0

0.2

0.4

0.6

0.8

1

idle, only
metadata

seq write
files

small
random

read files

edit code
& compile

output

seq read
files

read only
log/backup

files

Fr
ac

tio
n

of
 fi

le
s

Figure 7: File extensions for engineering files. Fraction of file extensions in each file access

pattern.

data to increase storage capacity.

Observation 10: All files have either all random access or >70% sequential access. The
small random read and write files in both traces can benefit from being placed on media
with high random access performance, such as solid state drives (SSDs). Files with a high
percentage of sequential access can reside on traditional hard disk drives (HDDs), which
already optimize for sequential access. The bimodal IO sequentiality offers yet another
threshold-based placement algorithm – if a file has any sequential access, it is likely to have
a high percentage of sequential access; therefore place it on HDDs. Otherwise, place it on
SSDs. We note that there are more randomly accessed files than sequentially accessed files.
Even though sequential files tend to be larger, we still need to do a working set analysis
to determine the right size of server SSDs for each use case. Implication 10: Servers can
select the best storage medium for each file based only on access sequentiality.

4.2.2 Deepest subtrees
Deepest subtree access patterns help storage server designers develop per-directory policies.
We used 40 features to describe deepest subtrees (Table 6). Some of the features include
different percentiles of a characteristic, e.g. per file read sequentiality as percentiles of all
files in a directory. Including different percentiles rather than just the average allows better
separation of access patterns. The corporate trace has 117,640 deepest subtrees, and the
engineering trace has 161,858. We use“directories”and“deepest subtrees” interchangeably.

In Table 6, we provide quantitative descriptions and short names for all the deepest subtree
access patterns. We derive the names using two types of information. First, we analyze
the file extensions in each subtree access pattern (Figures 8 and 9). Second, we exam-
ine how many files of each file access patterns are within each subtree pattern (Figures
10). For brevity, we show only the graph for corporate deepest subtrees. The graph for
the engineering deepest subtrees conveys the same information with regard to our design
insights.

For example, the “random read” and “client cacheable” labels come from looking at the IO
patterns. “Temporary directories” accounted for the .tmp files in those directories. “Mix
read” and “mix write” directories considered the presence of both sequential and randomly

(a). Descriptive features for each subtree
Number of hours with 1, 2-3, or 4 file opens
Number of hours with 1-100KB, 100KB-1MB, or >1MB reads
Number of hours with 1-100KB, 100KB-1MB, or >1MB writes
Number of hours with 1, 2-3, or 4 metadata requests
Read request size - 25th, 50th, and 75th percentile of all requests
Write request size - 25th, 50th, and 75th percentile of all requests
Avg. time between IO requests - 25th, 50th, and 75th percentile of all request pairs
Read sequentiality - 25th, 50th, and 75th percentile of files in the subtree
Write sequentiality - 25th, 50th, and 75th percentile of files in the subtree
Read:write ratio - 25th, 50th, and 75th percentile of files
Repeated read ratio - 25th, 50th, and 75th percentile of files
Overwrite ratio - 25th, 50th, and 75th percentile of files
Read sequentiality - aggregated across all files
Write sequentiality - aggregated across all files
Read:write ratio - aggregated across all files
Repeated read ratio - aggregated across all files
Overwrite ratio - aggregated across all files

(b). Corp. subtree Temp Client Mixed Meta- Mixed Small
access patterns real cacheable read data write random

data only read
% of all subtrees 2.3% 4.1% 5.6% 64% 3.5% 21%
hrs with opens 3hrs 3hrs 2hrs 2hrs 1hr 1hr

Opens per hr >4 opens 1 open 1 open 1 open >4 opens >4 opens
hrs with reads 3hrs 2hrs 1hr 0 0 1hr

Reads per hr 1-100KB 1-100KB 1-100KB - - 1-100KB
hrs with writes 2hrs 0 0 0 1hr 0

Writes per hr 0.1-1MB - - - >1MB -
Read request size 4KB 4-10KB 4-32KB - - 1-8KB
Write request size 4KB - - - 64KB -
Read sequentiality 10-30% 0% 50-70% - - 0%
Write sequentiality 50-70% - - - 70-80% -
Repeat read ratio 20-50% 50% 0% - - 0%

Overwrite ratio 30-70% - - - 0% -
Read:write ratio 1:0 to 0:1 1:0 1:0 0:0 0:1 1:0

(b). Eng. subtree Meta- Small Client Mixed Sequen- Temp
access patterns data random cacheable read tial real

only read write data
% of all subtrees 59% 25% 6.1% 7.1% 1.9% 1.3%
hrs with opens 1hr 1hr 1hr 1hr 1hr 3hrs

Opens per hr 2-3 pens >4 opens >4 opens >4 opens >4 opens >4 opens
hrs with reads 0 1hr 1hr 1hr 0 3hrs

Reads per hr - 1-100KB 1-100KB 0.1-1MB - 1-100KB
hrs with writes 0 0 0 0 1hr 1hr

Writes per hr - - - - 0.1-1MB 1-100KB
Read request size - 1-4KB 2-4KB 8-10KB - 4-32KB
Write request size - - - - 32-60KB 4-60KB
Read sequentiality - 0% 0% 40-70% - 10-65%
Write sequentiality - - - - 70-90% 60-80%
Repeat read ratio - 0% 50-60% 0% - 0-40%

Overwrite ratio - - - - 0% 0-30%
Read:write ratio 0:0 1:0 1:0 1:0 0:1 1:0 to 0:1

Table 6: Deepest subtree access patterns. (a): Full list of descriptive features. (b) and

(c): Short names and descriptions of subtrees in each access pattern; listing only the features that

help separate access patterns.

accessed files in those directories.

The metadata background noise remains visible at the subtree layer. The spread of file
extensions is similar to that for file access patterns – some file extensions congregate and
others spread evenly. Interestingly, some subtrees have a large fraction of metadata-only
files that do not affect the descriptions of those subtrees.

no file ext.
xls

jpg
no file ext. no file ext.

no file ext.

tmp

no file ext.

xls

z

tmp

xml

doc

xml

mp3

xls

xls

html

xls

html

pdf

ico

pdf

xls

xml

msg

swf

xml

mp3

doc

others

gif

no file ext.

jpg

doc

gif

others

doc

others
jpg

htm

zip

others

zip

others

others

0

0.2

0.4

0.6

0.8

1

temp dirs
for real

data

client
cacheable

dirs

mix read
dirs,

mostly seq

metadata
only dirs

mix write
dirs,

mostly seq

small
random
read dirs

Fr
ac

tio
n

of
 fi

le
s

Figure 8: File extensions for corporate deepest subtrees. Fraction of file extensions in

deepest subtree access patterns.

Some subtrees contain only files of a single access pattern (e.g., small random read subtrees
in Figures 10). There, we can apply the design insights from the file access patterns to the
entire subtree. For example, the small random read subtrees can reside on SSDs. Since
there are more files than subtrees, per-subtree policies can lower the amount of policy
information kept at the server.

In contrast, the mix read and mix write directories contain both sequential and randomly
accessed files. Those subtrees need per-file policies: Place the sequentially accessed files
on HDDs and the randomly accessed files on SSDs. Soft links to files can preserve the
user-facing directory organization, while allowing the server optimize per-file placement.
The server should automatically decide when to apply per-file or per-subtree policies.

Observation 11: Directories with sequentially accessed files almost always contain randomly
accessed files also. Conversely, some directories with randomly access files will not
contain sequentially accessed files. Thus, we can default all subtrees to per-subtree policies.
Concurrently, we track the IO sequentiality per subtree. If the sequentiality is above some
threshold, then the subtree switches to per-file policies. Implication 11: Servers can change
from per-directory placement policy (default) to per-file policy upon seeing any sequential
IO to any files in a directory.

Observation 12: The client cacheable subtrees and temporary subtrees aggregate files with
repeated reads or overwrites. Additional computation showed that the repeated reads
and overwrites almost always come from a single client. Thus, it is possible for the entire
directory to be prefetched and delegated to the client. Delegating entire directories can
preempt all accesses that are local to a directory, but consumes client cache space. We
need to understand the tradeoffs through a more in-depth working set and temporal locality
analysis at both the file and deepest subtree levels. Implication 12: Servers can delegate
repeated read and overwrite directories entirely to clients, tradeoffs permitting.

4.3 Access Pattern Evolutions Over Time
We want to know if the access patterns are restricted to our particular tracing period or
if they persist across time. Only if the design insights remain relevant across time can we
rationalize their existence in similar use cases.

no file ext. no file ext. c
no file ext.

jpg o

bcf h
h

c
tmp

jpg
o c

bcq

o
no file ext.

tmpd bcq

no file ext.

d jar

no file ext.
c

html

d

jpg ryy

d
html

others

others

html dll

dbo
h

others others

obj
eth

othersothers

0

0.2

0.4

0.6

0.8

1

metadata
only dir

small
random
read dir

client
cacheable

dirs

mix read
dirs,

mostly seq

seq write
dirs

temp dirs
for real

data

Fr
ac

tio
n

of
 fi

le
s

Figure 9: File extensions for engineering deepest subtrees. Fraction of file extensions in

deepest subtree access patterns.

0

10000

20000

30000

40000

0 1 2 3 4 5

of

 fi
le

s

file access patterns

0

10000

20000

30000

0 1 2 3 4 5
file access patterns

0

10000

20000

30000

0 1 2 3 4 5
file access patterns

0

200000

400000

600000

800000

0 1 2 3 4 5
file access patterns

0

10000

20000

30000

40000

0 1 2 3 4 5
file access patterns

0

50000

100000

150000

200000

0 1 2 3 4 5
file access patterns

Temp dirs for real data Client cacheable dirs Mix read dirs, mostly seq Metadata only dirs Mix write dirs, mostly seq Small random read dirs

Figure 10: Corporate file access patterns within each deepest subtree. For each

deepest subtree access pattern (i.e., each graph), showing the number of files belonging to each

file access pattern that belongs to subtrees in the subtree access pattern. Corporate file access

pattern indices: 0. metadata only files; 1. sequential write files; 2. sequential read files; 3. small

random write files; 4. small random read files; 5. less small random read files.

We do not have enough traces to generalize beyond our monitoring period. We investigate
the reverse problem - if we had to analyze traces from only a subset of our tracing period,
how would our results differ? We divided our traces into weeks and repeated the analysis
for each week. For brevity, we present only the results for weekly analysis of corporate
application instances and files. These two layers have yielded the most interesting design
insights and they highlight separate considerations at the client and server.

Figure 11 shows the result for files. All the large access patterns remain steady across
the weeks. However, the access pattern corresponding to the smallest number of files, the
small random write files, comes and goes week to week. There are exactly two, temporary,
previously unseen access patterns that are very similar to the small random files. The
peaks in the metadata only files correspond to weeks that contain U.S. federal holidays or
weeks immediately preceding a holiday long weekend. Furthermore, the numerical values
of the descriptive features for each access pattern vary in a moderate range. For example,
the write sequentiality of the sequentiality write files ranges from 50% to 90%.

Figure 12 shows the result for application instances. We see no new access patterns, and
the fractional weight of each access pattern remains nearly constant, despite holidays.
Furthermore, the numerical values of descriptive features also remain nearly constant. For
example, the write sequentiality of the content update applications varies in a narrow range

0.01

0.10

1.00

0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 a

ll
fil

es

week #

metadata only files
sequential write files
sequential read files
small random write files
smallest random read files
small random read files
medium partly seq write
small read write

Figure 11: Corporate file access patterns over 8 weeks. All patterns remain (hollow

markers), but the fractional weight of each changes greatly between weeks. Some small patterns

temporarily appear and disappear (solid markers).

0.01

0.10

1.00

0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 a

ll
ap

p
in

st
an

ce
s

week #

supporting metadata

app generated file updates

content update app

content viewing app - app
generated content
content viewing app - human
generated content

Figure 12: Corporate application instance access patterns over 8 weeks. All patterns

remain with near constant fractional weight. No new patterns appear.

from 80% to 85%.

Thus, if we had done our analysis on just a week’s traces, we would have gotten nearly
identical results for application instances, and qualitatively similar result for files. We
believe that the difference comes from the limited duration of client sessions and application
instances, versus the long-term persistence of files and subtrees.

Based on our results, we are confident that the access patterns are not restricted just to
our particular trace period. Future storage systems should continuously monitor the access
patterns at all levels, automatically adjusting policies as needed, and notify designers of
previously unseen access patterns.

We should always be cautious when generalizing access patterns from one use case to
another. For use cases with the same applications running on the same OS file API, we
expect to see the same application instance access patterns. Session access patterns such
as daily work sessions are also likely to be general. For the server side access patterns, we
expect the files and subtrees with large fractional weights to appear in other use cases.

5. ARCHITECTURAL IMPLICATIONS
Section 4 offered many specific optimizations for placement, caching, delegation, and con-
solidation decisions. We combine the insights here to speculate on the architecture of
future enterprise storage systems.

We see a clear separation of roles for clients and servers. The client design can target
high IO performance by a combination of efficient delegation, prefetching and caching of
the appropriate data. The servers should focus on increasing their aggregated efficiency
across clients: collaboration with clients (on caching, delegation, etc.) and exploiting user
patterns to schedule background tasks. Automating background tasks such as offline data
deduplication delivers capacity savings in a timely and hassle-free fashion, i.e., without
system downtime or explicit scheduling. Regarding caching at the server, we observe
that very few access patterns actually leverage the server’s buffer cache for data accesses.

Design insights 4-6, 8 and 12 indicate a heavy role for the client cache and Design insight
7 suggests how not to use the server buffer cache - caching metadata only and acting as a
warm/backup cache for clients would result in lower latencies for many access patterns.

We also see simple ways to take advantage of new storage media such as SSDs. The
clear identification of sequential and random access file patterns enables efficient device-
specific data placement algorithms (Design insights 10 and 11). Also, the background
metadata noise seen at all levels suggests that storage servers should both optimize for
metadata accesses and redesign client-server interactions to decrease the metadata chatter.
Depending on the growth of metadata and the performance requirements, we also need to
consider placing metadata on low latency, non-volatile media like flash or SSDs.

Furthermore, we believe that storage systems should introduce many monitoring points to
dynamically adjust the decision thresholds of placement, caching, or consolidation policies.
We need to monitor both clients and servers. For example, when repeated read and
overwrite files have been properly delegated to clients, the server would no longer see files
with such access patterns. Without monitoring points at the clients, we would not be able
to quantify the file delegation benefits. Storage systems should make extensible tracing
APIs to expedite the collection of long-term future traces. This will facilitate future work
similar to ours.

6. CONCLUSIONS AND FUTURE WORK
We must address the storage technology trends toward ever-increasing scale, heterogeneity,
and consolidation. Current storage design paradigms that rely on existing trace analysis
methods are ill equipped to meet the emerging challenges because they are unidimensional,
focus only on the storage server, and are subject to designer bias. We showed that a multi-
dimensional, multi-layered trace-driven design methodology leads to more objective design
points with highly targeted optimizations at both storage clients and servers. Using our
corporate and engineering use cases, we present a number of insights that informs future
designs. We described in some detail the access patterns we observed, and we encourage
fellow storage system designers to extract further insights from our observations.

Future work includes exploring the dynamics of changing working sets and access se-
quences, with the goal of anticipating data accesses before they happen. Another worth-
while analysis is to look for optimization opportunities across clients; this requires collect-
ing traces at different clients, instead of only at the server. Also, we would like to explore
opportunities for deduplication, compression, or data placement. Doing so requires ex-
tending our analysis from data movement patterns to also include data content patterns.
Furthermore, we would like to perform on-line analysis in live storage systems to enable
dynamic feedback on placement and optimization decisions. In addition, it would be use-
ful to build tools to synthesize the access patterns, to enable designers to evaluate the
optimizations we proposed here.

We believe that storage system designers face an increasing challenge to anticipate access
patterns. Our paper builds the case that system designers can longer accurately anticipate
access patterns using intuition only. We believe that the corporate and engineering traces
from our corporate headquarters would have similar use cases at other traditional and high-
tech businesses. Other use cases would require us to perform the same trace collection and
analysis process to extract the same kind of “ground truth”. We also need similar studies
at regular intervals to track the evolving use of storage system. We hope that this paper
contributes to an objective and principled design approach targeting rapidly changing data
access patterns.

NetApp, the NetApp logo, and Go further, faster are trademarks or registered trademarks
of NetApp, Inc. in the United States and/or other countries.

7. REFERENCES
[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A Five-Year Study of

File-System Metadata. In FAST 2007.

[2] E. Alpaydin. Introduction to Machine Learning. MIT Press, Cambridge,
Massachusetts, 2004.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout.
Measurements of a distributed file system. In SOSP 1991.

[4] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen. Fingerprinting
the datacenter: automated classification of performance crises. In EuroSys 2010.

[5] Common Internet File System Technical Reference. Storage Network Industry
Association, 2002.

[6] IDC Whitepaper: The economics of Virtualization. www.vmware.com/files/pdf/
Virtualization-application-based-cost-model-WP-EN.pdf.

[7] J. R. Douceur and W. J. Bolosky. A Large-Scale Study of File-System Contents. In
SIGMETRICS 1999.

[8] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS Tracing of Email and
Research Workloads. In FAST 2003.

[9] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and
D. Patterson. Predicting Multiple Metrics for Queries: Better Decisions Enabled by
Machine Learning. In ICDE 2009.

[10] S. Gribble, G. S. Manku, E. Brewer, T. J. Gibson, and E. L. Miller. Self-Similarity
in File Systems: Measurement and Applications. In SIGMETRICS 1998.

[11] The gzip algorithm. http://www.gzip.org/algorithm.txt.

[12] IDC Report: Worldwide File-Based Storage 2010-2014 Forecast Update.
http://www.idc.com/getdoc.jsp?containerId=226267.

[13] S. Kavalanekar, B. L. Worthington, Q. Zhang, and V. Sharda. Characterization of
storage workload traces from production Windows Servers. In IISWC 2008.

[14] Open Source Clustering Software - C Clustering Library.
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm, 2010.

[15] A. Leung, S. Pasupathy, G. Goodson, and E. Miller. Measurement and analysis of
large-scale network file system workloads. In USENIX ATC 2008.

[16] D. T. Meyer and W. J. Bolosky. A Study of Practical Deduplication. In FAST 2010.

[17] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfer, and J. G.
Thompson. A trace-driven analysis of the Unix 4.2 BSD file system. In SOSP 1985.

[18] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of file I/O traces in
commercial computing environments. In SIGMETRICS 1992.

[19] D. Roselli, J. Lorch, and T. Anderson. A comparison of file system workloads. In
USENIX 2000.

[20] I. Stoica. A Berkeley View of Big Data: Algorithms, Machines and People. UC
Berkeley EECS Annual Research Symposium, 2011.

[21] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a
real-time URL spam filtering service. In IEEE Symposium on Security and Privacy
2011.

[22] R. Villars. The Migration to Converged IT: What it Means for Infrastructure,
Applications, and the IT Organization. IDC Directions Conference 2011.

[23] VMware Whitepaper: Server Consolidation and Containment.
www.vmware.com/pdf/server_consolidation.pdf.

[24] W. Vogels. File system usage in Windows NT 4.0. In SOSP 1999.

[25] M. Zhou and A. J. Smith. Analysis of Personal Computer Workloads. In MASCOTS
1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

